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Abstract 
 

This paper describes the design, implementation and 
performance optimizations of SPaDES/Java, a process-
oriented discrete-event simulation library in Java that 
supports sequential and parallel simulation. Parallel 
event synchronization is facilitated through a hybrid 
carrier-null, demand-driven flushing conservative null 
message mechanism. Inter-processor message 
communication is coordinated by a shared persistent 
memory implemented using Java Jini/JavaSpaces. We 
present the stepwise performance optimizations we 
have carried out, focusing mainly on reducing the cost 
of multithreading, null message synchronization 
overhead, and the cost of inter-processor 
communication. Two benchmark programs consisting 
of an open linear pipeline system and PHOLD 
representing a closed system are used. For 
PHOLD(16x16,16), our optimization reduces the null 
message ratio from 0.94 to 0.29 on eight processors. 
Based on our time and space instrumentation, we 
observed that the memory cost of null message 
synchronization accounts for less than 10% of the total 
memory required by the PHOLD simulation. 
 
 
1. Introduction 
 

Much research in parallel discrete-event simulation 
(PDES) has focused on designing suitable event 
synchronization algorithms to enhance the efficiency in 
simulating specific class of problems. Less attention has 
been devoted to address the complexity of modeling 
and developing parallel simulators. In recent years, 
several simulation environments and tools have been 
developed by the military and in research to support 
discrete-event simulation, frequently for specialized 
domains of interest. These efforts attempted to provide 

clear boundaries between the application-independent 
(the synchronization module) and application-specific 
(the problem under consideration) elements in discrete-
event simulation. 

Examples of extensible military application 
simulation support frameworks include Simkit [2], from 
the United States Naval Operations Research 
Department, and JADIS [17] from the United States Air 
Force. Simkit consists of three conceptual layers, and 
achieves modeling ease by providing a set of Java 
classes for constructing resident entities and resources 
in either the event-oriented or process-oriented 
paradigm, while allowing the user to customize at a 
higher level than conventional programming. JADIS, 
adopting an event-oriented paradigm, applies the 
Model-View-Controller (MVC) paradigm from 
Smalltalk to the development of Visual Interactive 
Simulations (VIS), emphasizing on user-initiated 
interactions to analyze aircraft repair time problems in 
the domain of airbase logistics. 

JSIM [13,14], SimJava [18] and DESMO-J [10] are 
examples of sequential simulation libraries developed 
with commercial and educational objectives. JSIM is 
integrated with a web server and a database 
management system, and implements the query-driven 
simulation concept, principally comprising of three 
communicating processes and a number of data stores 
to maintain records of models, data and meta-data. 
Generated simulation results for the relevant parameters 
can be cached in the data stores and retrieved. 
SimJava's design principles were derived from the 
SIM++ library for computer architecture simulations in 
the HASE project [8]. It was implemented as a multi-
threaded simulation environment, and an applet module 
was integrated to facilitate web-based distributed 
simulation, which is built upon a master-slave 
architecture [19]. DESMO-J, on the other hand, is the 
first library that provides support for a hybrid event- 
and process-oriented modeling views under the scope 
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of one single model, by offering the modeler a choice 
of representation for each entity in the model. Like 
JSIM and SimJava, DESMO-J is embeddable into 
applets. 

Table 1 summarizes the main features of several 
existing discrete-event simulation support libraries, 
including the ones mentioned above. 

 
Table 1. Simulation Support Libraries 

Library Modeling view Synchronization Language 

Simkit [2] event or process-oriented sequential Java 
JADIS [17] event-oriented sequential Java 
JSIM [14] process interaction distributed sequential Java 
SimJava [18] event-oriented multi-threaded seq Java 
DESMO-J [10] event + process-oriented multi-threaded seq Java 
Jwarp [1] event-oriented optimistic Java 
SPEEDES [12,22] event-oriented optimistic C++ 
CPSim [15] event-oriented conservative C 

 
This paper introduces SPaDES/Java, a PDES 

library that supports the process-oriented modeling 
view and implemented in the Java language. 
SPaDES/Java provides transparency of the underlying 
event synchronization implementation and relieve the 
programmer from parallel programming, thereby 
enabling the simulationist to concentrate on modeling 
the problem at hand. Section 2 discusses the design and 
implementation of SPaDES/Java. Section 3 presents a 
chronology of performance optimizations to reduce the 
overhead and the cost of parallel simulation. Our 
concluding remarks are in Section 4. 
 
2. SPaDES/Java - Design and 

Implementation 
 

The main objective of SPaDES/Java (Structured 
Parallel Discrete-Event Simulation in Java) is to 
provide a simulation support tool to alleviate the 
simulationists' burden of having to implement the event 
synchronization details, and parallelization of the 
simulation through parallel programming. A 
simulationist should concentrate on modeling the 
problem and analyzing the simulation results, which is 
the main objective of applying parallel simulation. 
 
2.1 Modeling View 
 

SPaDES/Java adopts the process-oriented 
modeling view, whereby entities in the real world are 
mapped to a set of processes each encapsulating its own 
state and behaviour in the conceptual model, and 
processes interact with one another through message 
passing.  Furthermore, it is necessary for a process-
oriented model to be mapped to an underlying 
operational model that is suitable for parallelization.  
The operational model of SPaDES/Java is based on the 

Virtual Time Paradigm [20]. Figure 1 illustrates the 
SPaDES/Java modeling view. 

 
 

 

 

 

 
Figure 1. Process-oriented Modeling View in SPaDES/Java 

 
2.2 Modeling Support 
 

Processes in the conceptual model are categorized 
into permanent and temporary processes. A permanent 
process, also known as a resource, exists throughout the 
simulation duration. A temporary process (called 
process) is created and destroyed at any point during 
the simulation. This corresponds to modeling the arrival 
and the service completed for a process. In the 
operational model, resources are modeled as logical 
processes (LPs) and processes are modeled as time-
stamped messages passed between LPs.  
 
2.2.1 Processes and Resources 
 
A SPaDES/Java process can be in any one of five 
states, namely active, blocked, pending, non-existent or 
holding, as shown in Figure 2. 
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Figure 2:  State Transition for a SPaDES/Java Process 

 
When a process is first created, it is non-existent 

relative to the simulation until it is activated, causing it 
to enter the pending state. This process is timestamped 
and scheduled for execution in an event list. When the 
simulation clock advances to the timestamp of the 
process, the process enters the active state and begins 
executing its routine. During execution, it may request 
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service from a simulation entity called a resource. 
When a resource is unavailable, the process halts 
execution temporarily, causing it to be blocked.  A 
process is also permitted to suspend from being 
executed, causing it to change into the holding state, 
and remain suspended till another process reactivates it. 
A process finally returns to the non-existent state when 
it has completed its thread of execution and leaves the 
system. 

Resources are permanent entities providing 
services to processes. Each resource comprises of a 
queue, which maintains the processes requesting 
service from the resource. When a resource is busy, an 
arriving process is subsequently queued for service. 
Each resource is a collection of basic functional units, 
known as service units. The presence of multiple 
service units in a resource allows more than one process 
to be serviced in parallel. The default queuing 
discipline in SPaDES/Java simulations is First-Come-
First-Serve (FCFS), where processes are ordered 
according to their timestamp values. Other queuing 
disciplines such as Last-In-First-Out (LIFO) are 
supported. In addition, a user can define a general 
priority queue [21] by overriding the generic 
comparesWith method of the process object class. 

2.2.2 Parallel Simulator Template 
 
A simulator may be programmed using a general 
template that extends from the SPaDES/Java library. 
The template consists of four main parts: definitions of 
the processes used in the simulation, process routines 
that define the simulation logic, code for initializing 
and starting the simulator, and message abstraction and 
reconstruction routine for the case of parallel 
simulation. Figure 3 shows the template with an 
example of the M/M/1 (a single server queuing system) 
simulator program. 
 
2.3 Library Implementation 
 
2.3.1 Class Hierarchy  
 
SPaDES/Java consists of four main simulation classes 
and a number of simulation support classes, as shown in  
Figure 4. SimObject is the base class for the simulation 
entities, namely the processes  and   resources,   which  
are  modeled  as  the SProcess and Resource classes 
respectively. All SPaDES/Java classes are inherited 
from Java's built-in Thread API [7] library.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 // Executive instance 1 // Executive instance 
2 // import SPaDES/Java library and other packages to Java's library resources  2          // import SPaDES/Java library and other packages to Java’s library resources 
3 import spades_Java.*; 3 import spades_Java.*;   
4         4 
5 // simulation initialization 5 // simulation initialization 
6 public class simulation-kernel-name extends Executive { 6 public class MM1 extends Executive {   
7   << create resources >>    7 Resource server; 
8   << create processes >>    8 public void init() { 
9   << initialize future event list >> 9 server = new Resource("Server", 1, 1);  
10   << configure layout of simulator >> 10 mapProcess(server);  
11     11 activate(job, 0); 
12         12 } 
13         13 
14   public static void main(String args[]) { 14    public static void main(String[] args)  {     
15   << create an instance, say, E, of this class >>  15      MM1 mm1 = new MM1(); 
16   E.initialize(args.length,args);   16      mm1.initialize(args.length, args); 
17   E.startSimulation([duration]);  17      mm1.startSimulation(10000); 
18   }      18    } 
19  }  19   }  
20         20 
21  // Process type instance 21 // Process type instance 
22   // process class definition and routine definitions 22 // process class definition and routine definitions  
23  class process_type extends SProcess { 23 class Job extends SProcess {  
24   << Executive instance type >>   24 MM1 mm1;  
25   public process_type(Executive E)   25 public Job(MM1 m)  
26    { << construction of process_type instance >>} 26 {    mm1 = m;} 
27         27 
28    public void execute()    28 public void execute() 
29    {      29 { 
30    . . . .     30       switch(phase) { 
31    . . . .     31         case 1: { 
32    . . . .     32   Job job = new Job(mm1); 
33    << process routine statements >>  33   activate(job, 1+exponential(10)); 
34          . . . .     34   work(1+exponential(1), mm1.server, 1);  
35      . . . .      35         phase = 2; 
36    . . . .     36         } 
37     . . . .     37         case 2:    
38    . . . .     38         {  terminate();} 
39     . . . .     39      } 
40   }      40 } 
41  }       41   } 

Figure 3. SPaDES/Java Programming Template 
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The RandNoGenerator class supports the generation of 
random variate values using the linear congruential 
(LCG) algorithm [11]. The NullMsg (models a null 
message in the conservative protocol) and the SProcess 
classes both implement the Entry class in the Java-
Jini/JavaSpaces library [9], which provides the message 
coordination control for multi-processor simulation. 

 

 

 

 

 

 

 
 

Figure 4:  SPaDES/Java Class Hierarchy 
 
2.3.2 Event Synchronization Protocol 
 
SPaDES/Java supports two modes of execution, 
sequential simulation and parallel simulation based on 
the conservative null message protocol [5]. 

The sequential execution protocol comprises of a 
global Future Event List (FEL) that orders processes 
based on their timestamp values, inherently maintaining 
event causality. Each simulation pass involves 
executing the routine of the process at the head of the 
FEL, inserting the process into the relevant resource's 
queue, and executing blocked processes at that resource 
where relevant. Null message synchronization support 
for parallel simulation is discussed in Section 3.3. 
 
2.3.3 Process Primitives 
  
Six simulation primitives as listed in Table 2 allow the 
simulationist to model the state-transition of a 
SPaDES/Java process. 

The simulationist can manipulate these primitives 
to simulate the behaviour of each process during the 
simulation, by overriding the execute( ) method of the 
SProcess class. The detailed syntax of SPaDES/Java is 
in the Appendix. 
 
 
 
 
 

Table 2. SPaDES/Java Process Primitives 
Primitive Parameter(s) Functionality 

activate 
 

process, 
time 

Schedules another process for 
execution at a future timestamp 
value. 

reactivate process, 
time 

Schedules another process that 
was previously in the holding 
state into the event list, for 
execution at a future timestamp 
value. 

work resource, 
time, 
units 

Requests for service from a 
resource for a specified time 
duration. 

wait time Models the passage of simulation 
time. 

susPend - Suspends itself from its routine of 
execution till it is reactivated by 
another process. 

terminate - Models departure from the 
simulation system. 

 
2.3.4 Time and Space Instrumentation 
 
Teo et. al developed a methodology based on partial 
order set theory to study the memory required by a 
simulation [24]. As proposed in this methodology, the 
memory required for a simulator is divided into three 
main components: 

•  probM  - The memory that is required to model the 
states of the real world system. This is measured by 
summing up the maximum queue lengths for each 

LP, max(Qi), i.e. ∑
=

=
LP

i
i

prob QM
1

)max( . 

•  ordM  - The memory overhead of the selected 
event ordering. This is measured by summing up 
the maximum event list lengths for each LP, 

max(ELi), i.e. ∑
=

=
LP

i
i

ord ELM
1

)max( . 

•  syncM  - The memory cost in implementing the 
synchronization protocol that supports the selected 
event ordering. This is measured by summing up 
the maximum lengths of the null message buffer 
for each LP, max(NMi), i.e. 

∑
=

=
LP

i
i

sync NMM
1

)max( . 

To support the above instrumentation for different 
event orderings, a time and space analyzer (TSA) has 
been integrated into our library. The TSA class 
comprises of a monitor over the simulator, keeping 
track of the status of processes and the maximum 
lengths of the LPs' queues, event lists and null message 
buffers throughout the entire simulation. In addition, 
the memory requirements for known event orderings 
such as partial, time-interval, timestamp and total event 
orderings can be derived in a simulation run. 
 

Entry 
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3. Performance Optimizations 
 

The maintenance of interacting processes in a 
simulation influences its runtime efficiency. In parallel 
simulation, event synchronization and inter-processor 
communication overheads amplify the inefficiency. 
This section discusses a number of optimizations to 
reduce these overheads. 
 
3.1 Event Lists 
 

SPaDES/Java originally used vectors, which are 
array-based expandable data structures provided in the 
Java API library, to implement the event lists. Vectors 
are convenient tools for implementing priority queues 
such as the event lists. Insertion and deletion operations 
on a vector-implemented event list, however, cost O(n) 
time complexity [3] each, due to the need to translate 
processes to adjacent positions in the event list. Using 
such an inefficient queuing structure for the scheduling 
of events result in performance bottleneck, particularly 
for the global FEL in sequential simulation. 

We re-implement the event lists using binary 
minheaps [3]. Inserting into and deleting a process from 
a heap-based event list costs only O(lg n), because in a 
heap comprising of n processes, a maximum of only  lg 
n  processes need to be migrated whenever insertion or 
removal of another process occurs. 
 
3.2 Multi-Threading 
 

SPaDES/Java processes and resources can be 
implemented as independent threads of execution. 
However, experiments have shown that excessive 
threads execution can lead to sub-optimal performance, 
due to the overhead of thread context switching [21]. 
An extreme option is to implement the simulation 
entities as ordinary objects, without any potential for 
concurrent execution. This compels sequential 
execution of all events, which defeats the objective of 
parallel simulation. 

SPaDES/Java eliminates multi-threading for 
processes, but keeps the LPs as mutually exclusive 
threads. This compromise approach is based on the 
knowledge that the number of LPs in a simulation is 
statically determined because they exist permanently 
throughout the entire run, while the number of 
processes varies dynamically at runtime. Implementing 
the processes as objects prevents thread context switch 
overhead to be a dominant problem especially in open 
system [16] simulation where system throughput is less 
than inter-arrival rates, i.e. the population of processes 
in the system expands exponentially as the simulation 
progresses.  

3.3 Null Message Synchronization 
 

Other than ensuring the progress of the parallel 
simulation, null messages are merely overhead and do 
not contribute directly to the simulation. We define the 
null message ratio (NMR) of a simulation as the total 
number of null messages divided by the total event 
traffic. The original synchronization protocol adopted 
in the SPaDES/Java parallel execution kernel was the 
Chandy/Misra/Byrant (CMB) [5] null message 
algorithm, whereby LPs transmit null messages along 
their output channels at the end of every simulation 
pass. This is extremely costly in terms of NMR. 

We first incorporated Wood-Turner's carrier-null 
scheme [25] to reduce null message overhead in 
problems with cyclic topologies. Tay et. al proposed a 
flushing algorithm [23], which attempts to resolve the 
problem of an LP sending null messages with repeated 
timestamp values along an output channel. We augment 
this algorithm with the demand-driven null messaging 
mechanism [4] to produce a hybrid null message 
algorithm applied on each output channel, C, of an LP, 
as shown in Figure 5. 
 

   
 

 

 

Figure 5. Demand-driven Flushing 
 
Now, rather than sending null messages on every 

simulation pass, an LP will only transmit null messages 
if requested by another LP. Furthermore, the output 
channel includes a flushing mechanism so that only the 
most updated null messages are sent. 
 
3.4 Inter-Processor Communications 
 

The first implementation of SPaDES/Java relies on 
Java's Remote Method Invocation (RMI) [19] to 
serialize and transport processes and null messages 
between processors. Being a subclass of the SimObject 
and Thread classes, the SProcess object encapsulates an 
enormous amount of data references, including global 
and user-defined data. Consequently, the serialization 
of processes becomes a significant performance 
bottleneck. The logical size of a process can be shrunk 
before it is propagated across the RMI channel to 
reduce communication cost. In SPaDES/Java, the 

DEMAND-DRIVEN-FLUSHING(C)    
N = remove most recently queued null message in C; 
for all messages m in C 

do  
if m is a null message 

  then C = c - {m}; 
 end for 

         if null-msg-requested 
then  send N to the LP at the other end of C; 

         else 
       C = C U {N}; 
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global information held in a process is discarded, and 
user-defined data only is transmitted to the destination 
processor. Once it arrives, the original process is 
reconstructed. Two methods, extract and reconstruct, 
are provided in the inter-processor communications 
module to perform the above-mentioned deflation and 
reconstruction of processes respectively. They are to be 
overridden by the simulationist in the simulator 
program. 

Next, we attempt to centralize the coordination of 
message transmissions between remote processors by 
replacing the RMI protocol in the communications 
module with a single JavaSpaces [9]. JavaSpaces is a 
special service of Java Jini to support persistent data 
storage, and facilitated by a shared memory tuple space. 
The abstract operations on a space facilitate the 
transmission of null messages between LPs mapped to 
different processors. Transmission of processes and null 
messages now go through this shared memory. 

The major steps involved, for LPi, in the 
initialization phase and the transmission of messages 
between remote LPs are as follows: 

 
Initialization:  
•  Write a SProcess entry template into the 

JavaSpaces to invoke the notify operation, 
indicating that LPi is ready to accept event 
messages from remote LPs. This template must 
specify, in its sender attribute, the IDs of the LPs 
linked to the input channels to LPi. 

•  Write a NullMsg entry template into the 
JavaSpaces, with its attributes request=true 
and sender=i. This is to invoke the notify 
operation on the space, indicating that LPi is ready 
to accept null message requests from remote LPs. 

•  Start the simulation routine for LPi. 
 
Transmission of Process:  
•  When sending a SProcess object, P, to a remote 

LPj, deflate P and set P.sender=i and 
P.receiver=j. Write P into the JavaSpaces. 

 
Transmission of Null Message:  
•  When requesting a null message from a remote 

LPj, write a NullMsg entry into the space, with 
its sender=j. 

The JavaSpaces handles messages as follows:  
 
Process:  
•  If an LP writes in a SProcess object, P, search 

for a SProcess template T such that T.sender ∈  
P.sender and T.receiver = 
P.receiver.  

•  Send P to the LP whose ID is indicated by 
T.receiver. 

 
Null Message:  
•  If a null message request, R, has been written into 

space, search for a request template, T, with 
T.sender=R.sender. 

•  Inform the LP, which wrote in T, of the this request 
R. 

•  When a null message, N, has been written in by an 
LPk, siphon N to the relevant LPs that had 
requested for null messages from LPk. 
Figure 6 illustrates the coordination of a process 

transmission by a JavaSpaces running on a separate 
processor. 
 

 

 

 

 

Figure 6. Interprocessor Communication using JavaSpaces 
 
3.5 Performance and Space Analysis 
 

We conducted a series of experiments using a 
cluster of PCs (Pentium II, 400 MHz, 256MB of 
memory) to study the effect of optimizations on 
performance. Two benchmark programs are used. A 
linear pipeline (n, ρ) representing an open system of n 
servers connected in series with traffic intensity of ρ. 
PHOLD (nxn,m) is a closed, strongly connected system 
with a network of nxn nodes, and with m jobs per node 
at the start of the simulation [6]. We observe that 
implementing the event lists as minheaps improves 
runtime by an average of 30%, and reduction in the 
level of multi-threading improves runtime (in seconds) 
by a further 7%. Table 3 and Table 4 summarize the 
performance improvements from these accumulative 
optimizations on selected parameters (problem size, 
workload, number of processors). 
 

Table 3. Null Message Optimizations - One processor 
Pipeline(16, 0.8) PHOLD (16x16, 

16) 
Synchronization 

Protocol 
NMR Runtime NMR Runtime 

CMB 0.94 3770 0.99 13990 
+ carrier null 0.94 3775 0.69 5651 
+ flushing 0.70 2917 0.57 4580 
+ demand-driven 0.61 1989 0.44 1563 

FrontEndSpace 
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•  Receiver=5 
•  …….. 
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Table 4. PHOLD (16x16, 16) –  
Reducing Inter-processor Communication 

Runtime NMR  
#procs RMI JavaSpaces RMI JavaSpaces 

1 1563 1572 0.44 0.44 
4 1288 899 0.44 0.34 
8 1006 487 0.44 0.29 

 
The step-wise enhancements due to the null 

message protocol and the centralization of inter-
processor communication reduce the runtimes by more 
than half, NMR reduces from more than 0.9 to 0.29, 
and event rate is doubled using eight processors. Table 
5 presents a profile of memory usage for both 
benchmarks. 

 
Table 5. Profile of Memory Usage 

Pipeline(16, ρ) PHOLD (16x16, m) 
ρ M 

 
Space 
Usage 0.2 0.4 0.6 0.8 1 8 16 
Mprob 101 192 320 740 
Mord 51 52 54 56 

256 2048 4096 

Msync 335 341 348 352 665 651 638 
M (total) 487 585 722 1148 921 2699 4734 

 
We observe that for a closed system such as the 

PHOLD, the memory cost due to null message 
synchronization reduces when message density (m) 
increases. The parallel simulation memory overhead for 
PHOLD(16x16,16) is less than 10% of the total amount 
of memory required to run the simulation. 
 
4. Conclusions 
 

We have presented a PDES library, SPaDES/Java, 
that is based on the process-oriented modeling view, 
and whose objective is to provide the simulationist with 
an abstract modeling environment for distributed 
simulation. The modeling primitives provided hide the 
underlying event synchronization mechanism, enabling 
the simulationist to focus on using simulation as a tool 
to study systems and the logical correctness of the 
problem, instead of causal correctness. 

SPaDES/Java adopts the demand-driven flushing 
null message algorithm, on top of the carrier-null 
mechanism, to reduce the overhead of event 
synchronization. Inter-processor communication is 
facilitated by a JavaSpaces: a component service of the 
Java Jini. A shared persistent memory helps to further 
reduce null message overhead and improve simulation 
runtime. A time and space analyzer integrated into 
SPaDES/Java provides instrumentation to profile the 
space overhead in supporting parallel simulation.  
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Appendix 
 
The syntax of SPaDES/Java in EBNF form is shown 
below, using the following metasymbols: 
 
::= connects the left hand side (LHS) and right hand    
side (RHS) of a rule. 
| separates alternative RHS items, as an ``or" operator. 
[ ] encloses an optional RHS item. 
{ } encloses a repeated RHS item that can appear 0 or 
more times. 
 
1. Simulation processes 
    simulation_process ::= resource | process 

2. Resource initialization 
       resource  ::= resource_identifier( name, unit ) 
       resource_identifier ::= string 
       name  ::= string 
       unit  ::= integer 

3. Process initialization 
       process  ::= process_identifier( size, [priority] ) 
       process_identifier  ::= string 
       priority  ::= integer 

4. Simulation primitives 
       primitive ::= self_primitive | others_primitive 
       self_primitive  ::= work( resource, time, unit )  
         | wait( time ) | susPend() 
         | terminate() 
       others_primitive::= activate( process, time ) 
            | reactivate( process, time ) 
       time  ::= double | stat_functions 

5. Time and statistical functions 
       stat_functions ::= normal(mean, stddev) 

     | gamma(alpha, beta) 
         | exponential(mean) | chi_square(n) 
         | weibull(alpha, beta) | uniform()  
        | binomial(p, n) 

     | neg_binomial(p, n) | geometric(p)  
     | poisson(mean) | triang(mode)  
     | erlang(n) | laplace() 

       mean   ::= double 
       mode   ::= double 
       stddev ::= double 
       alpha  ::= double 
       beta   ::= double 
       p   ::= double 
       n   ::= integer 

6. Process routines 
       process_body ::= switch(phase) '{' 
                { case phase ':' {others_primitive} 
                        self_primitive 
         [phase = value] } 
             }' 
       value   ::= integer 

7. Statistical referencing 
          resource_statistics ::= arrivals() | departures()  

| utilization() | waiting_time() 
| queueLength() | response() 
| maxQueueLength() 
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