
This work was partially supported by ANPCYT Project
11-04460 and UBACYT Project JW10.

Application of the ATLAS language in models of urban traffic

Andrea Díaz Verónica Vázquez

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja. Pabellón I.
Ciudad Universitaria (1428)

Buenos Aires. Argentina.

Gabriel Wainer

Systems and Computer Engineering Department
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

E-mail: gwainer@sce.carleton.ca

Abstract

ATLAS is a specification language defined to outline city
sections to model and simulate traffic flow. Streets are
characterized by their size, direction, number of lanes,
etc. Once the urban section is outlined, the constructions
are translated into Cell-DEVS models, and the traffic flow
is automatically set up. As modelers can focus in the
problem to solve, development times for a simulation can
be highly reduced. We present an example of application
of the specification language to solve specific problems.

1. Introduction

The use of simulation has been gaining popularity for
urban traffic analysis and control. Modelling and simula-
tion of traffic has been used to improve traffic control,
measure the consequences of collisions, avoid pollution,
traffic jams, etc.

ATLAS (Advanced Traffic LAnguage Specifications)
is a high level specification language defined to represent
city sections as cell spaces. It is focused to analyze de-
tailed behavior of traffic (microsimulations) and it is not
intended to model traffic flow in the large. The idea is to
allow elaborate study of flow according with the shape of
a city section and its traffic attributes. A city section can
be easily described, including definitions for traffic signs,
traffic lights, etc. Once a section is defined, the traffic
movement is automatically created. Therefore, a modeler
can concentrate in the problem to solve, instead of being in
charge of defining a complex simulation.

The constructions defined in this language are mapped
into DEVS and Cell-DEVS models, providing the benefits
of a formal approach [1, 2]. Cell-DEVS [3] was proposed

to describe cell spaces as DEVS models with timing de-
lays [4]. Using Cell-DEVS, a cellular model can be de-
scribed as a discrete event model. Transport and inertial
delays allow timing accurate description, improving the
definition of the models using explicit delays. Here, we
will show the application of ATLAS, focusing an applica-
tion example.

2. ATLAS Constructions

ATLAS allows to represent the structure of a city sec-
tion defined by a set of streets connected by crossings. The
language constructions define a static view of the model,
and they are considered to be built as grids composed of
cells. The main constructions are:

. Segments: they represent sections between two cor-
ners. Every lane in a given segment has the same direction
(one way segments) and a maximum speed. They are
specified as: Segments = { (p1, p2, n, a, dir, max) / p1, p2
∈ City ∧ n, max ∈ N ∧ a, dir ∈ {0,1} }, where p1 and p2
represent the boundaries of each segment (City = { (x,y) /
x, y ∈ R }), n is the number of lanes, and dir represents
the vehicle direction. The a parameter defines the shape of
the segment (straight or curve, allowing to define the city
shape precisely, and to include the exact number of cells),
and max is the maximum speed allowed.

. Crossings: they are points in the plane where several
segments intersect. They are specified as: Crossings = { (c,
max) / c ∈ City ∧ max ∈ N ∧ ∃ s, s’ ∈ Segments ∧ s =
(p1, p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’, a’, dir’, max’) ∧
s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. Cross-
ings are built as a ring of cells with moving vehicles [5]. A

car in the crossing has higher priority to obtain a position
into the ring than the cars out of the crossing.

 2 1 To segment
 3 0
 ... k-1 From segment

To segment To segment

Figure 1. A crossing.

. Traffic lights: crossings with traffic lights are de-
fined as: TLCrossings = { c / c ∈ Crossings }. Here, c ∈
TLCrossings represents several models representing the
traffic lights in a corner and the corresponding controller.
Each of these models is associated with a crossing input. It
sends a color value related with the traffic light to the
corresponding segment in the intersection.

. Railways: they are built as a sequence of level
crossings overlapped with the city segments. The railway
network is defined by: RailNet = { (Station, Rail) / Station
is a model, Rail ∈ RailTrack }, where RailTrack = { (s, δ,
seq) / s ∈ Segments ∧ δ ∈ N ∧ seq ∈ N }. Here, RailNet
represents a set of stations connected to railways, thus
defining a part of the railway network. Railtrack associates
a level crossing with other existing constructions in the
city section. Each element identifies the segment that is
crossed (s) and the distance to the railway from the begin-
ning of the section (δδ). Finally, a sequence number (seq) is
assigned to each level crossing, defining its position in the
RailTrack.

 Station 1112 3 Railway

 δ Segment S

Figure 2. Level crossing definition.

. Men at work: they are specified as: Jobsite = { (s,
ni, δ, #n) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧ ni
∈ [0, n-1] ∧ δ ∈ N ∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1 mod 2 }.
Here, each (s, ni, δ, #n) ∈ Jobsite is related with a segment
where the construction works are being done. It includes
the first lane affected (ni), the distance between the center
of the jobsite and the beginning of the segment (δδ), and the
number of lanes occupied by the work (#n). These values
are used to define a rhombus over the segment where the
vehicles cannot advance.

 c1 c2

 ni δδ
 #n

 Jobsite

Figure 3. Segment with men at work.

. Traffic signs: they are defined by: Control = { (s, t,
δ) / s ∈ Segments ∧ δ ∈ N ∧ t ∈ {bump, depression,
school, pedestrian crossing, stop, others} }. Each tuple
here identifies the segment where the traffic sign is used,
the kind of signal, and the distance up to it from the begin-
ning of the segment. An extension of this construction
allows us to define Potholes, whose size is one cell.

. Truck segments: segments in which the traffic of
trucks is allowed are defined as: TruckSegments = { (p1,
p2, n, a, dir, max) / p1, p2 ∈ City ∧ n, max ∈ N ∧ a, dir ∈
{0, 1} } whose components are the same to those defined
earlier. The idea here is to extend the behavior of standard
traffic to include large size vehicles.

. Truck crossings: when trucks are allowed in a
crossing, the following construction should be used in-
stead of the standard crossings: TruckXings = { (c, maxc) /
maxc ∈ N ∧ ∃ s ,s’ ∈ (TruckSegments U Segments) ∧ s =

(p1, p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’, a’, dir’, max’) ∧
s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’ = c ∨ p2’ = c) }. These
models represent points in the plane the places where
several segments joins, and at least one of them should
include trucks.

 Parking lane

Movement allowed

Figure 4. Parking segments.

. Parking: border cells in a segment can be used for
parking. They are defined as: Parking = { (s, n1) / s ∈
Segments ∧ n1 ∈ {0,1} ∧ s = (c1, c2, n, a, dir, max) ∧ n >
1 }. Every pair (s, n1) identifies the segment and the lane
where car parking is allowed. If n1 = 0, the cars park on
the left lane. If n1 = 1, the right lane is used (lane n-1).

. Experimental frameworks: experimental frame-
work constructions are defined as segments that provide
inputs and outputs to the city section to be studied. They
are defined as:

InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s ∈
Segments ∧ [(dir = 0 ∧ (∃ v ∈ N : (p2,v) ∈ Crossings))

∨ (dir = 1 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings))] }
OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s

∈ Segments ∧ [(dir = 0 ∧ (∃ v ∈ N : (p1,v) ∈ Crossings))

∨ (dir =1 ∧ (∃ v ∈ N: (p2,v) ∈ Crossings))] }

3. Applying ATLAS to define a city section

The following figure shows a section of Buenos Ai-
res. It is a part of residential neighborhood, where the
traffic flow is non-significant, even in the peak hours.
Nevertheless, the complexity in the city trace of the area is
so high that traffic jams occur frequently.

Figure 5. A section of Buenos Aires.

The area includes a park, a railway, several one way
streets, dead ends, and avenues (one with five lanes in
each direction). In several of these streets, parking is al-
lowed, while in others it is forbidden. Heavy traffic is
allowed in avenues. Figure 6 shows a sketch of this area,
labeling the segments and crossings.

Figure 6. Sketch of the city section.

These components can be defined in ATLAS as:
Segments = { rA, rB, rC, rD1, rD2, rE, rF, rG1, rG2,

rH1, rH2, rI1, rI2 }, where:
rA=[(0,0), (0,130), 1, 40, 0, 1]
rB=[(0,130), (0,200), 1, 40, 0, 1]
rC=[(0,200), (0,300), 1, 40, 0, 1]
rD1=[(0,130),(100,200),2,60,0, 1]
rD2=[(0,130),(100,200), 2, 60, 0, 0]
rE=[(0,200), (100,200), 1, 40, 0, 0]
rF=[(0,300), (100,300), 1, 40, 0, 1]
rG1=[(100,0),(100,200),4,60,0, 1]
rG2=[(100,0),(100,200),4,60,0, 0]
rH1=[(100,200),(100,300),2,60,0,1]
rH2=[(100,200),(100,300),2,60,0,0]
rI1=[(100,200),(200,280),2,60,0,1]
rI2=[(100,200),(200,280), 2, 60, 0, 0]

Crossings = { c1, c2, c3, c4 }, where c1 = ((100,200); 30),
c2 = ((0,130); 30), c3 =((0,200); 20), c4 = ((0,300); 30)
RailNet = { (Station1, Rail1) }, where Rail1 = { (rI1, 90,
1), (rI2, 10, 1), ... }
TLCrossings = { c1, c2 }
Control = {(rA,school,20), (rC,stop,95), (rE,PedXing,95)}
Pothole = { (rA, 0, 10) }
TruckSegments={rD1, rD2, rG1, rG2, rH1, rH2, rI1, rI2}
TruckXings = {c2, c6, ... }
Parking = {(rG1,1) }
InputSegments = { rA, rC1, rH2, rI2 }
OutputSegments = { rH1, rI1, rF, rC2 }

The specification considers the plane starting in the
segment rA, a one-way/one-lane segment. Its maximum
speed is 40 km/h, and it is a straight line. Segments rB and
rC are continuations of this segment. Segment rD is a two-
way segment (therefore, rD1 and rD2 are defined). The
maximum speed allowed is 60 km/h. Segment rI is the
continuation of this segment. Finally, rG is a two-way
segment with 4 lanes in each way. The maximum speed is
also 60 km/h. As we can see, trucks are allowed in seg-
ments rD, rI, rG and rH (both ways). The crossing specifi-
cations show the position and maximum speed allowed for
each of them The railway construction shows that a
crossing level intersects the segment rI. Segment rI1 is cut
10 m from the crossing, and rI2, 90 m from the next
crossing. Finally, we show the definition of a pothole,
several traffic signs, and a parking lane. Finally, we spec-
ify the model's experimental framework.

4. The DEVS modelling paradigm

As explained earlier, ATLAS specifications are
translated into DEVS and Cell-DEVS. A real system mod-
eled using the DEVS paradigm [4] can be described as
composed of atomic or coupled submodels. A DEVS
atomic model is described as:

M = < I, X, S, Y, δint, δext, λ, D >

The interface I includes input/output ports to commu-
nicate with other models. Input external events X are re-
ceived in input ports. The model executes the external
transition function δδext under such inputs. Each state has an
associated duration time D. When this time is consumed,
the internal transition function δδint is activated to produce
internal state changes. The internal state S can be used to
provide model outputs Y sent through the output ports.
They are sent by the output function λλ, which executes
before the internal transition.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi} , {Ii}, {Zij} >

Each coupled model consists of a set D of basic mod-
els Mi connected through the input/output ports. The influ-
encees Ii of a model will determine to which models one
send the outputs. The translation function Zij is in charge
of translating outputs of a model into inputs for the others.
To do so, an index of influencees is created for each model
(Ii). For every j in this index, outputs of the model Mi are
connected to inputs in the model Mj.

Cell-DEVS allows to define cellular models that can
be integrated with other DEVS. Here, each cell of a space
is defined as an atomic DEVS. Transport and inertial de-
lays define timing behavior of each cell in an explicit and
simple fashion. A transport delay allows us to model a
variable response time for each cell. Instead, inertial de-
lays are preemptive: a scheduled event is executed only if
the delay is consumed. Cell-DEVS atomic models are
specified as:

TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D >

Each cell will use the N inputs to compute the future
state S using the function ττ. The outputs of a cell are
transmitted after the consumption of the delay function
associated with the cell. Delay defines the kind of delay
for the cell, and d its duration. The outputs usually include
the execution results of the local computing functions.
This behavior is defined by the δδint, δδext, λλ and D func-
tions.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

A cell space C defined by this specification is a cou-
pled model composed by an array of atomic cells ({t1 x...x
tn}). Each of them is connected to the cells defined by the

neighborhood N. As the cell space is finite, the borders B
should have a different behavior than the remaining cells.
Otherwise, the space is wrapped, meaning that cells in a
border are connected with those in the opposite one. The Z
function allows one to define the internal and external
coupling of cells in the model. This function translates the
outputs of output port m in cell Cij into values for the m
input port of cell Ckl. The input/output coupling lists can
be used to transfer data with other models.

Figure 7. Informal definition of Cell-DEVS.

These formal specifications were considered to build
the CD++ tool [6]. This tool is devoted to specify DEVS
and Cell-DEVS models, which can be later simulated. The
models built using this tool follows the formal specifica-
tions described in this section. A specification language
allows describing the behavior of each cell in Cell-DEVS,
and to define coupled models. Coupled models are built by
defining their size, neighborhood and borders information.
Then, the cell behavior is described using rules with the
following syntax: VALUE DELAY { CONDITION }.
The rule semantics is that if the CONDITION is satisfied,
the state of the cell will change to the designated VALUE
after a DELAY . If the condition is not valid, the following
rule is evaluated. A wide range of functions and operators
can be used to define the rules, some of which will be
described in the following section.

5. Translating ATLAS into Cell-DEVS

Recalling Section 3, we intend to model a city section
including several segments and crossings. This section
will be devoted to show the translation of these construc-
tions into Cell-DEVS models. We introduce some of the
simpler models with the goal of showing the translation
procedures; the remaining are translated using similar
techniques. The definition of these mechanisms were pre-
sented in [1, 2], and details about the remaining models in
this example can be found in [7].

5.1. Segment definition

Segment rB is a one lane road that was specified as
rB = [(0,130),(0,200),1,0,1,40]. This model is mapped
into a one-dimensional Cell-DEVS with transport delays.

The first step of the translation procedure is to obtain
the number of cells in the segment. This value is computed
as the distance between the border points (0, 130) and (0,
200). Each cell has a fixed size of 7.5 m, representing the
length of a car [5]. Hence, the size of this model can be
computed as:

10
5.7700

_
2121 222

=

 +=

 −+−
= sizecell

yyxx
k

This parameter is combined with the rest defined by
the construction, allows us to build the following Cell-
DEVS coupled model:

rB(k=10, max=40 Km/h) = < Xlist, Ylist, I, X, Y, n,
{t1,...,tn}, η, N, C, B, Z >

= < {(0,0),(0,9)}, {(0,0),(0,9)}, I, {0,1}, {0,1}, 1, t1=10, 3,
{(0,-1),(0,0),(0,1)}, C, {(0,0),(0,9)}, Z >

The model input/output interface is composed by the
cells (0,0) and (0,9), and each of them have one input and
one output port. Here I = <Px, Py>, with Px = {<Xη+1(0,0),
binary>, <Xη+1(0,9),binary>}, Py ={<Yη+1(0,0),binary>,
<Yη+1(0,9), binary>} (we will use the following notation:
Xη+1(0,0): x-c-car; Xη+1(0,9): x-c-room; Yη+1(0,0): y-c-
room, Yη+1(0,9): y-c-car). Then, the specification includes
spatial information (we are defining a 1-dimensional Cell-
DEVS with 10 cells of length, as explained earlier).

 (0,0) (0,1) (0,2)(0,3) ... (0,9)
Crossing Crossing
 c2 c3

Figure 8. Shape of the segment rB

The model uses binary values to represent the exis-
tence of a car. The neighborhood includes the two close
cells. We define the borders, in this case, the cells (0,0)
and (0,9). Each of them is in charge interchanging infor-
mation with the crossings. Finally, The C and Z sets are
built using the formal definitions for Cell-DEVS models.

The border cells must behave in a different way than
the rest. We must change cell (0,0) neighborhood to ηη= 2;
N = { (0,0), (0,1) }. Cell (0,9) is now ηη = 2, N = { (0,-1),

(0,0) } and delay = inertial. The cell (0,0) is connected to a
cell in the crossing using two ports: one to see if a new car
is passing through the crossing, and the other to inform the
crossing the present value of the border. The case is simi-
lar for the other border cell. In both cases, the local com-
puting function should provide a behavior representing the
reception of new vehicles, and vehicles leaving the seg-
ments, respectively.

Crossing c2

 cell (0,0)

 Xη+1

 Yη+1
 (0,1)

 Crossing c3

 Yη+1

 Xη+1

 Cell (0,9)

 (0,-1)

Figure 9. Connections in (0,0) and (0,9)

Every other cell in this space is defined as:

C0j = < I, X, S, Y, N, δint, δext, delay, d, τ, λ, D >

= < I, {0,1}, S, {0,1}, {(0,-1),(0,0),(0,1)}, δint, δext,
transport, speed(40Km/h), τ, λ, D >

Each cell can receive three inputs that will be used by

the local transition function τ to represent the car advance.
We use a transport delay to model the time a vehicle takes
to abandon one cell and get into the following. The length
of this delay depends on the vehicle speed, and it is gener-
ated using a random function.

This model was formally specified [7], and, follow-
ing, we present how to implement the specification using
the CD++ tool. We show a part of the specification which
includes the top level coupled model and parts of model
rB. The top level model includes all the submodels to be
executed (presented earlier in figure 6) and their types.
Several generators and transducers have been created as
instances of the experimental framework (to generate
traffic and collect the simulation results). After, rB pa-
rameters are included. They follow the previous Cell-
DEVS formal specification for coupled models. Then, we
include the behavior of the local computing function. A
moving car can advance or stay in the cell (if there is a car
in the previous cell). The advance is divided in two steps:
a car leaving a cell (if the previous is empty), and an
empty cell receiving the leaving car. Finally, we show the
behavior of the border cell (0,9). Here, the car is let into
the crossing using the send function (which is only acti-

vated if the input value for the cell is 0, meaning there is
space in the crossing).
[top]
components: rA rB rC rE rF rD1 rD2 rG1 rG2 rH1
rH2 rI1 rI2 railway c1 c2 c3 c4
components: genCar1@generator genCar2@generator
genCar3@generator genCar4@generator
components: cont1@transducer station@Generator
Out : outTrans1 outTrans2
...
[rB]
type : cell Width : 10 Height : 1
delay : transport border : nowrapped
neighbors : (0,-1) (0,0) (0,1)
localtransition : segment-rule-1lane
out : y-c-room y-c-car
in : x-c-car x-c-room
link : x-c-car x-c-car@rB(0,0)
link : x-c-room x-c-room@rB(0,9)
link : y-c-room@rB(0,0) y-c-room
link : y-c-car@rB(0,9) y-c-car
portInTransition : x-c-room@rB(0,9) GoOutCrossing
. . .

[segment-rule-1lane]
rule : 0 10 { (0,0) = 1 and (0,1) = 0 }
rule : { 1 } 10 { (0,-1) = 1 and (0,0) = 0 }
rule : {(0,0)} 10 { t }

[GoOutCrossing]
rule : { 0 + send(y-c-car,(0,0)) } 0 {(0,0)=1
and portvalue(ThisPort) = 0 }
rule : {(0,0)} 10 { t }

Figure 10. Model definition in CD++

5.2. Crossing definition

This sections shows the translation of the crossing c1
into Cell-DEVS. The segment definitions provide a the set
of inputs and outputs for each crossing. To see this corre-
spondence, the translator checks which segments have c1
in a border (using the position and traffic direction in each
segment). Following this procedure we obtain: c1in = {
rG1, rI2, rH2, rD1 } and c1out = { rG2, rI1, rE, rH1, rD2 }.
The crossing must include one cell for each lane in a cou-
pled segment. Then, we see the number of lanes in each
segment, obtaining:

21221222244
)11(

=++++++++== ∑
∪∈ outin CCt

nk .

rD2 (2 lanes)
rD1 (2 lanes)

rG1 (4 lanes) rG2 (4 lanes)

C1

rE (1 line) rH1 (2 lanes) rH2 (2 lanes)

rI2 (2 lanes)
rI1 (2 lanes)

Figure 11 . Choosing input/output segm e nts.

Each segment is coupled with its corresponding cell in
the crossing. This correspondence is defined by an order-
ing given by the incidence angle between the lanes and the
line y = 0. The bigger the angle, the higher the position
assigned to the segment in the crossing. Therefore, the first
cells are coupled with rG2, the following with rG1, etc.
This information allows us to define the crossings posi-
tions used for input and output: In = {4,5,6,7,10,11,15,
16,19,20}; Out={0,1,2,3,8,9,12,13,14,17,18}. Then, we
create the following coupled Cell-DEVS:

c1(21, In, Out) = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, η,
N, C, B, Z >

= < { (0,i) / 0 ≤i<21}, (0,i) / 0 ≤i<21}, I, {0,1}, {0,1},
1, t1=21, 3, {(0,-1), (0,0), (0,1)}, C, {∅}, Z >

with I = <Px, Py> where Px = {<Xη+1(0,i), binary> / 0
≤ i < 21 } and Py = {<Yη+1(0,i), binary> / 0 ≤ i < 21 }.

This crossing is a Cell-DEVS with 21 cells, where the
positions of the In set represent inputs to the crossing, and
those in Out, outputs. Each output cell is connected to a
segment, which will be informed of the present status of a
crossing cell. The input cells will receive cars from the
segment. The Z function is built using the influence in-
formation derived from the translation of the In/Out sets.
Therefore, we will consider the following influences: {(0,
0), (0,1), (0,2), (0,3)} with rG2; {(0, 4), (0,5), (0,6), (0,7)}
with rG1; {(0, 8), (0,9) } with rD2; {(0, 10), (0,11) } with
rD1; {(0, 12) } with rE; {(0, 13), (0,14) } with rH1; {(0,
15), (0,16) } with rH2; {(0, 17), (0,18) } with rI1; {(0, 19),
(0,20) } with rI2.

This specification can be written in CD++ as follows:

[c1]
type : cell Width : 21 Height : 1
delay : transport border : wrapped
neighbors : (0,-1) (0,0) (0,1)

in : x-c-room0 x-c-room1 x-c-room2 x-c-room3 x-c-
car4 x-c-car5 x-c-car6 x-c-car7 x-c-room8
in : x-c-room9 x-c-car10 x-c-car11 x-c-room12 x-
c-room13 x-c-room14 x-c-car15 x-c-car16
in : x-c-room17 x-c-room18 x-c-car19 x-c-car20
link : x-c-room0 x-c-room@c1(0,0)
link : x-c-room1 x-c-room@c1(0,1)
...
link : x-c-car20 x-c-car@c1(0,20)
out : y-c-car0 y-c-car1 y-c-car2 y-c-car3 y-c-
room4 y-c-room5 y-c-room6 y-c-room7 y-c-car8
out : y-c-car9 y-c-room10 y-c-room11 y-c-car12 y-
c-car13 y-c-car14 y-c-room15 y-c-room16
out : y-c-car17 y-c-car18 y-c-room19 y-c-room20
link : y-c-car@c1(0,0) y-c-car0
...
link : y-c-room@c1(0,10) y-c-room10
...

Figure 12. Model definition in CD++

Every cell is provided with input/output ports. The in-
put ports of output cells are used to verify if the input
segments are busy (using the x-c-room ports). Input cells
know the presence of cars in a segment through the ports
x-c-car. Output cells use the y-c-car ports to inform to the
segments that there is a car (transmitted using the send
function). Likewise, input cells use the y-c-room output
ports to inform the segment that there is space in the
crossing for a new car. Finally, links should be created to
connect the cells in the crossing with the border cells in
the input/output segments.

6. Simulation Results

The constructions in this city section were imple-
mented using CD++. Then, we run several tests providing
different experimental frameworks. We will show the
results obtained by changing the basic city constructions
and experimenting different solutions to given problems.

Every test executed 10 minutes of simulated time.
Different vehicles were injected in the model using Pois-
son generators with different frequencies in different seg-
ments (rG1, rH2, rA and rI2, as shown in Figure 6).
Transducers gathered global information about the section,
collecting the number of cars injected in the sector, and the
number of cars getting out of the section.

The following figures show the input/output ratio or
the number of cars in the section in fixed periods (1 simu-
lated minute). These measures allows us to analyze the
congestion in the area. Two basic scenarios, related with
the number of cars injected, were considered: peak-hour
and off-peak times. The peak case was implemented by
increasing the number of cars injected in segments rG1
and rH2 (those where the traffic increases in the actual city
section during rush hours).

The following figure reflects a real problem affecting
this section, and the simulated results of a possible solu-
tion.

0

5

10

15

20

Long RW Short RW

Figure 13. I/O ratio using different delays for
the level crossing.

As it can be seen in figure 6, there is a train station
close to the crossing c1 (crossing the segment I). At pres-

ent, the level crossing uses an automatic barrier that closes
when a train is approaching to the station. Therefore, while
a train is at the station, the barrier is closed. We have
simulated this fact using a n average delay of 4 minutes for
the level crossing construction. Then, we have changed the
delay to 1 minute, supposing we use a controller to detect
when the train departs. This change improved the in-
put/output ratio of the sector in average, by a factor of 3,
with a maximum of 4.5. The present management of the
barrier produces complex traffic jams in the sector that
could be easily avoided.

The following experiments compare the congestion
degree in the city section during peak times. As we can
see, the number of cars in some cases is more than the
double of non-peak hours. We also can see that, even we
have half of the cars in non-peak hours, the input/output
ratio is, at least, of three. This relationship reflects the
complex shape of this section, which produces congestion.
We also see that the input/output ratio is higher in peak
hours.

0

10

20

30

40

50

Non-peak Peak

0

1

2

3

4

5

6

Ratio NPk Ratio Pk

Figure 14. Non-peak traffic against peak traf-
fic (a) Number of cars in the area; (b) I/O ratios.

A final set of tests analyzed the influence of a pothole
in the area (cells 4 and 5 of crossing c1). As explained
earlier, the behavior of a car crossing a pothole is the same
than for other cells, but speed is reduced.

We can see that the input/output ratio was reduced in
about 1/3 of the case when the pothole is fixed. The num-
ber of cars in the area is the half when the pothole is fixed,
as the cars can leave the section earlier, improving traffic
flow. The number of cars in the area does not change as
abruptly as in the previous cases, because the pothole

produces a speed reduction in the main crossing. There-
fore, once the cars have crossed the hole, they go out
keeping number of cars in the area constant.

0

10

20

30

40

50

Pothole No PH

0

2

4

6

8

10

Ratio No PH Ratio PH

Figure 15. Peak traffic with a pothole(a) Num-
ber of cars in the area; (b) I/O ratios.

7. Conclusion

We showed how to use ATLAS to define city sections
analyzing traffic conditions. The language allows to define
a static view of including different components. This ap-
proach provides an application-oriented specification
language, which allows the definition of complex traffic
behavior using simple rules for a modeler. The models are
formally specified, avoiding a high number of errors in the
application, thus reducing the problem solving time. The
basic idea is to improve the development of the simula-
tions using a simple procedure:

1. A city section is formally specified using ATLAS,
according to a shape described by a map. The description
can be validated (for instance, verifying positions of
crossings, places for parking, trucks flow in forbidden
places, etc.).

2. The city section is translated to the tool CD++ (or
any other tool allowing the description of DEVS and Cell-
DEVS models). The translated models are also specified
formally, and its correctness was proved, avoiding errors
in their definition.

3. An experimental framework is defined to decide
which kind of experiments will be executed over the area.

Once these parameters are defined, the simulations can be
run.

4. The shape of the section or the traffic flow condi-
tions can be changed easily, allowing to analyze several
factors and to provide solutions to existing problems.

This strategy reduces development times because the
provision of a solution for a given problem usually implies
changes in the model specification and new execution of
the experiments, with the goal of making comparisons.
This introduces high development costs (moreover in
testing) that have been avoided: formal specification
mechanisms are used in each phase of the process, using
automatic translation procedures.

At present, the specification language has been im-
plemented [8]. In addition, a graphical user interface is
being defined, to allow easy definition of the models. The
GUI will validate the static model based on information
given by the map and the constructions used.

REFERENCES

[1] Davidson, A.; Wainer, G. "Specifying control signals in
traffic models". In Proceedings of AI, Simulation and Planning
in High Autonomous Systems, AIS'2000. Tucson, Arizona. U.S.A.
2000.

[2] Davidson, A.; Wainer, G. "Specifying truck movement in
traffic models using Cell-DEVS". In Proceedings of the 33rd

Annual Simulation Symposium. Washington, D.C. U.S.A. 2000.

[3] Wainer, G. and Giambiasi, N. "Timed Cell-DEVS: modelling
and simulation of cell spaces". To appear in Discrete Event
Modeling & Simulation: Enabling Future Technologies,
Springer-Verlag. 2001.

[4] Zeigler, B.; Kim, T.; Praehofer, H. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. Academic Press. 2000.

[5] Chopard, B.; Queloz, P. A.; Luthi, P. “Cellular Automata
Model of Car Traffic in two-dimensional street networks”. J.
Phys. A, vol. 29 , pp. 2325-2336, 1996.

[6] Rodríguez, D.; Wainer, G. "New Extensions to the CD++
tool". In Proceedings of Summer Computer Simulation Confer-
ence. Chicago, U.S.A. 1999.

[7] Davidson, A.; Wainer, G. "ATLAS: a language to specify
traffic models using Cell-DEVS". Technical Report 00-003,
Departamento de Computación, FCEN/UBA. Submitted. 2000.

[8] Lo Tártaro, M.; Torres, C.; Wainer, G. "TSC: traffic simula-
tion compiler for ATLAS" (in Spanish). Internal report, Depar-
tamento de Computación. FCEN/UBA. 2000.

Keywords: traffic simulation, DEVS models, Cellular
models, Cell-DEVS models, Modelling methodologies,
Simulation support systems: environments.

