


TABLE I

STATE OF THE ART: HUMAN-EXOSKELETON MODELING, CONTROL AND INTERACTION

Human Model Exoskeleton Model

Literature Body part # Joints # Muscles Control scheme # Joints Control scheme Task

[6], [7] Legs 8 30 Static optimization n.a. n.a. Cycling

[8] Neck 8 72 PD + feedforward n.a. n.a. Head movements

[9] Shoulder-
elbow

4 15 Muscular latent-space
PID control

n.a. n.a. Driving/steering

[3] n.a. n.a. n.a. n.a. 1 EMG-based force pre-
diction

Loaded elbow
flexion/extension

[5] n.a. n.a. n.a. n.a. 1 Fuzzy impedance con-
trol

Leg swinging

[14] Legs 12 n.a. n.a. 12 Fuzzy-PID/PID Walking, stair
ascent/descent, etc.

[15] Arm Linearized n.a. n.a. 4 Impedance control Movements with no ex-
ternal force

Our work Shoulder-arm 12 42 Kinematic latent-space
trajectory control

6 Gravity compensation Reaching movements/
Power drilling

[7]. The few existing heterogeneous models often oversim-

plify the human dynamics. Typically, it is represented as a

passive subsystem that e. g. smoothly follows exoskeleton

movements [14], [15]. A significantly more human-centric

dynamics simulation in the given context seems valuable.

Tab. I summarizes some of the most relevant existing

works and highlights the contribution of this paper, which

is detailed below.

B. Contribution

In this paper we introduce a simulation tool that combines

wearable exoskeletal assistance systems with articulated hu-

man upper-limb musculoskeletal dynamics during tool use.

It can be used for a wide range of system investigations and

controller designs, such as

• design and evaluation of human-centered exoskeleton

controllers, e.g., by considering human and exoskele-

ton posture, tracking error, muscle activation/effort or

interaction forces,

• evaluation of human motor control hypotheses, and

• design and performance analysis of exoskeleton systems

during tool-mediated manipulation tasks.

The main contributions are

• a dynamics simulation of human upper limb, exoskele-

ton and their respective coupling with each other via a

virtual 6 DoF spring,

• kinematic synergy identification for a basic power

drilling task,

• development of a human latent-space trajectory con-

troller1 based on the identified synergies, and

• kinematic and muscular analysis of the latent-space

trajectory controlled system.

1Note that this control hypothesis is only for evaluating our framework.
Its validity is not of interest in this paper.

Specifically, we discuss the recently developed 6 DoF ex-

oskeleton system 3rd arm. It was designed to support crafts-

men by compensating the weight of power tools, thus reliev-

ing the human musculoskeletal system from large payloads.

The human upper-limb neuromechanics model consists of 12

skeletal and 42 muscular DoFs. Based on the identification

of kinematic synergies for an exemplary power drilling

manipulation task, we introduce and analyze a novel human

latent-space trajectory controller.

The remainder of the paper is organized as follows (see

also Fig. 1). Section II introduces the general dynamics

model of an upper-limb exoskeleton, the model of the

3rd arm, and its controller. Section III provides the hu-

man shoulder-arm neuromechanics model. Furthermore, the

synergy identification approach and the human latent-space

trajectory control law are explained. The coupling between

human and exoskeleton during a simple drilling process

model is outlined in Sec. IV. Finally, in Sec. V quantitative

results for two cycles of a human-driven power drilling

manipulation task are discussed. Section VI concludes the

work.

II. EXOSKELETON SIMULATION MODEL

A. Rigid-body dynamics

The behavior of an n DoF upper-limb exoskeleton system

interacting with a human craftsman and a tool-mediated ma-

nipulation process acting on the endeffector can be modeled

as

ME(qE)q̈E + cE(qE, q̇E) + gE(qE) + hE(qE) =

τm + JT

Ec
(qE)FEc

+ JT

Ee
(qE)FEe

, (1)

where ME ∈ R
n×n, cE ∈ R

n and gE ∈ R
n are the inertia

matrix, Coriolis/centrifugal and gravitational terms, respec-

tively. The term hE ∈ R
n contains other nonlinear effects

such as elastic joint limits [16] or supportive mechanical

spring elements, while τm ∈ R
n denotes the motor torques.
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In this work, an upper-limb musculoskeletal model com-

posed of j = 12 skeletal DoFs and k = 42 mus-

cles/subregions was developed. The skeletal DoFs are as-

sociated to the anatomical joints sternoclavicular, acromio-

clavicular, glenohumeral, humeroulnar, radioulnar, and ra-

diocarpal. The scapulothoracic sliding plane is considered in

hH, see (3). Fig. 3 shows the current visualization rendered

in Unity (Unity Technologies SF, USA).

sterno-
clavicular

acromioclavicular

glenohumeral

humeroulnar

radioulnar

radiocarpal

scapulothoracic
sliding plane

Coupling point Hc

Fig. 3. Visualization of the 12 skeletal-DoF and 42 muscular-DoF human
upper-limb musculoskeletal model in Unity. Several muscles such as musculi

teres major et minor and musculi bi- et triceps brachii are implemented as
a 3D model, whereas the other muscles are represented by red cables.

The verification and more details of this upper-limb mus-

culoskeletal system will be left for a consecutive paper

focusing on human upper-limb neuromechanics and control.

For the current work, the model serves solely as plant

dynamics for the human motor control hypothesis outlined

next.

B. Kinematic synergy identification approach

In order to reduce the control variables for the latent-

space controller, the synergy of the desired motion needs

to be identified expressing the high-dimensional movement

in fewer coordinates.

Starting from a demonstrated joint-space trajectory

qH,demo(t) ∈ R
j ∀t, kinematic synergies can e.g. be

identified via Principle Component Analysis (PCA) [18]

approximating the original motion by

qH,demo(t) ≈WqL(t) + q̄H,demo,

WTW = Is, (5)

where W ∈ R
j×s is the transformation matrix between the

joint and latent space, q̄H,demo = const. is the estimated

average posture of qH,demo over time, qL ∈ R
s the latent-

space coordinates, s the latent-space dimensionality, and

Is ∈ R
s×s the identity matrix. W is obtained by applying

Singular Value Decomposition (SVD) on a data matrix

representing the trajectory qH,demo(t) ∀t, see [13]. Note

that W and q̄H,demo are task-specific, i.e., for a different

qH,demo(t) ∀t (different task), a new W and q̄H,demo will

be identified.

C. Latent-space control hypothesis

For the sole purpose of evaluating our framework, a

potential first candidate for synergy-based upper limb control

is introduced. However, note that its validity is not of

interest at this stage. The human muscle-space controller is

composed of 1) a latent-space trajectory controller, 2) a null-

space posture controller, and 3) a muscle-force controller, see

Fig. 4.

The latent-space trajectory controller is defined as

FM,L = KM,LJMW
[

qL,d − qL
]

+DM,LJMW
[

q̇L,d − q̇L
]

, (6)

where KM,L, DM,L ∈ R
42×42 denote constant muscle-

space impedance matrices, and qL,d the desired latent-space

coordinates.

The posture controller intents to keep the system in the

neighborhood of the average posture q̄H,demo. It is defined

as

FM,P = KM,PJMNWTNT

WT

[

q̄H,demo − qH
]

−DM,PJMNWTNT

WT q̇H, (7)

where KM,P, DM,P ∈ R
42×42 denote the muscle-space

impedance matrices, and NWT an orthonormal basis for the

null space of WT. With the desired muscle-space force

FM,d = max(0, FM,L + FM,P) (8)

the muscle-force controller outputs the muscle activation

u =

∫

T−1Ψ−1(qH, q̇H)
[

FM,d − FM

]

. (9)

Herein T ∈ R
42×42 denotes the positive diagonal integral

time constant matrix, and Ψ (qH, q̇H) ∈ R
42×42 the diagonal

matrix for muscle force-activation linearization, i.e.,

Ψ ≈
∂f

(

u, lM(qH), l̇M(qH, q̇H)
)

∂u
. (10)

The musculotendious parameters, such as maximum iso-

metric force or muscle optimum length, in function f(·) are

taken from [19]. In future work, we will plan to extend the

controller with muscular synergies (muscular latent space)

and latent-space impedance matrices.
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