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Abstract 
Simulation, especially discrete event simulation 

(DES), is used in a variety of disciplines where numerical 
methods are dificult or impossible to apply. One problem 
with this method is that a suficiently detailed simulation 
may take hours or days to execute, and multiple runs may 
be needed in order to generate the desired results. Paral- 
lel discrete event Simulation (PDES) has been explored for 
many years as a method to decrease the time taken to ex- 
ecute a simulation. Many protocols have been developed 
which work well for particular types of simulations, but 
perjorm poorly when used for other types of simulations. 
Often it is dificult to know a priori whether a particular 
protocol is appropriate for a given problem. In this work, 
an adaptive Jynchronization method (ASM) is developed 
which works well on an entire spectrum ofproblems. The 
ASMdetermines, using an artificial neural network (m), 
the likelihood that a particular event is safe to process. 

1 Parallel discrete event simulation 
Simulation, especially discrete event simulation 

(DES), is used in a variety of disciplines where numerical 
methods are =cult or impossible to apply. One prob- 
lem with this method is that a sufficiently detailed sim- 
ulation may take hours or days to execute, and multiple 
runs may be needed in order to generate the desired re- 
sults. In general there are three ways to speed up the ex- 
ecution of a DES: the algorithms in the simulation can be 
improved (both in the model and in the simulation frame- 
work), the simulation can be executed on a faster machine, 
and the simulation can be run in parallel on several proces- 
sors. The last method, parallel discrete event simulation 
(PDES), is the focus of this research. 

The typical method to paralleliie a discrete event s-m- 
ulation is to divide the model that is being simulated into 
separate sub-models, called physical processes. For ex- 
ample, in a manufacturing plant simulation each machine 
could be considered a separate physical process. Each 

physical process is then simulated by a logical process 
(LP). 

An LP communicates with another LP by transmit- 
ting a message that contains an event. An event consists 
of an execution time (the timestamp), which indicates the 
simulation time at which the event is to be executed on the 
destination LP, the model-specific actions to be performed, 
and the source (i-e., transmitting) and the destination (i.e., 
receiving) LPs. It is possible for the source LP and des- 
tination LP to be the same. When an LP receives a mes- 
sage, the event that is contained in the message is sched- 
uled for execution. The source LP is said to have generated 
the event that is scheduled on the destination LP. Each LP 
maintains its own independant simulation clock, called the 
local virtual time (LVT). The LVT is the timestamp of the 
last event that has been executed. There is also a global 
virtual time (GVT), which is defined as the minimum of 
all the LVTs and any messages in transit in the simulation. 
The GVT records the global progress of the simulation. 

The behavior of a PDES is influenced by many fac- 
tors, including the model that is being simulated, the hard- 
ware on which the simulation is executing, the comuni- 
cation network that connects the processors, and the simu- 
lation framework (the infrastructure upon which the model 
is built). The situation becomes even more complex when 
the simulation is run on a heterogeneous collection of ma- 
chines with varying computation power. 

Reynolds [ 141 has identified nine design variables that 
can be used to describe the spectrum of PDES synchro- 
nization. The two which are most directly related to this 
work are aggressiveness and risk. 

Aggressiveness is the willingness of an LP to process 
an event that may turn out to be incorrect. An LP that 
never executes events out of timestamp order has zero ag- 
gressiveness. An LP that allows events to be executed out 
of order, but later corrects the errors that result, is aggres- 
sive. 

Risk is the willingness of an LP to transmit messages 
that later may have to be retracted because an event was 
processed incorrectly (Le., out of order). Nonzero risk im- 
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plies that the simulation has some method to undo the ef- 
fects of erroneous messages (e.g., anti-messages). 
1.1 Conservative PDES 

The conservative simulation protocol [3, 21 prevents 
out of order execution of events. Using the terminology 
of Reynolds [14], it is non-aggressive and non-risb. An 
event is not executed by an LP unless it can be guaranteed 
that no other event with a smaller timestamp (a straggler) 
will be received. Such an event is called a safe event. If 
there are no known safe events, the LP will block until a 
safe event becomes available. A safe event can become 
available in one of two ways: a new event is received and 
determined to be safe, or a previously received event is de- 
termined to be safe, usually because an event was received 
from another LP. 

In general, messages from one LP to another must be 
sent in increasing timestamp order. A message from LP1 
to LP2 with timestamp t is a guarantee by LP1 to LP2 that 
LP1 will not send another message with a timestamp less 
than t. In this way, an LP can determine if an event is safe 
to process. If an LP has received a message from every 
other LP with a timestamp larger that the timestamp of the 
event in question, the event is safe. To prevent deadlocks, 
LPs send out null messages, messages with no correspond- 
ing event, only a timestamp. These messages simply serve 
to update the minium timestamp on messages from a par- 
ticular LP. 
1.2 Optimistic PDES 

In contrast to conservative simulation, optimistic sim- 
ulation [8] assumes that every event is safe. Again using 
Reynold’s [ 141 terminology, optimistic simulation is ag- 
gressive and most optimistic protocols are risky. When 
the assumption that an event is safe to process is proved 
wrong, by the receipt of a straggler (Le., an event which 
should have been processed in the past), events which have 
already been processed and have a timestamp greater than 
that of the straggler must be rolled back. This rollback 
may include the sending of anti-messages to cancel mes- 
sages transmitted in error. 

An anti-message is simply a copy of the original mes- 
sage with the sign reversed. If the positive message to be 
canceled has not yet been executed by the destination LP, it 
is simply removed from the message queue of the destina- 
tion LP. If the message has been processed, the destination 
LP must be rolled back to a time prior to that of the times- 
tamp of the canceled message, in order to undo any effects 
of the incorrect message. 

Message cancellation may either be aggressive (ev- 
ery message transmitted by a rolled back event is canceled 
immediately), or lazy (only events which are not regen- 
erated when the rolled back event is reexecuted are can- 
celed) [6, 91. Aggressive cancellation increases the speed 

at which messages are canceled, at the risk of canceling 
some messages unnecessarily. Lazy cancellation only cor- 
rects truly erroneous messages, at the risk of more erro- 
neous messages being executed, possibly increasing the 
number of rollbacks. 

2 Adaptive simulation 
Many protocols have been developed to reduce the 

aggressiveness and risk of optimistic protocols (e.g., [13, 
161) and to increase the aggressiveness and risk of con- 
servative protocols (e.g., [4, 151). These protocols do not 
answer the basic question: “Is a particular event safe to 
process?” The approach taken in this research is to deter- 
mine, using an Adaptive Synchronization Method (ASM), 
the lielihood that a particular event is safe to process. 

Other attempts at adaptively controllig PDES (e.g., 
[1, 11, 5 ,  7, 101 have used adaptively controlled parame- 
ters such as blocking windows (the amount of wall-clock 
time to block after each event is processed). These proto- 
cols do not treat each event individually. As a (simplified) 
example, take a simulation with two types of events, tl  
and t2.  Events of type tl almost always are rolled back, 
while events of type t2 are almost never rolled back. As 
ASM would execute events of type t2 immediately, but 
block for some amount of walk-clock time before execut- 
ing events of type t2 in order to reduce rollbacks. An adap- 
tive protocol that works on an per LP basis would have to 
determine a balance between executing events of type tl 
immediately, and blocking before executing events of type 
t2, makiig a choice which is not optimal for either type of 
event. 

In a complex simulation, the appropriate action may 
depend not only on the type of event, but possibly on the 
events source, destination, the amount of aggressive pro- 
cessing on the destination LP, or the type of LP as well. 
Given this complex (and possibly changing) set of depen- 
dencies, using an ASM to decide, on a per event basis, how 
much time to wait prior to executing an event makes sense. 

The ASM takes as input several parameters describ- 
ing the state of the LP and the event in question (e.g., event 
type, LP type, the difference between the local and global 
virtual times, or the number of rollbacks by this LP). All 
of these parameters are local to the LP, thus do not in- 
cur any communication overhead. Given these parame- 
ters, the ASM will return a prediction of the likelihood 
that the event is safe to process (i.e., will not roll back). 
This likelihood is similar to a probability, but may have 
some differences, depending on the implementation of the 
ASM. For instance, it may not be limited to the range 0 to 
1. Given this l iel iood, a decision will be made whether 
or not to execute the event. In this way aggressiveness can 
be controlled on a per event basis. 

The ASM can be implemented using any adaptive 
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Figure 1: Neural network architecture with inputs 
X I ,  X2,. . . , X,, output Y ,  and one hidden layer. 

method, including an artificial neural network (ANN), 
fuzzy logic, or a genetic algorithm. For this work, an ANN 
was chosen. The reason for this choice is a ANN'S ability 
to deal with a high-dimension input space, and the ability 
to interpolate between known data points. 

3 Artificial neural networks 
An in-depth treatment of artificial neural networks 

(ANN) is beyond the scope of this paper, more complete 
descriptions can be found in [ 121. A brief introduction is 
presented below. 

An ANN is a simplified model of neural processing of 
the brain, consisting of simple interconnected processing 
units. It is able to learn to approximate any function, by 
using example data. An ANN is arranged into layers: an 
input layer, an output layer, and one or more hidden lay- 
ers, so called because they are not directly connected to 
the network's inputs or outputs. An ANN with one hid- 
den layer is shown in Figure 1. The X i  are inputs to the 
network, and Y is the output of the network. 

One of the most cornmon ANN architectures is the 
multr-layer perceptron (MLP). An MLP unit is shown in 
Figure 2. The output of a unit is a function of the weighted 
sum of its inputs, as shown in Equation 1. The network 
learns by adjusting the weights on the inputs to achieve the 
desired output. The output function is a non-liiear func- 
tion which maps its input to the range (0,l). A common 
output function is the sigmoid function shown in Equa- 
tion 2. 

Figure 2: Detail of an ANN unit. 

The network is trained by presenting example inputs 
and adjusting the weights of the network to miniiize the 
error. Trainiig can be either supervised or unsupervised. 
In supervised training, the desired output is presented with 
each set of inputs and the network is trained to produce 
the desired output. Unsupervised training only presents 
the inputs to the network, It is up to the network itself to 
group similar sets of inputs to produce the same output. 
This is useful in classification, where the actual output is 
not important, only that inputs which belong to the same 
class produce similar outputs. Only supervised training is 
considered in this work. 

A common learning algorithm for A N N s  is back prop- 
agation. The difference between the actual output, Y, and 
the target output, Y(t) ,  is computed and propagated from 
the output layer, back through the hidden layers to the in- 
put layer, adjusting the weights on the inputs. The weight 
change between unit j and unit i is shown in Eiquations 3- 
5, where 77 is the learning rate, which controls how fast the 
network learns. 

sj = 
(s) (yr) - y j )  i f j  is an output unit 

(&) E, W,jS, if j is a hidden unit 

(4) 

netj = w~,x, ( 5 )  
Q 



Training can be either off-line or online. In off-line 
training, all of the training examples are collected before 
training starts, and presented to the network as a group. 
Online training presents training examples individually, 
and can be interleaved with network evaluation. Usually 
online training examples are generated by the application 
as it executes. 

4 Simulation framework 
An object oriented PDES Mework,  object oriented 

parallel simulation system (OOPSS), was written to de- 
velop and test new simulation protocols. Through the use 
of inheritance and polymorphism, parts of the simulation 
framework can be replaced (e.g., substitute an optimistic 
protocol for a conservative one) without changing the rest 
of the framework, or the models being tested. This allows 
different protocols to share much of the code, allowing fair 
comparisons to be made between them. 

OOPSS also features an abstract parallel machine in- 
terface, which currently has two implementations: mes- 
sage passing interface (MPI), and a distributed simulation 
simulator (DSS) .  The MPI interface allows OOPSS to run 
on any parallel machine or network which supports MPI, 
which includes many recent parallel computers as well as 
networks of workstations. DSS allows OOPSS to run on 
a single processor, but simulate a run on multiple proces- 
sors. DSS uses threads to interleave the computation from 
each simulated processor, and simulates the interconnec- 
tion network using a fixed delay for each message, but 
does not simulate network contention. 

5 Models used for testing 
The model used to evaluate optimal simulation is a 

s i p l e  queuing network that can be configured to make it 
more efficiently simulated under the conservative or opti- 
mistic protocol. The LPs are arranged into two rings, the 
odd numbered LPs in a slow ring and the even numbered 
LPs in a fast ring. LPs in the fast ring process events ten 
times faster than LPs in the slow ring. Two types of events 
are used: intra-ring and inter-ring. The LP configuration is 
shown in Figure 3. 

An intra-ring event executed at time t causes a intra- 
ring event to be scheduled at time t + 2 on the next LP 
in the ring. Additionally, an inter-ring event is scheduled 
on the corresponding LP in the other ring at time t + 1, 
with probability p. An inter-ring event does not cause any 
other events to be scheduled. Each LP starts with a single 
intra-ring event scheduled at time t = 1. 

An intra-ring event takes 10000 psecs on a slow LP 
and 1000 psecs on a fast LP. An inter-ring event takes no 
time to process on either ring. In this way the amount of 
time taken by event processing is independent of p, and 
any differences in execution time for the same size prob- 

n 

Figure 3: Model used for testing. 

lem are due to simulation overheads. 
The adjustable parameter, p, changes the behavior of 

the simulation so that it is more efficiently simulated by 
conservative or optimistic protocols. If p = 0, no inter- 
ring events are scheduled. The model is more efficiently 
simulated with an optimistic protocol. Each LP in a ring 
has the same number of events to process, so the LVT of 
LPs within a ring stay fairly close. Since there is no com- 
munication between rings, they can be simulated indepen- 
dently. Under an optimistic protocol, the cost of rollbacks 
is small, since no LP simulates far into the future of an LP 
from which it received events. Under a conservative pro- 
tocol, after a fast LP finishes executing an intra-ring event, 
the LP must block until the corresponding LP in the other 
ring has finished executing its intra-ring event and sends a 
null-message. This forces the two rings to stay synchro- 
nized. 

If p = 1, an inter-ring event is sent by every intra- 
ring event. The model is more efficiently simulated with a 
conservative protocol. Under a conservative protocol, af- 
ter a LP on the fast ring executes an intra-ring event, the 
LP blocks until it receives a inter-ring event fiom the cor- 
responding LP in the other ring. Under an optimistic pro- 
tocol, after a intra-ring event is executed by a fast LP, the 
LP proceeds to execute additional intra-ring events until 
the inter-ring event is received. At this point the LP must 
rollback the additional intra-ring events just executed. 

Five different methods for choosing p are used for 
testing. The first three methods use the same value of p 
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Figure 4: Comparison of different models under conservative 
synchronization. 

for each LP in the system, 0,0.5,1, and are referred to as 
fiedo,fied.s,  andfixedl, respectively. The fourth method 
chooses p from a uniform distribution for each LP. In this 
method, p remains fixed for the duration of the simulation. 
This method is referred to as space, since p varies in space 
(across LPs). The fifth method changes p after every ten 
events are executed, and is referred to as space-time, since 
p varies in space and time. 

Each combination of synchronization protocol and p 
is run on varying problem sizes, ranging from 2 to 32 LPs. 
Each LP is run on its own processor. The simulation is 
run until a simulation time of 300 seconds is reached. For 
each simulation run, the execution time, overhead due to 
blocking and overhead due to rollbacks are measured. 

Figure 4 shows the effect of varying p under the con- 
servative protocol. The execution time remains fairly con- 
stant no matter what value of p is used, however the effi- 
ciency is very different. This is due to the protocol's con- 
servative nature. After an intra-ring event is executed on a 
fast LP, it must block until the corresponding slow LP fin- 
ishes executing. The slow LP will send either an intra-ring 
event (model fixedl), or a null-message (model fixe&). 
If an LP has blocked waiting for a null-message, the LP 
could have processed the next event, it simply lacked the 
information needed to make that decision. Any time spent 
blocked is simply wasted. If an LP is blocked waiting for 
a real message, the correct execution depends upon that 
message and the block is necessary. 

Figure 5 shows the effect of varying p under the opti- 
mistic protocol. The fixe& model is executed efficiently, 
due to the absence of inter-ring events. Each LP receives 
events fiom only one other LP, in increasing timestamp 
order, so no rollbacks occur. Once inter-ring events are 
introduced into the simulation (i.e., p > 0), the cost of a 
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Figure 5: Comparison of different models under optimistic syn- 
chronization. 

rollback becomes high. In the course of one event execu- 
tion time on a slow LP, 10 intra-ring events can be executed 
on a fast LP, which will in turn lead to 9 intra-ring events 
executed on the next fast LP, and so on. At least 55 intra- 
ring events may have to be rolled back due to the rollback 
of the first event. This number may increase due to the 
propagation delays of anti-messages. 

6 Adaptive synchronization method 
The ASM protocol was implemented using the 

Stuttgart Neural Network Simulator (SNNS) [ 171, devel- 
oped by the Institute for Parallel and Distributed High Per- 
formance Systems at the University of Stuttgart. SNNS 
features a graphical user interface for developing and train- 
ing ANNs and a kernel which can be embedded in another 
application in order to use an ANN during runtime. 

An MLP network with one hidden layer comprising 
of 21 units was chosen, using the standard backpropaga- 
tion algorithm for training. The training set was gener- 
ated from instrumented runs of the fixed0 and fixed1 mod- 
els using the optimistic protocol. A training example was 
generated for each event that was executed, along with an 
indication of whether the event rolled back or not. The 
collected data was processed to to remove duplicates, cre- 
ating a trahhg set consisting of 3019 examples, 1240 for 
events which were rolled back, and 1779 for events which 
were not rolled back. 

The input to the ANN consisted of seven parameters: 
event type, source LP type, destination LP type, source 
aggressiveness, destination aggressiveness, rollbacks per 
time, and rolled back events per time. The source is the 
LP that generated an event, and the destination is the LP 
on which the event is to be executed. The type of an LP is 
the ring which contains the LP (fast or slow). The aggres- 
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Figure 6: Comparison of different models under adaptive syn- 
chronization. 

siveness of the source is measured by the difference be- 
tween the source's LVT when the event was generated and 
the GVT when the event is executed. The aggressiveness 
of the destination is the difference between the LVT on 
the destination and the GVT, when the event is executed. 
Rollbacks per time is a measure of how many times the 
destination LP has rolled back for each unit of simulation 
time it has executed. Rolled back events per time is a mea- 
sure of the seriousness of those rollbacks. These parame- 
ters were chosen so that they each have a limited range (as 
opposed to LVT, which can increase without bound), and 
can be computed locally on the destination LP (except for 
LVT of the source, which is transmitted with the event). 

The ASM protocol is similar to the Optimistic proto- 
col, with one major difference. Prior to executing an event, 
information about the event (the input parameters) is given 
to the ANN, which returns 1, an estimate of the likelihood 
that the event will have to be rolled back. If I is less than an 
adjustable threshold (0.5 was used in this work), the event 
is executed immediately. Otherwise the event is not exe- 
cuted and control is retumed to the simulation framework. 
Other outstanding work is completed (e.g., adding newly 
arrived events to the event queue, or updating GVT). When 
this work is done, the process repeats. The event evaluated 
by the network may be different, if an event with an earlier 
timestamp was received. 

Figure 6 shows the effect of varying p under the adap- 
tive protocol. The use of the ASM combines the strengths 
of the conservative and optimistic protocols while control- 
liig their weaknesses. It allows the fast LPs to block where 
necessary (waiting on a real message) while proceeding 
where possible (waiting on a null-message). 

Figures 7 and 8 compare the amount of time spent 
rolling back under the optimistic and adaptive protocols. 
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Figure 7: Amount of time spent rolling back under optimistic 
synchronization. 
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Figure 8: Amount of time spent rolling back under adaptive syn- 
chronization. 

The rollback time increases greatly as more LPs are added, 
showing that the number of rollbacks is increasing, dwarf- 
ing the amount of time needed to process the events. Under 
the adaptive protocol, the time spent rolling back remains 
fairly constant, showing that the protocol allows some ag- 
gressive processing, but limits the amount of aggressive- 
ness. 

Figures 9 and 10 compare the amount of time spent 
blocked under the conservative and adaptive protocols. 
The amount of time spent blocked under the conservative 
protocol increases slightly as the number of LPS increases, 
due to the increased number of null messages which must 
be sent, but the time spent blocked remains fairly close un- 
der each model. The adaptive protocol only blocks when 
the number of rollbacks start to increase, so more time is 
spent blocked under model fixedl than model fix&. 



Figure 9: Amount of time spent blocked under conservative syn- 
chronization. 

0.12 

0.1 

0.08 

j 0.06 

0.04 

0.02 

0 

fixed1 + 

- -  - 
5 10 15 20 25 

processors 
30 35 

Figure 10: Amount of time spent blocked under adaptive syn- 
chronization. 

7 Futurework 
There are several areas left to explore. Perhaps the 

most exciting is adding the capability to do online train- 
ing. As the simulation is running, the A N N s  for each LP 
can be trained against the events that are being processed. 
This method has the capability to fine-tune each network 
for the specific LP it is running on, as well as adapting to 
changing behavior in the simulation. An example of such 
changing behavior is a battlefield simulation moving from 
the alert phase to the conflict phase. In the alert phase, 
units are mostly moving and observing, without much in- 
teraction. When the simulation moves into the conflict 
phase, units are actively engaging each other, with a much 
greater amount of interaction. A possible drawback to on- 
line learning is the amount of processing time needed for 
trainiig. This problem can be alleviated by using one or 

more dedicated processors to do the training, or only train- 
ing when the effectiveness of a network falls below some 
threshold. 

Another area to be explored is using ANNs to make 
other decisions in the simulation framework. Anyplace an 
arbitrary number is used, an ANN can adaptively select 
that number, possibly increasing performance. Examples 
of this include the periodic state saving interval and the 
GVT update interval. A N N s  can also be used to select 
between different methods during the course of the sim- 
ulation, such as the choice between periodic state saving 
and incremental state saving. 

There are also m y  different ANN architectures and 
training methods which can be explored to attempt to in- 
crease the accuracy of the network. Using the simple 
methods presented in this paper, it has been shown that us- 
ing an ANN to control the aggressiveness of an optimistic 
simulation has the potential for increasing the efficiency of 
PDES, and should be explored further. 
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