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Abstract 

We present the definition of diverse models of physical 
systems using the Cell-DEVS paradigm. Cell-DEVS is an 
extension of the DEVS formalism that allows the definition 
of cellular models. We have developed a tool implementing 
these theoretical concepts, making easy the definition of 
cell spaces with explicit timing delays. Diversity of prob- 
lems can be attacked in a simple fashion, reducing the 
development times of complex models. A wide variety of 
models have been developed using this approach, and here 
we include examples of a fire spreading model with differ- 
ent conditions, formation of a watershed and robots in a 
manufacturing plant. These examples allow us to show the 
potential application of the formalism and related tools to 
attack diflerent problems. 

1. Introduction 

Recent advances in computer technology have influ- 
enced simulation techniques to become an effective ap- 
proach to understand physical systems. In recent years, 
grid-shaped cellular models have gained popularity in this 
sense [ 1, 21. In particular, Cellular Automata [3] have been 
widely used with these purposes. A Cellular Automata is 
defined as an infinite n-dimensional lattice of cells whose 
values are updated according to a local rule. This is done 
simultaneous and synchronously using the current state of 
the cell and the state of a finite set of nearby cells (known 
as the neighborhood). 

Cellular automata usually require large amounts of 
compute time, mainly due to its synchronous nature. The 
use of a discrete time base is also constrains the precision 
of the model. Likewise, independent timing properties for 

each cell cannot be easily described. Cell-DEVS [4] solves 
these problems by using the DEVS paradigm [5] to pro- 
vide discrete event approach to build cell spaces. The goal 
is to build discrete-event cell spaces, improving their defi- 
nition by making the timing specification more expressive. 

In this work we introduce the definition of several 
complex physical models using the paradigm. It has been 
shown that its application of the paradigm produces sub- 
stantial reductions in the development times for cell- 
shaped models [6]. The goal here is to show the usefulness 
of the approach when applied in the definition of complex 
physical systems. 

2. The DEVS Formalism 

DEVS (Discrete Event Systems specifications) is a 
modelling paradigm based on general systems theory [ 5 ] .  
A DEVS model is built using a set of behavioral compo- 
nents called Atomic, which can be combined to form 
Coupled ones. A DEVS atomic model can be formally 
described as: 

where X represents a set of input events, S a set of states, 
and Y is the output events set. Four functions manage the 
model behavior: 6inl the internal transitions, Sext the exter- 
nal transitions, h the outputs, and D the duration of a state. 
Each model is seen as having input and output ports to 
communicate with other models. The input and output 
events will determine the values to appear in those ports. 
The input external events are received in an input port, and 
the model specification should define the behavior under 
such inputs. The internal events produce state changes, 
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whose results are spread through the output ports. The port 
influences will determine if these values should be sent to 
other models. 

Coupled models are integrated by other DEVS basic 
models (atomic or coupled), providing a structural view. 
These models are formally defined as: 

C M = < X ,  Y,D, (Mi], (I i ] ,  {Zij)> 

where X is the set of input events, and Y is the set of out- 
put events. D is an index of the components, and for each i 
E D, Mi is a basic DEVS model. Ii is the set of influencees 
of model i. For each j E Ii, Zij is the i to j translation func- 
tion. Coupled models are composed by a set of basic mod- 
els connected through input/output ports. The influencees 
of a model are used to define which output values must be 
sent to the others. The translation function uses an index of 
influencees, created for each model (Ii). This function 
defines which outputs of model Mi are connected to inputs 
in model Mj. 

As previously explained Cell-DEVS [4] has extended 
the DEVS formalism, allowing the implementation of 
cellular models. Each cell is defined as an atomic model 
using timing delays, and it  can be later integrated to a 
coupled model representing a cell space. Cell-DEVS 
atomic models can be specified as: 

TDC=< X, Y, I, S, N, delay, d, &, hXT, T, h, D > 

Here, X defines external input events, Y external out- 
put events, and I the model's interface. S is the set of states 
for the cell, and N is a set of input events. Delay defines 
the kind of delay for the cell, and d its duration. Finally, 
there are several functions: i51NT for internal transitions, 
i5EXT for external transitions, T for local computations, h 
for outputs and D for the state's duration function. Each 
cell uses N inputs to compute the future state. They are 
received through the model's interface, and are used to 
activate the local function. A delay can be associated with 
each cell, allowing deferring the transmission of the exe- 
cution results [7]. Transport delays model a variable 
commuting time, and inertial delays have preemptive 
semantics (some scheduled events can be avoided). The 
model advances through the activation of the internal, 
external, output and state duration functions, as in  other 
DEVS models. 

Once the behavior of one cell is defined, they can be 
combined into a coupled model: 

GCC=< Xlist, Ylist, I, X, Y, n, ( t l ,  ..., tn}, N, C, B, Z > 

Here, Xlist is an input coupling list, Ylist is an output 
coupling list and I represents the model interface. X is the 
set of external input events and Y the external output 
events. The n value defines the dimension of the cell 
space, {tl ,  ..., tn} is the number of cells in each dimension 
and N is the neighborhood set. C is the cell space, B is the 
set of border cells, and Z a translation function. The cou- 
pled model is built as an array of atomic cells, each con- 
nected to its neighborhood. The space borders are pro- 
vided with different behavior, or their cells are connected 
with those in the opposite border. Finally, the Z function 
defines internal and external couplings. 

These specifications were used as the theoretical base 
to develop a modelling tool called CD++ [SI. The defini- 
tions of DEVS and Cell-DEVS, were used to define ex- 
ecutable models. DEVS atomic models can be defined as 
C++ functions (by defining the behavior of the functions 

Se,,, h, and D). Instead, Cell-DEVS models are built 
using a specialized language. 

First, we allow the definition of coupled models by 
including their size, neighborhood and borders (as de- 
scribed in the formal specifications). Then, the cell be- 
havior (defined by the local transition function) is de- 
scribed using rules with the following syntax: VALUE 
DELAY { CONDITION 1. If the CONDITION of a rule is 
satisfied, the state of the cell will change to the designated 
VALUE after a DELAY. If the condition is not valid, the 
following rule is evaluated. A wide range of functions and 
operators can be used to define these rules. Inputloutput 
ports allow to integrate cellular models to other DEVS. 

Details about the tool can be found in [8, 91, where 
several simple models where presented. The following 
sections will be devoted show how more complex physical 
models can be simulated using CD++. 

3. Forest Fires 

Forest fires destroys important resources, hence, 
enormous efforts have been made to prevent them. One 
way of attacking this problem is by using modelling and 
simulation. Many forest fires models have been developed 
to study how the fire spreads under different environ- 
mental conditions. The use of GIS (Geographical Infor- 
mation Systems) has extended the analysis of burnt areas 
and helped to determine risk factors. 

A well known model for fire propagation in forests is 
due to Rothermel [IO].  Based on environmental and vege- 
tation conditions, it computes the ratio of spread and in- 
tensity of fire. Three parameter groups determine the fire 
spread ratio: a) vegetation type (caloric content, mineral 
content and density); b) fuel properties (the vegetation is 
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classified according to its size); and c) environmental 
parameters (wind speed, fuel humidity and field slope). 
We have used the NFFL (Northern Forest Fire Labora- 
tory), that classifies vegetation in 13 groups representing I [ForestFirel 

The remaining rules represent a similar behavior for the 
remaining neighbors. 

the majority of existing forest types in the region. 

When Rothermel's rules are applied to a given fuel 

type : cell dim : (20,20) 
delay : inertial border : nowrapped 
neighbors : (-l,-l) (-1,O) (-1,l) (0,-1) ( 0 . 0 )  
(0,l) (1,-1) (1.0) (1,1) 

model and environmental parameters, it can determine the I localtransition : FireBehavior 
spread ratio (i.e. the distance and direction the fire moves 
in a minute). The first step is to use the fuel model, the 
speed and direction of the wind, the terrain topology and 
the dimensions of the cellular space to obtain the spread 
ratio in every direction. These values are used to write a 
specific model for the given parameters using CD++. For 
instance, the following figure shows the values obtained 
for a fuel model group number 9, a SE  wind of 24.135 
kmlh and a cell size of 15.24 x 15.24 m. 

Wind direction = 45.000000 (bearing) 
Wind speed = 8.045000 [kphl NFFL model = 1 
Cell Width = 15.240000 [m] (E-W) 
Cell Height = 15.240000 [m] (N-S) 
Max. Spread = 17.967136 [mpml 
0" Spread = 5.106976 [mpml Distance = 15.2400 [ml 
45" Spread = 17.967136 Distance = 21.552615 
90' Spread = 5.106976 Distance = 15.240000 
135' Spread = 1.872060 Distance = 21.552615 
180° Spread = 1.146091 Distance = 15.240000 
225" Spread = 0.987474 Distance = 21.552615 
270" Spread = 1.146091 Distance = 15.240000 
315" Spread = 1.872060 Distance = 21.552615 

Figure 1. Parameter definition computed us- 
ing the Rothermel model. 

These parameters were used to write a specific cellu- 
lar model for this case using the CD++ tool. The following 
specification shows a 20 by 20 Cell-DEVS representing 
the terrain and vegetation. Every parameter defined corre- 
sponds to the specification of the coupled Cell-DEVS 
presented in section 2. In this case, the state variables use a 
0 value to indicate the absence of fire and a value different 
to 0 indicates the time the fire has started on that cell. 

The rules define the behavior of the local computing 
function. They are devoted to detect the presence of fire in 
the eight neighboring cells. If there is fire in one of them, 
then present the cell will burn. For instance, the first rule 
checks if the current cell is not burning ((0,O) = 0) and if 
the SW neighbor has started to burn (0 < (I,-])). If this 
condition holds, the value will be (1,-I) + 
(21.552615/17.967136), which is the time the fire will 
start in the cell. As the spread ratio is 17.967 136 mpm and 
a cell has a diagonal of 21.552615 m, it will take 
(21.552615/17.967136) minutes for the fire to reach the a 
cell once it  has started in its SW neighbor. Therefore, we 
use a delay of (21.552615/17.967136)*60000 ms after 
which the present cell state will spread to the neighbors. 

[FireBehavior] 
rule : {(1,-1)+(21.552615/17.967136)} ((21.552615 
/ 17.967136)*60000} {(O,O)=O and O<(l,-l)) 
rule : ((1,0)+(15.24/5.106976)} ((15.24 / 
5.106976)*60000} {(O,O)=O and 0<(1,0)} 
rule : {(0,-1)+(15.24/5.106976)) {(15.24 / 
5.106976)*60000} {(O,O)=O and 0<(0,-1)} 
rule : {(-1,-1)+(21.552615/1.872060)) ((21.552615 
/ 1.872060)*60000} {(O,O)=O and O<(-l,-l)} 
rule : {(1,1)+(21.552615/1.872060)} ((21.552615 / 
1.872060) *600001  { ( 0 , O )  = O  and Oc (1,l) 1 
rule : {(-~,0)+(15.24/1.146091)} {(15.24 / 
1.146091)*60000} { ( O , O ) = O  and 0<(-1,0)} 
rule : ((0,1)+(15.24/1.146091~~ ((15.24 / 
1.146091)*60000} {(O,O)=O and 0<(0,1)} 
rule : ((-1,1)+(21.552615/0.987474)} {(21.552615 

rule : ( ( 0 . 0 ) )  0 { t 1 
0.987474)*60000} {(O,O)=O and O<(-l,l)} 

Figure 2. Definition of a fire forest model. 

The results of running this model are shown. below. 
This behavior has been discussed previously in [ 1 1, 121 
and others. We want to show that a complex model as this 
one can be easily defined using the formal specifications 
of Cell-DEVS and related tools. 

(b) 
Figure 3. (a)Fire propagation results; (b) A two- 
hour period (each zone represents 20 minutes). 
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As we can see, the burning time of a cell depends on 
the spread ratio in the direction of the burning cell. This 
value is used as the delay component for the rules. It is 
important to notice that the cells are updated at different 
times, as set by a rule's delay component. This is a clear 
departure from the classical approach to cellular automata 
where all active cells are updated at the same time. A non 
burning cell in the direction of the fire spread will be up- 
dated in a shorter period of time than a non burning cell in 
the opposite direction. Another advantage is that express- 
ing a timing delay is done in a natural fashion, allowing 
the modeler to reduce the development time related with 
timing control programming. 

Another advantage is that the complexity of this 
physical phenomenon is such that the inclusion of other 
external influences is difficult to be considered. The fol- 
lowing subsections we will show the potential use of the 
formalism by including external factors to attack the fire. 

4.1 Forest fires under the influence of rain 

It is important to notice that if any of the cells is 
scheduled to start burning and it gets wet before the fire 
starts, it will not burn. This was easily defined by an iner- 
tial delay, which preempts any scheduled event if a new 
event from a neighbor cell before the scheduled time, and 
the present cell gets a different value. 

4.2 Firefighter influence on a fire 

The following extension allows to analyze the influ- 
ence of firefighters in the region. A negative value is still 
used for wet or cooling cells, a positive value for burning 
cells, but the way in which the water is spread has been 
changed. 

rule : -1 60000 { ( O , O ) = O  and (-l,O)=-l) 
rule : -2  ( 6 0 0 0 0 * 7 )  { ( O , O ) > O  and ((-l,l)=-l or ( -  

rule : -3 { 6 0 0 0 0 * 9 )  ( ( 0 , 0 ) = - 2 1  
r u l e  : -4  ( 6 0 0 0 0 * 9 1  ( ( 0 , 0 ) = - 3 )  

1,1)=-4) I 

Figure 6. Rules defining firefighter behavior. 

In this case, firefighters move from north to south 
spreading water to non burning vegetation, Once they 
reach a burning cell they will hold their positions till the 
fire is extinguished, and then they will 

Cell-DEVS allows to easily include new rules. In this 
case we have defined a rainstorm moving to the SE, extin- 
guishing the fire on burning cells. To allow this behavior, 
the following rules were added to the previous model: 

sw. 

rille : -1 ( 6 C O O O * 3 )  ( ( O , O ) = O  a n d  ( ( - L , O ) = - l  or' 
(O,l)=-l or  ( - 1 , 0 ) = - 2  or  ( 0 , 1 ) = - 2 ) )  
r u l e  : - 2  ( 6 0 0 0 0 - 3 . 5 )  ( ( O , O ) > O  and ( ( - l , O ) = - l  or 
(O,l)=-l or ( - 1 , 0 ) = - 2  o r  (0,1)=-2) 
rule : -3 ( 6 0 0 0 0 " 4 . 5 )  ( ( 0 , 0 ) = - 2 1  
r u l e  : -4  {60000*51  ( ( 0 , 0 ) = - 3 )  

Figure 4. Forest fire. Rules defining rain. 

Negative values define the effects of the rain. A cell 
whose value is -1 is a wet cell where no fire was presented 
previously. A value of -2 or -3 indicates the cell was pre- 
viously on fire and is now cooling down, and a value of -4 
means the fire on that cell is extinguished. The first rule in 
the previous figure defines rain spreading to the SW. The 
second defines the cooling process on a burning cell, and 
the third and fourth ones represent advance in the cooling 
process. The model assumes that the fire on a cell will take 
16 minutes to extinguish (in stages of different length). 

(4 (b) (c )  (4 (e )  
Figure 5. Fire evolution with rain. (a) Start. (b) 

Fire advance and rain (dark gray) (c, d) Rain 
cooling fire areas (light gray). (d) Rain extin- 

guished fire areas. 

(a) (b) ( c )  (4 ( e )  
Figure 7. Fire evolution with firefighters. (a) Start 

(b) Firefighters spread coolant from N to S (c) 
Fire spreading, firefighter zones cooled down 
(light gray) (d, e) areas of fire extinguished. 

4. Robot movement in a plant 

Cell-DEVS models can be coupled with standard 
DEVS models. The coupling is done by linking a DEVS 
output port to a new cell's input port and defining a rule to 
be evaluated when a message is received through this new 
port. The model defined in this section will show how to 
define this coupling. We model the movement of robots in 
an industrial plant. Robots are used to carry a load from 
the source point where it  is produced, to a destination 
point where it is consumed. The robots can move North, 
South, East or West following predefined routes at differ- 
ent speeds. There may be more than one robot on each 
route. 

A robot stops when it detects a nearby robot on the 
same route. In addition, routes can have crossing points, so 
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there is a potential risk for collisions. Routes are one-way; 
once the load is delivered, robots are taken off the floor, 
back to their starting point. The model here presented 
supposes the robots move using predefined routes, speci- 
fied as a floor diagram. 

[RobotsMov] 

rule : 10 1000 {(O,l)=l and ( O , O ) = O  and cell- 
pos(1) ! = 4 )  
rule : 11 1000 ((O,l)=l and ( O , O ) = O  and cell- 
pos (1) =41 
rule : 0 0 ((0,-1)=10 and (0,0)=11 
pule : 0 0 ((0,-1)=11 and (0,0)=1} 
rule : 2 0 {(O,O)=ll} 
rule : 1 0 {(0,0)=10) 

8 _ _ _ _ _ _  Robot 1 _ - _ _ _ _ - - - - - - - - - - - - _ _ _ _ _ _ _ _ _ _ _ _  

h l e  : 20 2000 ((-1,0)=2 and ( O , O ) = O  and cell- 
pos(0) !=17} 
rule : 21 2000 {(-1,0)=2 and ( O , O ) = O  and cell- 
pos (0 ) =17 } 
rule : 0 0 ((1,0)=20 and (0,0)=21 
rule : 0 0 {(1,0)=21 and (0,0)=21 
rule : 2 0 { (0,0)=20 1 
rule : 1 0 ( (0,0)=21 1 

% _ _ _ _ _ _  Robot 2 ________-___- - - - - - - - - - - - - - - - - - - -  
... 

The plant is represented by a 20 by 20 Cell-DEVS. 
This cellular model is linked to four different DEVS mod- 
els, each devoted to generate a load at the source points 
(12, 19), (O,lO), (9,O) and (19,6). 

top1 
components : Floor Sourcel@Generator 
Source2@Generator Source3@Generator 
Source4@Generator 
link : out@Sourcel inl@Floor 
link : out@Source2 in2@Floor 
link : out@Source3 in39Floor 
link : out@Source4 in49Floor 

[Floor I 
type : cell dim : (20 ,201  
delay : inertial border : nowrapped 
neighbors : (-1,O) (O,-l) ( 0 , o )  (0,1) (1,o) 
in : in1 in2 in3 in4 
link : in1 in@Floor(l2,19) 
link : in2 in@Floor(O,lO) 
link : in3 in@Floor(9,0) 
link : in4 in@Floor(l9,6) 
localtransition : RobotsMov 

This model definition, which follows the DEVS and 
Cell-DEVS specifications for coupled models, begins by a 
coupled model with 5 components (Floor, a Cell-DEVS, 
and Sourcef -SourceQ, load generators built as DEVS 
models). Then, the model's influencees are defined (gen- 
erators output ports are connected to Floor input ports). 
Finally, we define the Cell-DEVS Floor coupled model 
parameters (size, borders, delay, etc.). The Xlist and Ylist 
are defined following, allowing to define how the external 

events received. In this case, the input ports inf to in4 will 
be coupled to the cell space: events arriving on port in1 
should be sent I O  the in port of the cell at position (12,19). 
The behavior of the DEVS generators is not included here 
(see, for example, DEVS generators in [ 5 ] ) .  The tool al- 
lows their definition according to the formal specifications 
of section 2 for DEVS atomic models. 

imp 

Figure 9. Floor plan with robots routes. 

We also included a part of the cell behavior for the 
Cell-DEVS model. In this case, a zero value is used if the 
cell is empty. A value different from zero will indicate the 
presence of a robot. A cell containing a route 1 robot can 
have the values 1, 10 or 11 if the robot is moving hori- 
zontally and 2,  20 or 21 if the robot is moving vertically. 
The cellpos() function is used to see if the robot is on the 
path, defining the predefined movement on the floor. The 
same applies for cell containing robots belonging to other 
routes. Then, valid values for a cell containing a route 2 
robot will be 3,30, 31, 4, 40, 41; for cells containing a 
route 3 robot they will be 5, 50, 5 1 ,  6, 60, 61 and for cells 
containing a route for 4 robot 7, 70,7 1, 8, 80, 8 1. 

A robot moves is done in three steps. For example, a 
route 1 robot at the source is indicated by a 1 in cell 
(12,19). This value says the robot is ready to move hori- 
zontally. The next cell on the route will receive a neighbor 
change event indicating that cell (12,19) has just changed 
to 1. Then, cell will get ready to receive the robot by ac- 
quiring a value of I O  or 11 after a delay of 1000 ms (step 
1). The value 10 will be used if the robot continues hori- 
zontally and 11 if the robot must turn. 

Once this change is produced, the original cell that 
had a value of 1 will now change to 0 (step 2) indicating 
the robot is not longer present and the cell that had the 
value 10 or 1 1  will change to 1 or 2,  respectively (step 3) .  
The value of 1 will again indicate the presence of a robot 
that is about to move horizontally and the value 2 a robot 
that is about to move vertically. The collisions are avoided 
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by only allowing step 1 to take place if the destination cell 
is empty, as expressed a condition statement. 

0 0 0  

@ 0 0  

t = 1000 pJ t = 1000 

20 0 0  

t = 1000 m t = 2000 pJ 
t =2000 t = 2000 t = 3000 t = 3000 t = 3000 

Figure 10. Route 1 movements. (a) Starting point 
(b) Step 1 (c) Step 2 (d) Step 3 (e) Turning point. 
Step l(f) Step 2 (9) Step 3 (h) New movement with 

change of direction. Step 1 (i) Step 2 (j) Step 3 

The results of running this model are shown below: 

(c) (4 
Figure 11. Executing the robots model (showing 

two robots reaching an intersection point). 

The figure shows different robots running at different 
speeds (according with their delays). The figure also 
shows the collision avoidance between a robot in route 2 
and other in route 4 (marked in the figure). 

5. A Watershed Model 

In [9] we presented a watershed model previously de- 
fined in [ 131, which was built using Cell-DEVS. A water- 

shed is a natural region that acts as the water-receiving 
area of a drainage basin. The water that accumulates has 
different origins: rain, rivers and snow melting from 
mountains, as shown in the following figure. 

Figure 12. Topology of a watershed 

A watershed is made of different vertical layers: air, 
vegetation, surface waters, soil, ground water, and bed- 
rock. The model in [13] represented the water flow and 
accumulations based on the characteristics of the different 
layers. A watershed was divided into cellos where the 
water accumulation was computed as shown in the fol- 
lowing figure. 

Figure 13. Hydrology model [13]. 

Basically, what this model says is that the height of 
accumulated water depends on the rain water that reaches 
the ground, the water received from neighbor cells, the 
water that overflows to neighbor cells and the water the 
ground absorbed. Based on the equations for this model, 
the CD++ model shown in the following figure was devel- 
oped to simulate the accumulation of water under the 
presence of constant rain (7,62 " h o u r ) .  The original 
model in [9] assumed the soil in the whole watershed area 
was of the same type. A new model here presented defines 
areas of different soil type: grass and rocks. 
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[stones I 
rule : IO.09 + ( O , O , O )  - if(((((O,O,l) + 
( 0 , 0 , 0 ) ~ ~ ~ ~ - 1 , 0 , 1 ~  + (-l,O,O)))), ( ( ( ( ( 0 . 0 , O )  + 

(0,0,1) - (-l,O,O) - ~ - 1 , 0 , 1 ~ ~ / 1 0 0 0 ~  * 
(0, 0,O) ) /1000) , 0) - if ( ( ( ( ( O , O ,  1) + 
( 0 , 0 , 0 ~ ~ > ~ ~ 1 , 0 , 1 ~  + (l,O,O)))), (((((O,O,O) + 

(0,0,1) - (1,0,0) - (1,0,1))/1000) * 
(0,0,0))/1000),0) - if(((((0,0,1) + 

( 0 , O . O )  ) ~ ~ ~ 0 , - 1 , 1 ~ + ~ 0 , - 1 , 0 ~ ~ ~ ~ ,  ( (  ( (  ( O , O , O )  
(0,0,1) - (O,-l,O) - ~ 0 , - 1 , 1 ~ ~ / 1 0 0 0 ~  * 
( O , O ,  0) /1000) , 0 )  - if ( ( ( ( (0.0,1) + 

( O , O , O )  ) > (  (O,l,l) + (0,1,0) ) ) )  I ( ( (  ( ( O , O , O )  + 

(0.0,l) - (0,1,0) - ~ 0 , 1 , 1 ~ ~ / 1 0 0 0 ~  * 
(O,O,O))/~OOO),O) + if(((((-l,O,l) + ( -  
1 , 0 , 0 ) ) ~ ~ ~ 0 , 0 , 1 ~  + ~ o , o , o ~ ~ ~ ~ , ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~  + ( -  
l,O,l) - ( O , O , O )  - (O,O,l)) * (-1,0,0))/1000),0) 
+ if(((((l,O,l) + (1,0,0))>((0,0,1) + 

( O , O , O ) ) ) ) ,  ((((l,O,O) + (1,0,1) - ( O , O , O )  - 
(O,O,l)) (1,0,0))/1000),0) + if(((((O,-l,l) + 
(O,-l,O) ) > (  (0.0.1) + ( O , O , O ) )  1 ) # ( ( ((0. -1.0) + 

(O,-l,l) - (0.0,O)  - (0,0,1)) * ( 0 , -  
1,0))/1000),0) + if(((((O,l,l) + 

(0,1,0))>((0,0,1) + (0,0,0)))),((((0,1,0~ + 
(O,l,l) - ( O , O , O )  - (O,O,l)) * (0.1,0))/~000)~0) 

+ 

) 1000 { cellpos(2)=0 I 
rule : { ( 0 , O . O )  1000 { t 1 

Figure 14. Specification of a watershed model. 

Cell-DEVS was defined as an n-dimensional para- 
digm. In this case, we are using a three dimensional model 
to defined a different behavior using overlapped planes. 
The model is a 30 by 30 cell model with two surfaces, one 

to represent the height of the water retained (surface 0) 
and one to represent the topography of the terrain (surface 
1). Each cell represents an area of Im by Im. The value 
for a surface 0 cell represents the height of accumulated 
water and the one for a surface 1 cell represents the ground 
elevation. These values for ground elevation do not change 
through out the simulation, and they are used to calculate 
the water overflow to neighbor cells. 

(b) 
Figure 15. (a) Original topology (b) the watershed 
after rain water has accumulated. 

We show two zones, representing the sets of cells that 
will model grass and rock areas. For each zone, different 
sets of rules apply. Each rule calculates the new water 
height by applying the hydrology model equation. These 
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rules represent the water accumulation changing the sur- 
face vegetation and ground filtration parameters showed in 
figure 13. We can see that the definition of different be- 
havior int he same model is defined without much effort. 

From the execution results we can see that, despite the 
shape of the original topology, water accumulates in the 
left part of the terrain faster than in the right part. This is 
due to the rocky soil defined in the rightmost area, which 
rejects most of the water. The center part of the figure has 
the higher filtration of the area due to the lack of vegeta- 
tion, thus having the most profound height in the water- 
shed. 

6. Conclusion 

Cell-DEVS allows to describe physical systems using 
an n-dimensional cell-based approach. InpuVoutput port 
definitions allow defining multiple interconnection be- 
tween Cell-DEVS or DEVS models. Complex timing 
behavior for the cells in the space can be defined using 
very simple constructions. Transport and inertial delays 
allow the modeler to make easier the timing representation 
of each cell in the space. The CD++ tool, based on the 
formalism entitles the definition of complex cell-shaped 
models using a high-level specification language. In this 
way, the construction of simulations is improved, en- 
hancing their safety and development costs. 

It was shown that different kinds of applications can 
be easily faced, allowing the study of complex problems 
through simulation, which, otherwise, could not be at- 
tacked. Finally, the use of a formal base improves the 
development, checking and maintaining phases, facilitating 
the testing and reuse of their components. 

The discrete event nature of the formalism provides 
better precision and performance, due to the independent 
timing for each cell. If a cell state does not change, it  is 
deactivated up to the arrival of a new external event, thus, 
improving CPU use without needing small time slots. 
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