

SPaDES/Java: Object-Oriented
Parallel Discrete-Event Simulation

Yong Meng TEO and Yew Kwong NG
Department of Computer Science
National University of Singapore

3 Science Drive 2
Singapore 117543

email: teoym@comp.nus.edu.sg

Abstract

This paper describes the design, implementation and
performance optimizations of SPaDES/Java, a process-
oriented discrete-event simulation library in Java that
supports sequential and parallel simulation. Parallel
event synchronization is facilitated through a hybrid
carrier-null, demand-driven flushing conservative null
message mechanism. Inter-processor message
communication is coordinated by a shared persistent
memory implemented using Java Jini/JavaSpaces. We
present the stepwise performance optimizations we
have carried out, focusing mainly on reducing the cost
of multithreading, null message synchronization
overhead, and the cost of inter-processor
communication. Two benchmark programs consisting
of an open linear pipeline system and PHOLD
representing a closed system are used. For
PHOLD(16x16,16), our optimization reduces the null
message ratio from 0.94 to 0.29 on eight processors.
Based on our time and space instrumentation, we
observed that the memory cost of null message
synchronization accounts for less than 10% of the total
memory required by the PHOLD simulation.

1. Introduction

Much research in parallel discrete-event simulation
(PDES) has focused on designing suitable event
synchronization algorithms to enhance the efficiency in
simulating specific class of problems. Less attention has
been devoted to address the complexity of modeling
and developing parallel simulators. In recent years,
several simulation environments and tools have been
developed by the military and in research to support
discrete-event simulation, frequently for specialized
domains of interest. These efforts attempted to provide

clear boundaries between the application-independent
(the synchronization module) and application-specific
(the problem under consideration) elements in discrete-
event simulation.

Examples of extensible military application
simulation support frameworks include Simkit [2], from
the United States Naval Operations Research
Department, and JADIS [17] from the United States Air
Force. Simkit consists of three conceptual layers, and
achieves modeling ease by providing a set of Java
classes for constructing resident entities and resources
in either the event-oriented or process-oriented
paradigm, while allowing the user to customize at a
higher level than conventional programming. JADIS,
adopting an event-oriented paradigm, applies the
Model-View-Controller (MVC) paradigm from
Smalltalk to the development of Visual Interactive
Simulations (VIS), emphasizing on user-initiated
interactions to analyze aircraft repair time problems in
the domain of airbase logistics.

JSIM [13,14], SimJava [18] and DESMO-J [10] are
examples of sequential simulation libraries developed
with commercial and educational objectives. JSIM is
integrated with a web server and a database
management system, and implements the query-driven
simulation concept, principally comprising of three
communicating processes and a number of data stores
to maintain records of models, data and meta-data.
Generated simulation results for the relevant parameters
can be cached in the data stores and retrieved.
SimJava's design principles were derived from the
SIM++ library for computer architecture simulations in
the HASE project [8]. It was implemented as a multi-
threaded simulation environment, and an applet module
was integrated to facilitate web-based distributed
simulation, which is built upon a master-slave
architecture [19]. DESMO-J, on the other hand, is the
first library that provides support for a hybrid event-
and process-oriented modeling views under the scope

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

of one single model, by offering the modeler a choice
of representation for each entity in the model. Like
JSIM and SimJava, DESMO-J is embeddable into
applets.

Table 1 summarizes the main features of several
existing discrete-event simulation support libraries,
including the ones mentioned above.

Table 1. Simulation Support Libraries

Library Modeling view Synchronization Language

Simkit [2] event or process-oriented sequential Java
JADIS [17] event-oriented sequential Java
JSIM [14] process interaction distributed sequential Java
SimJava [18] event-oriented multi-threaded seq Java
DESMO-J [10] event + process-oriented multi-threaded seq Java
Jwarp [1] event-oriented optimistic Java
SPEEDES [12,22] event-oriented optimistic C++
CPSim [15] event-oriented conservative C

This paper introduces SPaDES/Java, a PDES

library that supports the process-oriented modeling
view and implemented in the Java language.
SPaDES/Java provides transparency of the underlying
event synchronization implementation and relieve the
programmer from parallel programming, thereby
enabling the simulationist to concentrate on modeling
the problem at hand. Section 2 discusses the design and
implementation of SPaDES/Java. Section 3 presents a
chronology of performance optimizations to reduce the
overhead and the cost of parallel simulation. Our
concluding remarks are in Section 4.

2. SPaDES/Java - Design and

Implementation

The main objective of SPaDES/Java (Structured
Parallel Discrete-Event Simulation in Java) is to
provide a simulation support tool to alleviate the
simulationists' burden of having to implement the event
synchronization details, and parallelization of the
simulation through parallel programming. A
simulationist should concentrate on modeling the
problem and analyzing the simulation results, which is
the main objective of applying parallel simulation.

2.1 Modeling View

SPaDES/Java adopts the process-oriented
modeling view, whereby entities in the real world are
mapped to a set of processes each encapsulating its own
state and behaviour in the conceptual model, and
processes interact with one another through message
passing. Furthermore, it is necessary for a process-
oriented model to be mapped to an underlying
operational model that is suitable for parallelization.
The operational model of SPaDES/Java is based on the

Virtual Time Paradigm [20]. Figure 1 illustrates the
SPaDES/Java modeling view.

Figure 1. Process-oriented Modeling View in SPaDES/Java

2.2 Modeling Support

Processes in the conceptual model are categorized
into permanent and temporary processes. A permanent
process, also known as a resource, exists throughout the
simulation duration. A temporary process (called
process) is created and destroyed at any point during
the simulation. This corresponds to modeling the arrival
and the service completed for a process. In the
operational model, resources are modeled as logical
processes (LPs) and processes are modeled as time-
stamped messages passed between LPs.

2.2.1 Processes and Resources

A SPaDES/Java process can be in any one of five
states, namely active, blocked, pending, non-existent or
holding, as shown in Figure 2.

 terminate susPend

Figure 2: State Transition for a SPaDES/Java Process

When a process is first created, it is non-existent

relative to the simulation until it is activated, causing it
to enter the pending state. This process is timestamped
and scheduled for execution in an event list. When the
simulation clock advances to the timestamp of the
process, the process enters the active state and begins
executing its routine. During execution, it may request

Real-world

entities

Conceptual model
(Processes and resources)

Operational model
(Synchronization and logical

processes)

Process-
oriented view

Virtual Time
paradigm

Active

Non-
existent

Pending

Blocked Holding normal
wait

reactivate

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

service from a simulation entity called a resource.
When a resource is unavailable, the process halts
execution temporarily, causing it to be blocked. A
process is also permitted to suspend from being
executed, causing it to change into the holding state,
and remain suspended till another process reactivates it.
A process finally returns to the non-existent state when
it has completed its thread of execution and leaves the
system.

Resources are permanent entities providing
services to processes. Each resource comprises of a
queue, which maintains the processes requesting
service from the resource. When a resource is busy, an
arriving process is subsequently queued for service.
Each resource is a collection of basic functional units,
known as service units. The presence of multiple
service units in a resource allows more than one process
to be serviced in parallel. The default queuing
discipline in SPaDES/Java simulations is First-Come-
First-Serve (FCFS), where processes are ordered
according to their timestamp values. Other queuing
disciplines such as Last-In-First-Out (LIFO) are
supported. In addition, a user can define a general
priority queue [21] by overriding the generic
comparesWith method of the process object class.

2.2.2 Parallel Simulator Template

A simulator may be programmed using a general
template that extends from the SPaDES/Java library.
The template consists of four main parts: definitions of
the processes used in the simulation, process routines
that define the simulation logic, code for initializing
and starting the simulator, and message abstraction and
reconstruction routine for the case of parallel
simulation. Figure 3 shows the template with an
example of the M/M/1 (a single server queuing system)
simulator program.

2.3 Library Implementation

2.3.1 Class Hierarchy

SPaDES/Java consists of four main simulation classes
and a number of simulation support classes, as shown in
Figure 4. SimObject is the base class for the simulation
entities, namely the processes and resources, which
are modeled as the SProcess and Resource classes
respectively. All SPaDES/Java classes are inherited
from Java's built-in Thread API [7] library.

1 // Executive instance 1 // Executive instance
2 // import SPaDES/Java library and other packages to Java's library resources 2 // import SPaDES/Java library and other packages to Java’s library resources
3 import spades_Java.*; 3 import spades_Java.*;
4 4
5 // simulation initialization 5 // simulation initialization
6 public class simulation-kernel-name extends Executive { 6 public class MM1 extends Executive {
7 << create resources >> 7 Resource server;
8 << create processes >> 8 public void init() {
9 << initialize future event list >> 9 server = new Resource("Server", 1, 1);
10 << configure layout of simulator >> 10 mapProcess(server);
11 11 activate(job, 0);
12 12 }
13 13
14 public static void main(String args[]) { 14 public static void main(String[] args) {
15 << create an instance, say, E, of this class >> 15 MM1 mm1 = new MM1();
16 E.initialize(args.length,args); 16 mm1.initialize(args.length, args);
17 E.startSimulation([duration]); 17 mm1.startSimulation(10000);
18 } 18 }
19 } 19 }
20 20
21 // Process type instance 21 // Process type instance
22 // process class definition and routine definitions 22 // process class definition and routine definitions
23 class process_type extends SProcess { 23 class Job extends SProcess {
24 << Executive instance type >> 24 MM1 mm1;
25 public process_type(Executive E) 25 public Job(MM1 m)
26 { << construction of process_type instance >>} 26 { mm1 = m;}
27 27
28 public void execute() 28 public void execute()
29 { 29 {
30 30 switch(phase) {
31 31 case 1: {
32 32 Job job = new Job(mm1);
33 << process routine statements >> 33 activate(job, 1+exponential(10));
34 34 work(1+exponential(1), mm1.server, 1);
35 35 phase = 2;
36 36 }
37 37 case 2:
38 38 { terminate();}
39 39 }
40 } 40 }
41 } 41 }

Figure 3. SPaDES/Java Programming Template

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

The RandNoGenerator class supports the generation of
random variate values using the linear congruential
(LCG) algorithm [11]. The NullMsg (models a null
message in the conservative protocol) and the SProcess
classes both implement the Entry class in the Java-
Jini/JavaSpaces library [9], which provides the message
coordination control for multi-processor simulation.

Figure 4: SPaDES/Java Class Hierarchy

2.3.2 Event Synchronization Protocol

SPaDES/Java supports two modes of execution,
sequential simulation and parallel simulation based on
the conservative null message protocol [5].

The sequential execution protocol comprises of a
global Future Event List (FEL) that orders processes
based on their timestamp values, inherently maintaining
event causality. Each simulation pass involves
executing the routine of the process at the head of the
FEL, inserting the process into the relevant resource's
queue, and executing blocked processes at that resource
where relevant. Null message synchronization support
for parallel simulation is discussed in Section 3.3.

2.3.3 Process Primitives

Six simulation primitives as listed in Table 2 allow the
simulationist to model the state-transition of a
SPaDES/Java process.

The simulationist can manipulate these primitives
to simulate the behaviour of each process during the
simulation, by overriding the execute() method of the
SProcess class. The detailed syntax of SPaDES/Java is
in the Appendix.

Table 2. SPaDES/Java Process Primitives
Primitive Parameter(s) Functionality

activate

process,
time

Schedules another process for
execution at a future timestamp
value.

reactivate process,
time

Schedules another process that
was previously in the holding
state into the event list, for
execution at a future timestamp
value.

work resource,
time,
units

Requests for service from a
resource for a specified time
duration.

wait time Models the passage of simulation
time.

susPend - Suspends itself from its routine of
execution till it is reactivated by
another process.

terminate - Models departure from the
simulation system.

2.3.4 Time and Space Instrumentation

Teo et. al developed a methodology based on partial
order set theory to study the memory required by a
simulation [24]. As proposed in this methodology, the
memory required for a simulator is divided into three
main components:

• probM - The memory that is required to model the
states of the real world system. This is measured by
summing up the maximum queue lengths for each

LP, max(Qi), i.e. ∑
=

=
LP

i
i

prob QM
1

)max(.

• ordM - The memory overhead of the selected
event ordering. This is measured by summing up
the maximum event list lengths for each LP,

max(ELi), i.e. ∑
=

=
LP

i
i

ord ELM
1

)max(.

• syncM - The memory cost in implementing the
synchronization protocol that supports the selected
event ordering. This is measured by summing up
the maximum lengths of the null message buffer
for each LP, max(NMi), i.e.

∑
=

=
LP

i
i

sync NMM
1

)max(.

To support the above instrumentation for different
event orderings, a time and space analyzer (TSA) has
been integrated into our library. The TSA class
comprises of a monitor over the simulator, keeping
track of the status of processes and the maximum
lengths of the LPs' queues, event lists and null message
buffers throughout the entire simulation. In addition,
the memory requirements for known event orderings
such as partial, time-interval, timestamp and total event
orderings can be derived in a simulation run.

Entry

SPaDES/Java

Library

Standard Java
API Library

Java/Jini JavaSpaces

TSA Executive

SimObject

NullMsg

CommManager

EventList

SProcess Resource RandNoGenerator

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

3. Performance Optimizations

The maintenance of interacting processes in a
simulation influences its runtime efficiency. In parallel
simulation, event synchronization and inter-processor
communication overheads amplify the inefficiency.
This section discusses a number of optimizations to
reduce these overheads.

3.1 Event Lists

SPaDES/Java originally used vectors, which are
array-based expandable data structures provided in the
Java API library, to implement the event lists. Vectors
are convenient tools for implementing priority queues
such as the event lists. Insertion and deletion operations
on a vector-implemented event list, however, cost O(n)
time complexity [3] each, due to the need to translate
processes to adjacent positions in the event list. Using
such an inefficient queuing structure for the scheduling
of events result in performance bottleneck, particularly
for the global FEL in sequential simulation.

We re-implement the event lists using binary
minheaps [3]. Inserting into and deleting a process from
a heap-based event list costs only O(lg n), because in a
heap comprising of n processes, a maximum of only  lg
n processes need to be migrated whenever insertion or
removal of another process occurs.

3.2 Multi-Threading

SPaDES/Java processes and resources can be
implemented as independent threads of execution.
However, experiments have shown that excessive
threads execution can lead to sub-optimal performance,
due to the overhead of thread context switching [21].
An extreme option is to implement the simulation
entities as ordinary objects, without any potential for
concurrent execution. This compels sequential
execution of all events, which defeats the objective of
parallel simulation.

SPaDES/Java eliminates multi-threading for
processes, but keeps the LPs as mutually exclusive
threads. This compromise approach is based on the
knowledge that the number of LPs in a simulation is
statically determined because they exist permanently
throughout the entire run, while the number of
processes varies dynamically at runtime. Implementing
the processes as objects prevents thread context switch
overhead to be a dominant problem especially in open
system [16] simulation where system throughput is less
than inter-arrival rates, i.e. the population of processes
in the system expands exponentially as the simulation
progresses.

3.3 Null Message Synchronization

Other than ensuring the progress of the parallel
simulation, null messages are merely overhead and do
not contribute directly to the simulation. We define the
null message ratio (NMR) of a simulation as the total
number of null messages divided by the total event
traffic. The original synchronization protocol adopted
in the SPaDES/Java parallel execution kernel was the
Chandy/Misra/Byrant (CMB) [5] null message
algorithm, whereby LPs transmit null messages along
their output channels at the end of every simulation
pass. This is extremely costly in terms of NMR.

We first incorporated Wood-Turner's carrier-null
scheme [25] to reduce null message overhead in
problems with cyclic topologies. Tay et. al proposed a
flushing algorithm [23], which attempts to resolve the
problem of an LP sending null messages with repeated
timestamp values along an output channel. We augment
this algorithm with the demand-driven null messaging
mechanism [4] to produce a hybrid null message
algorithm applied on each output channel, C, of an LP,
as shown in Figure 5.

Figure 5. Demand-driven Flushing

Now, rather than sending null messages on every

simulation pass, an LP will only transmit null messages
if requested by another LP. Furthermore, the output
channel includes a flushing mechanism so that only the
most updated null messages are sent.

3.4 Inter-Processor Communications

The first implementation of SPaDES/Java relies on
Java's Remote Method Invocation (RMI) [19] to
serialize and transport processes and null messages
between processors. Being a subclass of the SimObject
and Thread classes, the SProcess object encapsulates an
enormous amount of data references, including global
and user-defined data. Consequently, the serialization
of processes becomes a significant performance
bottleneck. The logical size of a process can be shrunk
before it is propagated across the RMI channel to
reduce communication cost. In SPaDES/Java, the

DEMAND-DRIVEN-FLUSHING(C)
N = remove most recently queued null message in C;
for all messages m in C

do
if m is a null message

 then C = c - {m};
 end for

 if null-msg-requested
then send N to the LP at the other end of C;

 else
 C = C U {N};

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

global information held in a process is discarded, and
user-defined data only is transmitted to the destination
processor. Once it arrives, the original process is
reconstructed. Two methods, extract and reconstruct,
are provided in the inter-processor communications
module to perform the above-mentioned deflation and
reconstruction of processes respectively. They are to be
overridden by the simulationist in the simulator
program.

Next, we attempt to centralize the coordination of
message transmissions between remote processors by
replacing the RMI protocol in the communications
module with a single JavaSpaces [9]. JavaSpaces is a
special service of Java Jini to support persistent data
storage, and facilitated by a shared memory tuple space.
The abstract operations on a space facilitate the
transmission of null messages between LPs mapped to
different processors. Transmission of processes and null
messages now go through this shared memory.

The major steps involved, for LPi, in the
initialization phase and the transmission of messages
between remote LPs are as follows:

Initialization:
• Write a SProcess entry template into the

JavaSpaces to invoke the notify operation,
indicating that LPi is ready to accept event
messages from remote LPs. This template must
specify, in its sender attribute, the IDs of the LPs
linked to the input channels to LPi.

• Write a NullMsg entry template into the
JavaSpaces, with its attributes request=true
and sender=i. This is to invoke the notify
operation on the space, indicating that LPi is ready
to accept null message requests from remote LPs.

• Start the simulation routine for LPi.

Transmission of Process:
• When sending a SProcess object, P, to a remote

LPj, deflate P and set P.sender=i and
P.receiver=j. Write P into the JavaSpaces.

Transmission of Null Message:
• When requesting a null message from a remote

LPj, write a NullMsg entry into the space, with
its sender=j.

The JavaSpaces handles messages as follows:

Process:
• If an LP writes in a SProcess object, P, search

for a SProcess template T such that T.sender ∈
P.sender and T.receiver =
P.receiver.

• Send P to the LP whose ID is indicated by
T.receiver.

Null Message:
• If a null message request, R, has been written into

space, search for a request template, T, with
T.sender=R.sender.

• Inform the LP, which wrote in T, of the this request
R.

• When a null message, N, has been written in by an
LPk, siphon N to the relevant LPs that had
requested for null messages from LPk.
Figure 6 illustrates the coordination of a process

transmission by a JavaSpaces running on a separate
processor.

Figure 6. Interprocessor Communication using JavaSpaces

3.5 Performance and Space Analysis

We conducted a series of experiments using a
cluster of PCs (Pentium II, 400 MHz, 256MB of
memory) to study the effect of optimizations on
performance. Two benchmark programs are used. A
linear pipeline (n, ρ) representing an open system of n
servers connected in series with traffic intensity of ρ.
PHOLD (nxn,m) is a closed, strongly connected system
with a network of nxn nodes, and with m jobs per node
at the start of the simulation [6]. We observe that
implementing the event lists as minheaps improves
runtime by an average of 30%, and reduction in the
level of multi-threading improves runtime (in seconds)
by a further 7%. Table 3 and Table 4 summarize the
performance improvements from these accumulative
optimizations on selected parameters (problem size,
workload, number of processors).

Table 3. Null Message Optimizations - One processor
Pipeline(16, 0.8) PHOLD (16x16,

16)
Synchronization

Protocol
NMR Runtime NMR Runtime

CMB 0.94 3770 0.99 13990
+ carrier null 0.94 3775 0.69 5651
+ flushing 0.70 2917 0.57 4580
+ demand-driven 0.61 1989 0.44 1563

FrontEndSpace

 SProcess
• Sender=1
• Receiver=5
• ……..

 SProcess
• Sender=1
• Receiver=5
• ……..

write notify

read

ws00.comp.nus.edu.sg

ws01.comp.nus.edu.
sg

ws02.comp.nus
.edu.sg

Sender

LP

Receiver

LP

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

Table 4. PHOLD (16x16, 16) –
Reducing Inter-processor Communication

Runtime NMR
#procs RMI JavaSpaces RMI JavaSpaces

1 1563 1572 0.44 0.44
4 1288 899 0.44 0.34
8 1006 487 0.44 0.29

The step-wise enhancements due to the null

message protocol and the centralization of inter-
processor communication reduce the runtimes by more
than half, NMR reduces from more than 0.9 to 0.29,
and event rate is doubled using eight processors. Table
5 presents a profile of memory usage for both
benchmarks.

Table 5. Profile of Memory Usage

Pipeline(16, ρ) PHOLD (16x16, m)
ρ M

Space
Usage 0.2 0.4 0.6 0.8 1 8 16
Mprob 101 192 320 740
Mord 51 52 54 56

256 2048 4096

Msync 335 341 348 352 665 651 638
M (total) 487 585 722 1148 921 2699 4734

We observe that for a closed system such as the

PHOLD, the memory cost due to null message
synchronization reduces when message density (m)
increases. The parallel simulation memory overhead for
PHOLD(16x16,16) is less than 10% of the total amount
of memory required to run the simulation.

4. Conclusions

We have presented a PDES library, SPaDES/Java,
that is based on the process-oriented modeling view,
and whose objective is to provide the simulationist with
an abstract modeling environment for distributed
simulation. The modeling primitives provided hide the
underlying event synchronization mechanism, enabling
the simulationist to focus on using simulation as a tool
to study systems and the logical correctness of the
problem, instead of causal correctness.

SPaDES/Java adopts the demand-driven flushing
null message algorithm, on top of the carrier-null
mechanism, to reduce the overhead of event
synchronization. Inter-processor communication is
facilitated by a JavaSpaces: a component service of the
Java Jini. A shared persistent memory helps to further
reduce null message overhead and improve simulation
runtime. A time and space analyzer integrated into
SPaDES/Java provides instrumentation to profile the
space overhead in supporting parallel simulation.

Acknowledgements
This research is supported by the Ministry of Education
(Singapore) and PSA Corporation under grants R-252-
000-020-112 and R-252-000-020-490. SPaDES/Java
can be downloaded for educational purpose at
http://www.comp.nus.edu.sg/~pasta/spades-java/spadesJava.html.

References

[1] P. Bizarro, L. M. Silva and J. G. Silva, "Jwarp: A Java

Library for Parallel Discrete-Event Simulations", Poster
Paper at ACM Workshop on Java for High-Performance
Network Computing, 1998.

[2] A.H. Buss and K.A. Stork, "Discrete Event Simulation

on the World Wide Web Using Java", Proceedings of the
Winter Simulation Conference, pp. 780-785, 1996.

[3] T.H. Cormen, C.A. Leiserson and R.L. Rivest,

Introduction to Algorithms, McGraw Hill, 1989.

[4] P. Fouliras, "A Null-Event Demand-Driven Parallel

Simulation Algorithm for SIMD Computers", Technical
Report QMW-DCS-1994-669, Queen Mary and
Westfield College, Department of Computer Science,
1994.

[5] R.M. Fujimoto, "Parallel Discrete Event Simulation",

Communications of the ACM, vol. 33, pp. 31-52, 1990.

[6] R.M. Fujimoto, "Performance of Time Warp under

Synthetic Workloads", Proceedings of the SCS
Multiconference on Distributed Simulation, pp. 23-28,
1990.

[7] G. Hilderink, J. Broenink, W. Vervoort and A. Bakkers,

"Communicating Java Threads", Proceedings of the
WoTUG-20 Parallel Programming and Java Conference,
1997.

[8] F. W. Howell, P. E. Heywood and R. N. Ibbett, "Hase: A

flexible toolset for computer architects", The Computer
Journal, vol. 38, pp. 755-764, 1995.

[9] S. Hupfer, "The Nuts and Bolts of Compiling and

Running JavaSpaces Programs", Java Developer
Connection, Sun Microsystems, Inc., 2000.

[10] T. Lechler and B. Page, "DESMO-J: An Object Oriented

Discrete Simulation Framework in Java", Proceedings of
the European Simulation Symposium '99, 1999.

[11] D. H. Lehmer, "Mathematical methods in large-scale

computing units", Proceedings of the 2nd Symposium on
Large Scale Digital Calculating Machinery, pp. 141-146,
1949.

[12] T. McGuinness, "Executing Multiple Parallel

Applications Using the SPEEDES Communications
Library", Proceedings of the Department of Defense

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

High Performance Computing Modernization Program
Users Group Conference, 2001.

[13] J.A. Miller, R. Nair, Z. Zhang and H. Zhao, "JSIM: A

Java-Based Simulation and Animation Environment,"
Proceedings of the 30th Annual Simulation Symposium,
pp. 31-42, 1997.

[14] R.S. Nair, J.A. Miller and Z. Zhang, "A Java-based

Query Driven Simulation Environment", Proceedings of
the Winter Simulation Conference, pp. 786-793, 1996.

[15] D.M. Nicol, "The Cost of Conservative Synchronization

in Parallel Discrete Event Simulations”, Journal of the
Association for Computing Machinery, pp. 304-333,
1993.

[16] D. M. Nicol, "Parallel discrete-event simulation of FCFS

stochastic queueing networks", SIGPLAN Notice, vol.
23, pp. 124-137, 1988.

[17] S. Narayanan, N.L. Schneider, C. Patel, T.M. Caricco, J.

DiPasquale and N. Reddy, "An Object-based
Architecture for Developing Interactive Simulations
Using Java", Proceedings of the 1997 Simulation
Conference, vol. 69, pp. 153-171, 1997.

[18] E.H. Page, R.L. Moose and S.P. Griffin, "Web-based

Simulation in SimJava Using Remote Method
Invocation", Proceedings of the Winter Simulation
Conference, pp. 468-474, 1997.

[19] E.H. Page, R.L. Moose and S.P. Grifflin,

"Implementation Notes for a Distributed SimJava",
MITRE Technical Report, The MITRE Corporation,
1997.

[20] R. Righter and J.C. Walrand, "Distributed Simulation of

Discrete-event Systems", Proceedings of the IEEE, vol.
77, no. 1, pp. 99-113, 1989.

[21] A. Silberschatz and P. Galvin, "Operating System

Concepts, 5th Edition", Chapter 8, Addison Wesley,
1998.

[22] J. Steinman, "SPEEDES: Synchronous Parallel

Environment for Emulation and Discrete-event
Simulation", Proceedings of the SCS MultiConference,
pp. 95-103, 1991.

[23] S. C. Tay, Parallel Simulation Algorithm and

Performance Analysis, PhD Thesis, Department of
Computer Science, National University of Singapore,
1998.

[24] Y. M. Teo, B. S. S. Onggo and S. C. Tay, "Effect of

Event Orderings on Memory Requirement in Parallel
Simulation", Proceedings of the 9th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, pp. 41-48,
IEEE Computer Society Press, USA, 2001.

[25] K. R. Wood and S. J. Turner, "A Generalized Carrier-
null Method for Conservative Parallel Simulation",
Proceedings of the 8th Workshop on Parallel and
Distributed Simulation, Edinburgh, UK, IEEE Computer
Society Press, pp. 50-57, 1994.

Appendix

The syntax of SPaDES/Java in EBNF form is shown
below, using the following metasymbols:

::= connects the left hand side (LHS) and right hand
side (RHS) of a rule.
| separates alternative RHS items, as an ``or" operator.
[] encloses an optional RHS item.
{ } encloses a repeated RHS item that can appear 0 or
more times.

1. Simulation processes
 simulation_process ::= resource | process

2. Resource initialization
 resource ::= resource_identifier(name, unit)
 resource_identifier ::= string
 name ::= string
 unit ::= integer

3. Process initialization
 process ::= process_identifier(size, [priority])
 process_identifier ::= string
 priority ::= integer

4. Simulation primitives
 primitive ::= self_primitive | others_primitive
 self_primitive ::= work(resource, time, unit)
 | wait(time) | susPend()
 | terminate()
 others_primitive::= activate(process, time)
 | reactivate(process, time)
 time ::= double | stat_functions

5. Time and statistical functions
 stat_functions ::= normal(mean, stddev)

 | gamma(alpha, beta)
 | exponential(mean) | chi_square(n)
 | weibull(alpha, beta) | uniform()
 | binomial(p, n)

 | neg_binomial(p, n) | geometric(p)
 | poisson(mean) | triang(mode)
 | erlang(n) | laplace()

 mean ::= double
 mode ::= double
 stddev ::= double
 alpha ::= double
 beta ::= double
 p ::= double
 n ::= integer

6. Process routines
 process_body ::= switch(phase) '{'
 { case phase ':' {others_primitive}
 self_primitive
 [phase = value] }
 }'
 value ::= integer

7. Statistical referencing
 resource_statistics ::= arrivals() | departures()

| utilization() | waiting_time()
| queueLength() | response()
| maxQueueLength()

Proceedings of the 35th Annual Simulation Symposium (SS�02)
1080-241X/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

