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Abstract

Developing a parallel discrete-event simulation from
scratch requires an indepth knowledge of the mapping pro-
cess from the physical model to the simulation model,
and a substantial effort in coping with numerous paral-
lelism issues in the underlying synchronization protocols
adopted. The lack of software tools and environments
to reduce the development effort significantly is a ma-
Jjor hindrance in adopting parallel simulation technology.
This paper presents an overview of the SPaDES (Struc-
tured Parallel Discrete-Event Simulation) scalable paral-
lel simulation framework. We focus on the performance
analysis of SPaDES/C.., an implementation of SPaDES on
a distributed-memory Fujitsu AP3000 parallel computer.
SPaDES/C.. hides the underlying complex parallel simu-
lation synchronization and parallel programming details
from the simulationist. We study various ways of improving
SPaDES execution performance including periodic check-
pointing of simulation states, aggregation of messages for
logical processes that reside on the same physical pro-
cessors, and increasing the computational granularity of
run-time processes to reduce the costs of synchronization
and communication. Our empirical results show that the
SPaDES framework can deliver good speedup for applica-
tions with large problem size and is scalable.

1 Introduction

There is growing interest in parallel discrete-event simu-
lation (PDES) especially in areas such as computer science
and engineering where sequential simulation can consume
enormous amount of computation time [2, 3]. With the in-
creasing availability of low-cost parallel machines, PDES
offers an alternative to help speed up the execution of these
simulations. However, PDES has not achieved widespread
use and remains an active area of research. A major reason
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for this is that efficient parallel simulation is difficult to im-
plement due to its complexity, and the lack of appropriate
tools to support the use of PDES technology. SPaDES [14]
is such a tool that we have developed to provide a high-level,
portable, and scalable parallel simulation environment that
facilitates simulation modeling and programming.

The rest of the paper is divided into four sections. Sec-
tion 2 presents an overview on the design and specification
of SPaDES. Section 3 discusses the performance analysis
for an implementation of SPaDES called SPaDES/C.. using
three benchmark programs. Performance optimization and
scalability analysis are discussed to ascertain the usability
of the simulation environment for large applications. Sec-
tion 4 contains our concluding remarks.

2 Overview of SPaDES

SPaDES adopts a modular architecture as shown in fig-
ure 1 [14, 15]. The process-oriented modeling methodol-
ogy adopted allows the abstraction and mapping of entities
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Figure 1. Architecture of SPaDES



and servers in a real-world problem as processes and re-
sources in the conceptual model. Processes and resources
are mapped onto messages and logical processes in the op-
erational model (parallel simulator) respectively. The con-
ceptual model can be implemented using a visual program-
ming environment that allows the user to build the model
interactively using an iconic representation. Alternatively,
the operational model can be programmed using the paral-
lel simulation programming template provided. The parallel
simulation kernel implements the parallel simulation proto-
col.

An operational model of a physical system consists of
a set of logical processes (LPs) each corresponding to a
physical process. Each LP is responsible for simulating
local events. All interactions between physical processes
are modeled by timestamped event messages sent between
the LPs. The current implementation adopts the optimistic
protocol [6], and an event parallelism throttle [13] to bet-
ter match simulation parallelism to available machine par-
allelism. The mapping of real-word entities onto LPs is as
follows:

e permanent entities such as resources are mapped to
LPs;

e temporary entities such as processes are represented as
time-stamped messages.

For example, consider a queuing system shown in figure 2.
The servers S1, S2 and S3 are modeled as LPs in the opera-
tional model and the jobs are modeled as messages.

Process-Oriented View

Virtual Time Paradigm

messages

messages

Figure 2. Process-Oriented Modeling and Vir-
tual Time Paradigm

Table 1 provides a summary of the simulation primitives
that support simulation modeling. SPaDES also permits
users to control the mapping of a parallel simulator onto

physical processors (PP) in order to vary the process gran-
ularity for better execution performance. The primitives to
support process-to-processor mappings are listed in table 2.

3 Performance Evaluation

SPaDES/C- is an implementation of the SPaDES speci-
fication to support parallel simulation modeling through li-
brary calls. The simulation and parallelism capabilities of
SPaDES/C. are provided in the form of primitives encap-
sulated in a library of classes. Both PVM [5] and MPI (12}
are supported to handle message-passing in parallel event
execution.

The current implementation of SPADES/C.. runs on a Fu-
jitsu AP3000 parallel computer with 32 143MHz Sun Ultra-
Sparc processors. Each processor has a 256MB of memory
and is connected by a high-speed 2-D torus communica-
tion network. Three simulation benchmarks are used in this
study, namely (i) a super-ping model that consists of a num-
ber of objects (n) connected in a ring with a fixed number
of messages circulating the objects [1], (ii) a n x n torus
network where messages in the model are routed based on
an uniform probability, and (iii) an open model simulating
an x n multistage omega interconnection network (MIN).

3.1 Elapsed Time

For purpose of comparison, we wrote the simulation
benchmarks using the Simscript [11] simulation language
and in the C-based simulation library by Watkins [17]. Ta-
ble 3 compares these implementations - C library (denoted
by CSim), Simscript! and SPaDES/C... The program code
and executable file size for SPaDES/C.. is the smallest
among all the three implementations.

Table 4 depicts the simulation run-time on the Fujitsu
AP3000. The sequential simulators are executed on one
processor while the parallel runs are based on 1, 2, 4, 8 and
16 processors. The LP to PP mappings are such that the re-
sulting number of PPs is always 16, i.e. a mapping of 16-1
for both the super-ping and torus models (with every 16 LPs
mapped to one PP), and a 36-1 for MIN (horizontal parti-
tioning with every eight rows of switches mapped onto one
PP). The poor performance is due mainly to the high com-
munication overhead (for p > 1) and the fine granularity of
LPs.

3.2 Optimization
We improve the performance of SPaDES/C.. in two main

areas: time-warp simulation protocol and computational
granularity.

'The Simscript implementation of the MIN model was not used in the
comparison because Simscript does not support bitwise operations.



simulation argument type meaning description
primitive
activate process (handle) process to be activated
time (float) activation time of process creat.es. a new'process and SCh.e d-
ules it immediately for execution
reactivate process (handle) process to be reactivated reactivates a process that has
time (float) the time at which the process is | been suspended by a previous
reactivated call to suspend
work resource (handle) the resource requested for a process request for service at a
time (float) time required to service request resource
units (integer) number of service units requested
wait time (float) amount of time to delay a process delays itself for a
known period of time
suspend None a process suspends itself during
execution
terminate None . .
a process terminates itself
startSimulation | duration (float) duration of simulation starts a simulation
resetSimulation | None resets a simulation

Table 1. Simulation Primitives

mapping argument type meaning description

primitive

mapProcess | event (handle) event to be scheduled schedules an event in the
LP (handle) LP whose event list will be . \fic LP

initialized event list of a specific

mapNode numLPs (integer)  number of LPs fLP
LParray (array) LPs to be clustered Czls:f::la ::::;::ro sona
PP (integer) PP identifier pay p

mapNode numLPs (integer) number of LPs
LPo LP; ... (handle) individual LPs Clusters 2 ‘::)’c";ts’:mms ona
PP (integer) PP identifier physicalp

mapHost numPPs (integer)  number of PPs assigns several PPs to a spe-
PP, PP, ... (integer) PP identifiers cific processor
hostname (string) name of processor

Table 2. Mapping Primitives

3.2.1 Time-warp Simulation Protocol

We study the performance effect of varying the following
simulation protocol parameters provided by the SPaDES
implementation:

(i) the number of simulation cycles before messages are
sent (m)
A typical simulation cycle consists of the following ac-
tivities:
e receive all external messages
e process a message, and
e send message(s) to another LP.

Output messages can be aggregated to increase the
message size and to reduce the message-passing over-
head. The default value for m is 100 cycles.
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(i) the frequency of state-saving (s)

To support rollback and recovery in optimistic simu-
lation, the simulator states are saved every cycle by
default (s=1). Adaptive checkpointing is discussed in
[10]. We study the effect of periodic state-saving to re-
duce the overhead of state-saving.

Table 5 shows the performance of the three benchmarks

before optimization using the following performance met-
rics:

1.

2.

elapsed time in seconds that is defined as the total wall
clock time taken to execute the simulation

efficiency which is defined as:

events committed

eff =
events executed

This measures the efficiency of the time-warp protocol
where a high efficiency denotes less rollbacks.



measure
program implementation | line of code | exec. size | comp/link

time

super-ping CSim 166 48,396 1.8
(256) Simscript 93 106,568 5.3
SPaDES/C.+ 73 11,876 3.8

torus CSim 197 49,248 1.9
(16 x 16) Simscript 137 108,164 5.1
SPaDES/C.. 109 13,456 3.7

MIN CSim 222 49,372 2.0
(128 x 128) || SPaDES/C.. 138 12,476 3.5

Table 3. Comparison of Implementations

program

implementation super-ping torus MIN
(256) (16 x 16) | (128 x 128)

CSim

exec. time in seconds 70.40 16.88 110.06

Simscript

exec. time in seconds 183.80 49.73 -

SPaDES/C»

number of LPs used 256 256 576

exec. time in sec. (sequential) 107.68 31.15 207.43

exec. time in sec. (parallel)
p=1 3680.43 1850.57 3783.68
p=2 1990.74 936.40 2555.73
p=4 837.64 441.32 1152.80
p=8 485.03 261.86 513.77
p=16 137.75 62.55 93.16

Table 4. Comparison of Simulation Elapsed Time

3. event execution rate in terms of the number of events ex-
ecuted per second (events per sec.)
A high event rate implies better processor utilization.
However, it could also mean that the processor may
be busy executing overhead events that include: correct
events that were not saved due to periodic state-saving
(forward computation) and premature events which are
generated based on an erroneous state.

4. number of rollbacks per event which is defined as:

events executed — events committed

events committed

This metric computes the ratio of the number of roll-
backed events to the number of committed events.

5. number of sends
The number of sends refers to the number pvm.send ()
executed to send messages. This decreases as more mes-
sages are aggregated.

6. message size
Message size refers to the average size of a aggregated
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message. Thus, an aggregated message may consist of
several event messages to be sent to different LPs resid-
ing in the same physical process.

We observe in table 5 that for a given problem size and
as the simulation duration is increased, the event execution
rate, efficiency, and the rollbacks per event are fairly con-
stant. This shows that the simulations are executing at the
steady state.

As shown in figure 3, the elapsed time reduces as the pa-
rameter m varies from 1 to 400. The initial drop in elapsed
time is due to the aggregation of messages which reduces
the communication overhead. For larger values of m, the
delay in sending out messages result in event starvation and
thus increases the elapsed time.

Selecting the smallest values of m for each benchmark,
we repeat the experiments by varying s, the period of check-
pointing from 1 to 50 simulation cycles. Figure 4 shows
that the elapsed time generally increases as s is increased.
In both the super-ping and MIN benchmarks, the smallest
elapsed times are recorded at s=5 and 3 respectively. This



program duration elapsed eff. events rollback no. of message
time (sec) per sec. per event sends size (bytes)

Super-ping 10000 137.75 0.46 | 23455.31 1.18 197047 236
(256) 20000 271.63 0.46 | 23776.40 1.16 389571 235
30000 | 403.35 0.46 | 24011.69 1.15 578044 236
Torus 100000 62.62 0.29 | 10613.87 247 99679 708
(16 x 16) 200000 130.05 0.28 | 10217.24 2.62 206941 713
300000 191.01 0.28 | 10448.85 2.55 304583 710
MIN 100000 93.16 0.54 | 15789.29 0.84 137745 1121
(128 x 128) | 200000 190.27 0.54 | 15708.06 0.86 280499 1123
300000 287.81 0.54 | 15689.20 0.86 423214 1123

Table 5. Initial Performance of the Three Benchmarks
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Figure 3. Effect of Delayed Message Trans-

mission

shows that the reduction in total state-saving time results in
savings in the overall simulation elapsed time at the speci-
fied points. However, as s is increased further so is the com-
putation time required to recompute the correct events. For
the torus model, the elapsed time of the simulation does not
show any distinct savings as s is varied. A plausible reason
for this is that unlike the other two models, messages within
the torus model are routed based on a uniform probability.
As a result, fewer messages can be aggregated and at the
same time this also increases the number of rollbacks in the
system. Hence, it is difficult to obtain any savings with such
a model using periodic state-saving since the rollback costs
are now much higher. This is further exemplified by the fact
that the graph of the elapsed time of torus model rises at a
faster rate than the other two models.

Using the values for m and s and the optimization dis-
cussed, we re-run the simulation benchmarks. Table 6
shows an improvement (for super-ping and MIN) in the
simulation run-time as well as the processor utilization as
reflected by the higher event execution rate. The drop in
the efficiency figures (or the increase in the number of roll-
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Figure 4. Effect of Periodic Checkpointing

backs) can be attributed to the delayed sending of the event
messages. The number of pvm_send () required in the
simulation decreases as a result of message aggregation
while the average message size increases. Thus, the time
required to execute overhead events is much smaller than
that caused by the communication overhead.

3.2.2 Varying Computation Granularity

While mapping many LPs to a single PP increases the com-
putation granularity, it decreases the parallelism in the sim-
ulation. On the other hand, having fewer LPs on a PP
increases parallelism but introduces communication over-
head. Therefore, the LP-to-PP mapping is a tradeoff be-
tween simulation parallelism and the message communica-
tion overhead.

To study the mapping effect on simulation performance,
we re-run the simulation benchmarks on 1, 2, 4, 8 and 16
processors using different mappings. Table 7 shows the
elapsed times with the best elapsed times for a fixed number
of processors highlighted in bold. We observe that for a a
fixed number of processors, there exists a LP-to-PP map-
ping that gives the best run-time, i.e. 64 for super-ping
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program duration elapsed eff. events rollback no. of message
time (sec) persec. | perevent | sends | size (bytes)
Super-ping 10000 130.32 0.38 | 2479241 1.64 184294 266
(256) 20000 267.48 0.37 | 24145.02 1.70 376064 268
30000 396.52 0.37 | 24425.67 1.67 559373 266
Torus 100000 62.64 0.29 | 10611.08 248 100267 705
(16 x 16) 200000 130.15 0.28 | 10215.14 2.62 206939 713
300000 191.95 0.28 | 10397.89 2.53 303452 709
MIN 100000 86.45 0.40 | 17015.84 1.52 85246 2040
(128 x 128) | 200000 174.54 | 040 | 17124.01 1.52 172480 2030
300000 | 264.07 | 0.40 | 17099.79 1.51 261116 2019
Table 6. Performance After Optimization
program mappings | No. of Number of Processors
LPto PP PPs 1 | 2 | 4 | 8 T 16
Super-ping 16-1 16 3473.90 | 1935.33 | 854.95 | 474.23 | 131.57
(256) 32-1 8 141259 | 79194 | 45493 | 151.18
64-1 4 1214.40 | 614.60 | 284.65
128-1 2 1636.73 | 771.46
256-1 1 2631.09
Torus 16-1 16 1850.57 | 936.40 | 441.32 | 261.86 | 62.55
(16 x 16) 32-1 8 549.71 317.74 | 185.78 | 51.19
64-1 4 418.74 | 218.14 | 84.26
128-1 2 464.06 | 198.71
256-1 1 611.05
MIN 36-1 16 1524.29 | 1040.47 | 452.15 | 215.12 | 87.29
(128 x 128) 72-1 8 1325.81 | 748.26 | 390.78 | 155.78
144-1 4 1582.02 | 803.16 | 360.31
288-1 2 2266.25 | 1064.25
576-1 1 3851.52

Table 7. Elapsed Time for Different Mapping Schemes

and torus, and 72 for MIN. Considering only the elapsed
times of the mappings that yield the optimal performance,
we generally observe a decrease in the elapsed time as more
processors are used. However, in the case of the torus, the
run-time increases slightly with 16 processors because the
torus does not have sufficient computation to amortize the
communication overhead, i.e. when the mapping of LPs to
PPs is reduced to 16-1.

3.3 Scalability

To evaluate the scalability of the SPaDES/C.. environ-
ment, we run the simulation benchmarks by varying the
number of LPs present in the models. Figure 5 shows the
elapsed times for the three simulation benchmarks running
on 16 processors using 16 PPs. Both the super-ping and
torus benchmarks show an initial drop in elapsed time due
to its smaller problem sizes. However, the elapsed times
improve significantly as the problem size increases. Gener-

ally, for these benchmarks as the problem size is increased,
the elapsed times grow almost linearly. This indicates the
scalability of SPaDES/C...

3.4 Speedup

Figure 6 shows the speedup against the number of
processors for the three benchmarks. We observe that
SPaDES/C.. is able to obtain better speedups for simula-
tion with larger problem sizes. In fact, it achieves a speedup
of around 4 and 9 (with 2048 LPs) running on 8 and 16 pro-
cessors respectively. The best speedup is obtained with the
MIN simulation which produces a speedup of around 12.
Further investigation is needed to improve the speedup. In
summary, the experiments show that to obtain good speed-
up, the benchmark must

e contain several hundreds of simulation processes or
LPs (over 500)
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Figure 5. Scalability of SPaDES/C..

o contain sufficient computation (parallelism) to amor-
tize the communication overhead by mapping more
LPs to a PP (around 64-72)

4 Conclusions

The main design objective of the SPaDES workbench
is to permit a simulationist to develop a parallel simulator
without being overly concerned with the execution environ-
ment. It aims to provide modeling and simulation support
that is comparable with sequential simulation languages,
but exploit parallelism using PDES techniques. As SPaDES
does not provide any explicit message-passing primitives
nor it requires users to specify the connectivity information
between the parallel processes, a higher degree of trans-
parency and portability can be achieved. We observe that
the performance of SPaDES/C.. is highly influenced by the
underlying parallel simulation synchronization implemen-
tation, the granularity of LPs and its mapping onto physical
processors, and the cost of communication in the execution
platform. However, the effects of these overheads can be re-
duced through periodic checkpointing of simulation states,
aggregating messages sent to LPs, and increasing the com-
putation granularity of processes. Empirical results show
that the SPaDES is scalable and can deliver good speedup
for large PDES applications.

Understanding the performance of parallel simulation is
a complex issue and is essential for this technology to be
widely accepted in industry [4]. A framework to analyze
parallel simulation performance is discussed in [16].
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