
33-rd Annual Simulation Symposium; Washington, D.C., April 16-20, 2000, pp.91-98.

Copyright c© 2000 IEEE (DOI 10.1109/SIMSYM.2000.844905).

Event–Driven Simulation of Timed Petri Net Models

W.M. Zuberek

Department of Computer Science

Memorial University of Newfoundland

St.John’s, Canada A1B 3X5

e-mail: wlodek@cs.mun.ca

Abstract

A collection of software tools for analysis of timed Petri

nets, known as TPN–tools, developed over a number of

years, has been extended by a simulation tool, TPNsim.

The paper gives a brief characterization of TPNsim,

and discusses some implementation aspects in greater

detail.

1. Introduction

Petri nets have been proposed as a simple and con-
venient formalism for modeling systems that exhibit
parallel and concurrent activities [2, 16, 12]. In or-
der to take also the durations of these activities into
account, several types of Petri nets ‘with time’ have
been proposed by assigning ‘firing times’ to the tran-
sitions or ‘firing delays’ to places of a net. In timed
nets, firing times are associated with transitions, and
transition firings are ‘real–time’ events, i.e., tokens are
removed from input places at the beginning of the fir-
ing period, and they are deposited to the output places
at the end of this period (sometimes this is also called
a ‘three–phase’ firing mechanism). In stochastic (and
generalized stochastic) Petri nets [10, 3], (exponentially
distributed) firing delays (also called ‘firing times’) are
associated with transitions, but the tokens remain (for
the duration of the firing delay) in their places, and
the instantaneous firings occur at the end of the firing
delays. In time nets [8, 1], there is a time interval asso-
ciated with a transition, and the (instantaneous) firing
must occur within this interval of time.

In timed nets, all firings of (enabled) transitions are
initiated in the same instants of time in which the tran-
sitions become enabled (although some enabled transi-
tion cannot initiate their firing; for example, all tran-
sitions in a free–choice class can be enabled, but only
one can fire). If, during the firing period of a transition,
the transition becomes enabled again, a new, indepen-
dent firing can be initiated, which overlaps with the
other firing(s). There is no limit on the number of si-
multaneous firings of the same transition (sometimes
this is called ‘infinite firing semantics’). Similarly, if

a transition is enabled ‘several times’ (i.e., it remains
enabled after initiating a firing), it may start several
independent firings in the same time instant.

In timed nets, the firing times of some transitions
may be equal to zero, which means that the firings are
instantaneous; all such transitions are called immediate
(while the other are called timed). Since the immediate
transitions have no tangible effect on the (timed) be-
havior of the model, it is convenient to split the set of
transitions into two parts, the set of immediate and the
set of timed transitions, and to fire first all (enabled)
immediate transitions; only when no more immediate
transitions are enabled, the firings of (enabled) timed
transitions are initiated (still in the same instant of
time). It should be noted that such a convention effec-
tively introduces the priority of immediate transitions
over the timed ones, so the conflicts of immediate and
timed transitions should be avoided. Also, the free–
choice classes of transitions must be ‘uniform’, i.e., all
transitions in each free–choice class must be either im-
mediate or timed.

The firing times of transitions can be either deter-
ministic or stochastic (i.e., described by a probability
distribution function); in the first case, the correspond-
ing timed nets are referred to as D–timed, in the sec-
ond, for the (negative) exponential distribution of firing
times, the nets are referred to as M–timed (or Marko-
vian) nets. In both cases, the concepts of states and
state transitions have been formally defined and used
in derivation of different performance characteristics of
the models [17].

Timed Petri net models are discrete–state systems;
the states of net models change, as the result of tran-
sition firings, by removing or adding tokens to places
(for both instantaneous and timed firings). Analysis
of timed models by using discrete–event simulation is
thus a ‘natural’ approach to model evaluation, which
imposes very few restrictions on the class of analyzed
models (other approaches, like reachability analysis
and structural analysis, can be applied only to certain
classes of net models).

Event–driven simulation of timed Petri net models 92

In discrete–event simulation, an occurrence of an
event may cause some other events to happen at
the same time or at some future time. There are
two basic methods of organizing discrete–event sim-
ulations [11], the time–based (or synchronous–timing
[7] or fixed–step [4]) simulation and event–driven (or
asynchronous–timing [7]) simulation. For time–based
simulation, the model is analyzed at consecutive, uni-
formly distributed time instants (the time–step is con-
stant), and all events which can occur at these time in-
stants, are executed (changing the state of the model);
although this approach is rather simple to implement,
quite often it also is very inefficient, especially when
events are clustered in time (i.e., when there are peri-
ods of high activities followed by periods of inactivities
of the model).

In event–driven simulation, the control of the (sim-
ulated) time depends only upon the activities of the
model. During execution of events, all future events are
stored in a list of events also called the ‘event queue’.
This list is ordered with respect to the time in which
the events are scheduled to occur; the event scheduled
to occur in the nearest future is at the front of the
list. If there are no more events to be executed at
the present (simulated) time instant, the ‘first’ event is
fetched (or ‘dequeued’) from the list of events, the (sim-
ulated) time is advanced accordingly, and the event is
executed (possibly creating new events). Event–driven
simulation introduces a small overhead in comparison
to the time–based simulation, but it is much more flex-
ible with respect to time control, as it analyzes the
model only at time instants when events occur.

The results of simulation runs may include differ-
ent performance measures, evaluated and presented in
many different ways. Quite often these results may
depend upon a particular application. Therefore, in
TPNsim, only very simple data are collected during
the simulation of net models, and some ‘postprocess-
ing’ capabilities are provided to calculate performance
measures from these ‘raw’ simulation results.

2. Description of net models

In TPN–tools, net descriptions are ‘transition ori-
ented’, i.e., nets are specified as collections of transi-
tions, and each transition contains all parameters asso-
ciated with it.

The (simplified) syntax of model descriptions, in the
BNF notation, is as follows [18]:

<model-descr> ::= <net-descr> <imarking>

<net-descr> ::= <net-header> (<transition-list>)

<net-header> ::= Mnet | Dnet | net

<transition-list> ::= <transition> |

<transition-list> ; <transition>

<transition> ::= <t-header> = <input-output-list>

<t-header> ::= <t-indent> <type> <time> <prob>

<t-ident> ::= <integer> | <name>

<type> ::= :D | :M | <empty>

<time> ::= * <rational> | <empty>

<prob> ::= , <rational> | , [<place-id>] |

, <integer> / <integer>

<rational> ::= <integer> | <integer> . <integer>

<input-output-list> ::= <input-list> |

<input-list> / <output-list>

<input-list> ::= <arc> | <input-list> , <arc>

<output-list> ::= <arc> | <output-list> , <arc>

<arc> ::= <place-id> | <place-id> : <weight>

<place-id> ::= <integer> | <name>

<weight> ::= <integer>

<name> ::= <letter> | <name> <letter> |

<name> <digit>

<imarking> ::= mark (<marking-list>)

<marking-list> ::= <marked-place> |

<marking-list> , <marked-place>

<marked-place> ::= <place> | <place> : <count>

<count> ::= <integer>

The type on the net (D–timed or M–timed) is in-
dicated in the net header. The type of a transition
(M–timed, D–timed) can also be indicated by the type
elements; such a specification overrides the net type.

Transitions with empty time elements denote imme-
diate transitions, i.e., transitions with the firing time
equal to 0.

Probability element prob specifies the free-choice
probabilities of transitions or relative frequencies of
conflicting transitions. Empty element prob is equiva-
lent to probability equal to 1. Dynamic (i.e., marking–
dependent) relative frequencies are indicated by place
references of the prob element. During conflict reso-
lution, the number of tokens in the indicated place is
used as the relative frequency of transition firings. Usu-
ally this reference place is one of the transition’s input
places. The form <integer>/<integer> is provided as
a convenient way of specifying fractional values.

Arcs without weight are equivalent to arcs with
weight equal to 1. Inhibitor arcs are specified as arcs
with weight equal to 0.

Marked places without the count element are equiv-
alent to places with the value of count equal to 1.

3. Simulation of net models

The simulation of net models is based on the event
queue [14, 9]. All future events are stored in the event
queue in an increasing order of their occurrence time.

The simulation is usually executed for some fixed
period of (simulated) time; let this period of time be

Event–driven simulation of timed Petri net models 93

denoted by TimeLimit. This time limit can be incor-
porated in the simulator by scheduling a special event,
EndSimulation, at time TimeLimit; execution of this
event terminates the simulation and outputs simulation
results.

If schedule(Event,Time) denotes the operation of
inserting a new Event that is to occur at time Time,
a general outline of event–driven simulation can be as
follows:

schedule(EndSimulation,TimeLimit);

schedule(InitialEvent,0.0);

while nonempty(EventQueue) do

dequeue(EventQueue,Event);

SimulatedTime := Event.Time;

execute(Event)

endwhile;

It should be observed that if no new events are cre-
ated during execution of the initial event (or subse-
quent events), the simulation run ends rather quickly.

In Petri net models, the events correspond to
the terminations of transitions’ firings (and possibly
starting new firings). The execution of an event
(execute(Event)) is composed of three consecutive
steps: (i) all firings which are scheduled to terminate
at the current event are processed and the net marking
is updated by depositing tokens to the corresponding
output places of transitions; (ii) all immediate transi-
tions are fired iteratively until no immediate transitions
are enabled (the marking function is updated during all
these firings); (iii) the new firings of timed transitions
are initiated by scheduling their termination according
to their (deterministic or stochastic) firing times. All
conflicts which may need to be resolved during execu-
tion of an event use random numbers to make the re-
quired choices (for example, in free–choice structures)
and to sample the corresponding probability distribu-
tions (e.g., to determine the actual firing times).

Simulation of the behavior of net models is per-
formed by the directive:

simulate(tlimit);

where tlimit is the simulation time limit (in the same
units as the firing times of transitions). During the
simulation, the numbers of firings are counted for each
transition, and also the total time of all firings (includ-
ing overlapping firings) is cumulated for each transi-
tion. For D–timed firings, the firing times are constant,
as specified in the net description; for M–timed firings,
the firing times are generated by a random number gen-
erator (with exponential distribution), using the aver-
age firing time as a (scaling) parameter. Moreover, the
numbers of tokens entering each place are also counted

(including the initial marking), and the total ‘waiting’
time of all tokens is cumulated for each place. After
the termination of simulation, these ‘raw data’ can be
displayed by the directive:

simres;

which outputs a list of firing counts and total firing
times for all ‘active’ transitions (i.e., transitions with
nonzero firing counts); for immediate transitions, only
firing counts are provided. Similarly, the token counts
are output for all ‘active’ places together with the total
(nonzero) waiting times.

Example. The net shown in Fig.1 is a simple il-
lustration of ‘marking–dependent’ conflict resolutions
[18]. The net represents an interactive system execut-
ing two classes of jobs, say class–A and class–B jobs,
with random selection of jobs from a common pool of
waiting jobs. As no priorities and no queueing is as-
sumed, the probability of selection of a class–A job (if
there is any such job waiting) is determined by the ra-
tio of the number of waiting class–A jobs to the total
number of waiting jobs.

t1

p2 p3

t2

p1

t3

p4 p5
t4

Fig.1. A processor executing two classes of jobs.

In the model, p1 represents the available (or idle)
processor. Execution of class–A jobs is represented by
t2, and class-B jobs – by t3. t1 models the ‘thinking
time’ for class–A jobs, and t4 – the same for class–B
jobs. p2 is the pool of waiting class–A jobs, p4 – the
pool of waiting class–B jobs. t2 and t3 are in conflict
because of sharing p1, and the relative frequencies of t2
and t3 firings can be determined by the token counts
in p2 and p4, respectively.

Assuming that all firing times are exponentially dis-
tributed, the description of the model and its simula-
tion results can be as follows:

Event–driven simulation of timed Petri net models 94

Mnet(t1*5=p3/p2;

t2*3,[2]=p1,p2/p1,p3;

t3*2,[4]=p1,p4/p1,p5;

t4*8=p5/p4)

mark(p1,p2,p3:2,p4:3,p5:2);

simulate(10000);

simres;

Simulation Counts:

firings of t1 : 1707 total firing time 8517.73

firings of t2 : 1705 total firing time 5021.65

firings of t3 : 2392 total firing time 4793.9

firings of t4 : 2393 total firing time 18836.8

tokens in p1 : 4097 total waiting time 44.311

tokens in p2 : 1705 total waiting time 16411.8

tokens in p3 : 1707

tokens in p4 : 2393 total waiting time 26298.5

tokens in p5 : 2393

To check the effect of marking–dependent frequen-
cies, these simulation results can be compared with the
case when the relative frequencies of (conflicting) fir-
ings are constant and are the same for both transitions
(which is the default case):

Mnet(t1*5=p3/p2;

t2*3=p1,p2/p1,p3;

t3*2=p1,p4/p1,p5;

t4*8=p5/p4)

mark(p1,p2,p3:2,p4:3,p5:2);

simulate(10000);

simres;

Simulation Counts:

firings of t1 : 1819 total firing time 9436.65

firings of t2 : 1818 total firing time 5487.67

firings of t3 : 2197 total firing time 4335.24

firings of t4 : 2199 total firing time 17034.1

tokens in p1 : 4015 total waiting time 37.7378

tokens in p2 : 1819 total waiting time 15041.7

tokens in p3 : 1819

tokens in p4 : 2202 total waiting time 28512

tokens in p5 : 2199

Intuitively, class–B jobs should be disadvantaged in
this case because, on average, more waiting class–B
jobs (in p4) are expected than class–A jobs (in p2), so
with the same probabilities of selection, class–B jobs
will be selected less often than in the first case (i.e.,
when marking–dependent frequencies are used). The
results confirm this observation.

4. Postprocessing

The (‘raw’) simulation results are stored in the in-
ternal structure representing the net’s elements [18], so

after a simulation run, the results of simulation can be
used for evaluation of different performance measures.
A ‘postprocessing’ interpreter is provided which eval-
uates simple expressions composed of constants, net
parameters and simulation results. The interpreter is
invoked by the command comp with an expression as
its argument:

<command> ::= comp (<expr>) ;

<expr> ::= <term> | <expr> + <term |

<expr> - <term>

<term> ::= <fact> | <term> * <fact |

<term> / <fact>

<fact> ::= <number> | <t-arg> | <p-arg> |

<s-name> | (<expr>)

<s-name> ::= STime | SimTime

<t-arg> ::= t (<t-ident>) | n (<t-ident>) |

f (<t-ident>) | p (<t-ident>)

<p-arg> ::= t (<p-ident>) | n (<p-ident>) |

m (<p-ident>)

<t-ident> ::= <integer> | <name>

<p-ident> ::= <integer> | <name>

The ‘special name’ (s-name) STime (or SimTime) de-
notes the simulation time (tlimit of the last simulate
directive).

The t(...) arguments refer to the total (cumula-
tive) firing times (of transitions) or total token waiting
times (in places). The n(...) arguments refer to the
numbers of firings (of transitions) or the numbers of
tokens entering the places (including the initial mark-
ing). The f(...) arguments refer to the firing times of
transitions, and the p(...) arguments, to the choice
probabilities or relative frequencies assigned to transi-
tions.

Example. Some simple values calculted from the
previous results (Section 2) are as follows:

comp(t(t2)/n(t2)); (* throughput A *)

value : 2.94525

comp(t(t3)/n(t3)); (* throughput B *)

value : 2.00414

comp(t(p2)/n(p2)); (* average waiting time A *)

value : 9.62567

comp(t(p4)/n(p4)); (* average waiting time B *)

value : 10.98977

comp((t(t2)+t(t3))/STime); (* proc. util. *)

value : 0.98155

Because in some cases the formulas become quite
complicated, a mechanism for declaring variables and
evaluating subexpressions is also provided:

<command> ::= <declaration> | <assignment>

| comp (<expr>)

<declaration> ::= var <list-of-variables> ;

Event–driven simulation of timed Petri net models 95

<list-of-variables> ::= <name>

| <list-of-variables> , <name>

<assignment> ::= <variable> := <expr> ;

<variable> ::= <name>

Variables (after assigning values to them) can be
used in expressions in the same way as the ‘special
names’. All variables must be declared before the first
use, and each declaration of variables erases all previ-
ous declarations.

5. Implementation issues

The ‘event queue’ is implemented as a two–level list
structure, with the first level representing the (future)
time instants (in ascending order), and the second level,
for each time instant, represents all firings which are
scheduled to terminate at this time instant. The or-
ganization of the event queue uses its own (dynamic)
memory management in the sense that it maintains a
list of ‘released’ descriptors, and when a new descriptor
is needed, a check is first made if a released descriptor
is available; only when all descriptors are used, a new
descriptor is created from additionally allocated mem-
ory. This solution usually results in a very efficient
usage of memory as typically only a few event descrip-
tors are allocated and they are frequently reused during
the simulation.

Processing for each time instant is done in three con-
secutive steps. First, all firings which are scheduled for
termination as the current event are processed and the
marking function is updated by depositing tokens to
transitions’ output places (the simulation statistics for
places are also updated at the same time).

In the second step, the firings of enabled immedi-
ate transitions are executed iteratively (and the mark-
ing function is updated accordingly) until the set of
enabled immediate transitions is empty. The enabled
(immediate) transitions are fired in three groups; first,
all (enabled) conflict–free transitions are fired (in any
order because they are independent one from another);
then, for each free-choice class of enabled transitions,
one transition is selected in a random way and fired,
while all remaining transitions in this class are disabled;
finally, the conflict classes are processed one after an-
other, also by randomly selecting a transition, firing it
and disabling all other transitions in this conflict class:

Enabled := bag_of_enabled_immediate_transitions;

while nonempty(Enabled) do

fire_all_enabled_conflict_free_transitions;

for each enabled_free_choice_class do

randomly_select_a_transition_in_this_class;

fire_the_selected_transition;

disable_other_transitions_in_this_class

endfor;

for each enabled_conflict_class do

randomly_select_a_transition_in_this_class;

fire_the_selected_transition;

disable_other_transitions_in_this_class

endfor;

Enabled := bag_of_enabled_immediate_transitions

endwhile;

(the collection of enabled transitions is defined as a bag
[13] rather than a set to allow multiple occurrences of
transitions which are enabled ‘several times’).

The third step initializes the firings of enabled timed
transitions (again updating the marking function for
each initialized firing):

Enabled := bag_of_enabled_timed_transitions;

for each enabled_conflict_free_transition do

initiate_transition_firing;

determine_the_firing_time(FTime);

schedule(transition,SimulatedTime+FTime)

endfor;

for each enabled_free_choice_class do

randomly_select_a_transition_in_this_class;

initiate_transition_firing;

determine_the_firing_time(FTime);

schedule(transition,SimulatedTime+FTime);

disable_other_transitions_in_this_class

endfor;

while nonempty(Enabled) do

for each enabled_conflict_class do

randomly_select_a_transition_in_this_class;

initiate_transition_firing;

determine_the_firing_time(FTime);

schedule(transition,SimulatedTime+FTime);

disable_other_transitions_in_this_class

endfor;

Enabled := bag_of_enabled_timed_transitions

endwhile;

The length of the firing time is determined depend-
ing upon the type of transition or the type of net. For
D–timed firings, FTime is simply the firing time of the
transition; for M–timed firings, an exponentially dis-
tributed random number generator is used with the
transition’s average firing time as a parameter.

Identification of (enabled) conflict–free transitions
and (enabled) free–choice classes of transitions is done
during the initial processing of the net; all conflict–
free transitions have the class field in the descriptor
[18] set to 1, the same field for free–choice classes of
transitions is set to a value greater than 1 (the same
value for all transitions in the same free–choice class),
and for all other transitions (potentially in conflicts)
class is set to 0.

For free–choice classes of transitions (assumed to
be linked into a list Class), and for a conflict class

Event–driven simulation of timed Petri net models 96

(also linked into a list Class), the selection of a transi-
tion for firing (randomly_select_a_transition) uses
a uniformly distributed random number generator
UniformRandomNumber:

prob := UniformRandomNumber;

select := NIL;

while select = NIL and nonempty(Class) do

if prob < Class.prob then select := Class

else

prob := prob - Class.prob;

next(Class)

endif

endwhile;

if select = NIL then

error("unsuccessful selection.-");

Since the classes of conflicting transitions are
marking–dependent, they must be determined for each
marking function. Assuming that all enabled transi-
tions (without conflict–free and free–choice transitions)
are linked in a list List, and that the conflict class will
be represented by another linked list, Class (which is
empty initially), the determination of a conflicting class
is as follows. The first transition from List is moved
to Class, and then, iteratively, those transitions from
List which share any places with transitions in Class

are moved from List to Class:

Class := head(List);

List := tail(List);

cont := true;

while cont do

cont := false;

for each TransL in List do

for each TransC in Class do

if nonempty(shared(TransL.input,

TransC.input)) then

delete(TransL,List);

insert(TransL,Class);

cont := true

endif

endfor

endfor

endwhile;

where shared(list1,list2) determines the set of
shared places on the lists list1 and list2 (the input
lists of transitions TransL and TransC above).

The process of identifying conflict classes for a given
marking function, and in fact, for a given list of en-
abled transitions, is rather time–consuming. There-
fore, instead of repeatedly checking possible conflicts
by comparing the input lists of transitions, it may be
beneficial to save the performed decompositions of the

original lists List into Class and the remaining list
List (which may be empty), and to reuse these saved
decomposition if the same (original) list List needs to
be analyzed again.

The decompositions can be (optionally) saved in a
(dynamically created) tree–like structure in which con-
secutive layers of the tree are selected by consecutive
transitions of the (ordered) original list of (enabled)
transitions, and in which the nodes are associated with
pairs of decomposed list. There is a limit on the (total)
number of nodes in the decomposition tree. If this limit
is exceeded, the saving option is automatically turned
off and the (partial) decomposition tree is deleted. It
should be noted that this option is justified only when
the set of possible marking functions is rather small, so
there is a good chance of reusing the decompositions. If
this is not the case, the use of this option can actually
increase the simulation time as many new decomposi-
tions need to be stored, consuming large amounts of
memory and performing many useless searches of the
decomposition tree.

Example. Fig.2 shows a model of “five dining
philosophers”, in which places F1, ..., F5 represent the
forks, and each of the five philosophers is modeled by a
cyclic subnet with transition Xth representing a think-
ing philosopher X (X = A, ..., E), transition Xet – an
eating philosopher X, place Xrd – a philosopher ready
to eat, and place Xfd – a philosopher who finished eat-
ing, returned the two forks, and is going to think.

F1

F2

F3F4

F5

Dfd

Dth

Det

Drd

Crd

Cth

Cfd
Cet

Brd

Bet

Bfd

Bth

Ard

Aet

Afd

Ath

Erd

Eth

Efd

Eet

Fig.2. Five dining philosophers.

In Fig.2, transitions Ath, ..., Eth are conflict–free
transitions, while the remaining transitions Aet, ..., Eet
constitute one conflict class (because of shared places

Event–driven simulation of timed Petri net models 97

F1, ..., F5); Fig.2 shows that all these transitions can
be enabled at the same time. However, only two out of
these five transitions can fire simultaneously, and there
are 10 different combinations of firing transitions. All
these possibilities correspond to different resolutions of
the conflicts. For example, if Aet is selected for firing,
Bet and Eet will be disabled (because the firing of Aet
removes the tokens from F1 and F2), so only Cet or
Det can fire simultaneously with Aet. Similarly, Bet
can fire simultaneously only with Det or Fet, and so
on.

The concept of decompositions can be illus-
trated using a different marking, for example
{Ard,Brd,Drd,F1,F2,F3,F4,F5} (there is no decompo-
sition for the marking shown in Fig.2; all five tran-
sitions are in a single conflict class). For this new
marking, the set of enabled transitions {Aet,Bet,Det}
is decomposed into two classes, {Aet,Bet} and {Det},
as the input sets of Aet and Bet share place F2, but
there is no element shared by Det and Aet or Bet.
The first of these two classes is a conflict class, while
the second is a conflict–free class (because it contains
just one transition). In the decomposition tree, the
path Aet.Bet.Det will be associated with an entry
[Aet,Bet + Det], describing this decomposition.

The decomposition tree for the model shown in Fig.2
is as follows (the listing shows the levels of the structure
and the actual decompositions enclosed in brackets ‘[’
and ‘]’; the element ‘NIL’ in these decompositions de-
notes the empty class). A node corresponding to the
set of enabled transitions is obtained by tracing the
path from the root (consecutive levels are indicated
by parenthesized sublists, so the path Aet.Bet.Det is
identified as “Aet(Bet(...,Det[...]...”) using the enabled
transitions in alphabetical order:

Aet(Bet[Aet,Bet + NIL]

(Cet[Aet,Bet,Cet + NIL]

(Det[Aet,Bet,Cet,Det + NIL]

(Eet[Aet,Bet,Cet,Det,Eet + NIL]),

Eet[Aet,Bet,Cet,Eet + NIL]),

Det[Aet,Bet + Det]

(Eet[Aet,Bet,Eet,Det + NIL]),

Eet[Aet,Bet,Eet + NIL]),

Cet[Aet + Cet]

(Det[Aet + Cet,Det]

(Eet[Aet,Eet,Det,Cet + NIL]),

Eet[Aet,Eet + Cet]),

Det[Aet + Det]

(Eet[Aet,Eet,Det + NIL]),

Eet[Aet,Eet + NIL]),

Bet(Cet[Bet,Cet + NIL]

(Det[Bet,Cet,Det + NIL]

(Eet[Bet,Cet,Det,Eet + NIL]),

Eet[Bet,Cet + Eet]),

Det[Bet + Det]

(Eet[Bet + Det,Eet]),

Eet[Bet + Eet]),

Cet(Det[Cet,Det + NIL]

(Eet[Cet,Det,Eet + NIL]),

Eet[Cet + Eet]),

Det(Eet[Det,Eet + NIL])

The decomposition tree is also sketched in Fig.3
where nodes without any decomposition are shown by
‘white’ circles, and the nodes associated with decompo-
sitions – by dark circles. The set of enabled transitions
to be verified for decomposition is represented by a path
from the root (in alphabetical order of transitions); for
example, the set {Aet,Cet,Det} is decomposed into (see
the list above) a single–transition class {Aet} and the
remaining set {Cet,Det} which cannot be decomposed
further.

Aet

Bet

Bet Cet Det

Cet Det Eet

EetDetDetDet

Eet Eet

Det Eet

Eet

Eet

DetCet Eet Det

Eet

Eet Eet

Cet Eet

EetDet

Eet

Fig.3. The decomposition tree for the net in Fig.2.

There are 10 effective decompositions and 30 nodes
in this decomposition tree. In a typical simulation
run, the transitions are fired many thousands times, so
without saving the decompositions, the same conflicts
would be (unnecessarily) analyzed many thousands of
times.

6. Concluding remarks

An event–driven simulation tool, recently added to
TPN–tools, provides a simple and flexible means for
characterizing the behavior of timed models. The tool
can be especially useful for evaluations of models for
which other methods (for example, reachability analy-
sis) cannot be used because of the size of the state space
or unsatisfied constraints (for example, unboundedness
of models).

At present, there are only two types of temporal in-
formation that can be associated with transitions: con-
stant firing times and exponentially distributed firing
times. Several other distributions can easily be imple-
mented by minor entensions to the model description

Event–driven simulation of timed Petri net models 98

language [18]. For example, in addition to D and M,
some other transition types can be defined, possibly
including a ‘user–defined’ type (with some sort of stan-
dardized interface to allow a functional description of
the required distribution). Similarly, more elaborate
forms of simulation results can be adopted from other
simulation languages and/or tools.

At present, TPNsim cannot handle high–level nets,
and only a very restricted form of colored nets [6] can
be used. Improved capabilities for high–level net mod-
els need to be incorporated into TPNsim in order to
simplify analysis of large models.

Another useful extension of TPNsim would be to
support event–driven as well as time–based simulation;
it appears that the simulation of instruction–level ar-
chitectures is often performed at the processor cycle
level, in which case the time–based simulation can be
more efficient than the event–driven one.

The discussion of the implementation issues focuses
on one aspect of TPNsim, its processing of conflicts.
There are two basic considerations behind this decision.
One is that processing of conflicts is one of the most in-
teresting aspects of the simulation of net models; many
ather aspects are quite similar to other discrete–event
formalisms. The second consideration is that although
there are many other modeling tools based on Petri
nets [20], processing of conflicts is either restricted to
a few special cases (e.g., free–choice nets), or described
through a number of ‘standard’ examples, which are
of little help when a ‘non–standard’ case needs to be
analyzed.

The described simulation tool was used extensively
in several evaluation studies, including a simulation of
a multilayered model of communication networks [15]
and multithreaded distributed memory multiprocessor
systems [5, 19]. TPNsim’s performance and flexibility
compared quite favorably with some other Petri net
tools; for example, it was an order of magnitude faster
and much more flexible than Visual SimNet [15].

References

[1] van der Aalst, W.M.P., “Interval timed colored Petri
nets and their analysis”; in: “Applications and The-
ory of Petri Nets 1993” (Lecture Notes in Computer
Science 691); Ajmone Marsan, M. (ed.), pp.453–472,
Springer–Verlag 1993.

[2] Agerwala, T., “Putting Petri nets to work”; IEEE
Computer Magazine, vol.12, no.12, pp.85-94, 1979.

[3] Ajmone Marsan, M., Conte, G., Balbo, G., “A class of
generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems”; ACM Trans. on
Computer Systems, vol.2, no.2, pp.93–122, 1984.

[4] Ferrari, D., “Computer systems performance evalua-
tion”; Prentice–Hall 1978.

[5] Govindarajan, R., Suciu, F., Zuberek, W.M., “Timed
Petri net models of multithreaded multiprocessor
architectures”; Proc. 7-th Int. Workshop on Petri
Nets and Performance Models (PNPM’97), St. Malo,
France, pp.153-162, 1997.

[6] Jensen, K., “Coloured Petri nets”; in: “Advanced
Course on Petri Nets 1986” (Lecture Notes in Com-
puter Science 254), Rozenberg, G. (ed.), pp.248-299,
Springer–Verlag 1987.

[7] Kobayashi, H., “Modeling and analysis – an introduc-
tion to system performance evaluation methodology”;
Addison–Wesley 1981.

[8] Merlin, P.M., Farber, D.J., “Recoverability of com-
munication protocols – implications of a theoretical
study”; IEEE Trans. on Communications, vol.24, no.9,
pp.1036–1049, 1976.

[9] Mitrani, I., “Simulation techniques for discrete event
systems”; Cambridge University Press 1982.

[10] Molloy, M.K., “Performance analysis using stochastic
Petri nets”; IEEE Trans. on Computers, vol.31, no.9,
pp.913–917, 1982.

[11] Molloy, M.K., “Fundamentals of performance model-
ing”; Macmillan 1989.

[12] Murata, T., “Petri nets: properties, analysis and ap-
plications”; Proceedings of IEEE, vol.77, no.4, pp.541–
580, 1989.

[13] Peterson, J.L., “Petri net theory and the modeling of
systems”; Prentice-Hall 1981.

[14] Pooch, U., “Discrete–event simulation — a practical
approach”; CRC Press 1993.

[15] Reid, M., “Modeling and performance analysis of
ATM LANs”; M.Sc. Thesis, Department of Computer
Science, Memorial University of Newfoundland, St.
John’s, Canada A1B 3X5, 1996.

[16] Reisig, W., “Petri nets - an introduction” (EATCS
Monographs on Theoretical Computer Science 4);
Springer–Verlag 1985.

[17] Zuberek, W.M., “Timed Petri nets – definitions, prop-
erties and applications”; Microelectronics and Relia-
bility (Special Issue on Petri Nets and Related Graph
Models), vol.31, no.4, pp.627–644, 1991.

[18] Zuberek, W.M., “Modeling using timed Petri nets –
model description and representation”; Technical Re-
port #9601, Department of Computer Science, Memo-
rial University of Newfoundland, St. John’s, Canada
A1B 3X5, 1996 (available through anonymous ftp at
ftp.cs.mun.ca as /pub/techreports/tr-9601.ps.Z).

[19] Zuberek, W.M., Govindarajan, R., “Performance
balancing in multithreaded multiprocessor architec-
tures”; Proc. 4-th Australasian Conf. on Parallel and
Real–Time Systems (PART’97), Newcastle, Australia,
pp.15-26, 1997.

[20] DAIMI (Department of Computer Science, University
of Aarhus, Denmark) maintains a database of Petri net
tools, http://www.daimi.au.dk/PetriNets/tools.

