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Abstract

In this work, we present a computational behavioral
model for logic gates called Internode (Internal Node Logic
Computational Model) that considers the functionality of
the gate as well as all the different internal states the gate
can reach. This computational model can be used in logic-
level tools and is valid for any dynamic behavioral model
(delay models, power models, switching noise models, etc.).
Also, we show a very efficient implementation of the model,
in C language, for� -inputs SCMOS NOR/NAND gates. Fi-
nally, we demonstrate the functionality of the model show-
ing three different examples of modeling: (a) a propagation
delay model, (b) the degradation delay model (DDM), and
(c) a simple power model.1

1. Introduction

In order to achieve the advantages of the evolution in
integrated circuits technology, it is necessary not only to
fabricate the same circuits with higher performance but to
include full systems inside the chip. That is, the complexity
of the digital designs is increasing significantly. This fact
has two main consequences: (a) it is much more difficult to
design high-speed circuits and (b) the power consumption
must be reduced in order to avoid chip damage.
Nowadays, tools for verification and analysis have a

higher importance because they assist the designer in ob-
taining the best design for a specific system. In this sense,

1This work has been partially supported by the MCYTMODEL project
TIC 2000-1350, the MCYT VERDI project TIC 2002-2283, and the
MECD/SEEU/DGU project PHB2002-0018-PC of the Spanish Govern-
ment.

it is necessary to make an effort and improve the accuracy
of current logic-verification tools in order to provide the de-
signer with good enough results allowing a correct evalua-
tion of the circuit behavior. An example of this idea is the
logic tools for power consumption estimation. These tools
are based on the switching activity measurement. Recently,
we have shown that accuracy of switching activity in cur-
rent logic tools is very low [2, 3]. This low accuracy is the
reason why tools for power consumption estimation are not
precise enough for designers to rely on.

In order to improve this precision it is necessary to de-
velop new and more accurate models of the gate’s dynamic
behavior. In this sense, we have observed that a mandatory
way for improving accuracy is to consider different models
in the dynamic behavior, depending on the different states
associated to the logic behavior [11, 12]. For example, the
propagation delay of a gate can vary according to what input
changes. This fact is due to gate’s internal structure, which
is not symmetrical from the inputs point of view.

Including different models of the dynamic behavior in
a logic-level tool leads to change the functional model of
the logic components into other one. This new model must
include not only the functionality but also the gate’s internal
state allowing us to choose the correct dynamic model for
each situation.

So, in this work, we present a computational behavioral
model for logic gates that considers the functionality of the
gate as well as all the different internal states the gate can
reach. This computational model can be used in logic-level
tools and is valid for any dynamic behavioral model (delay
models, power models, switching noise models, etc.) that
may be developed for the different gates.

The model is based on a Finite State Machine (FSM)
with a number of states adequate to represent all possible



Figure 1. Input-Output structure of the Intern-
ode model for a logic gate with � inputs and
� internal nodes.

internal states of the gate (Fig. 1). The internal states are
related to the internal nodes of the logic gate in the sense
that there is one state variable for each internal state.
In the rest of the paper we are going to present the full

model for Standard CMOS (SCMOS) gates. With this idea,
the organization of the paper is as follows: in Sect. 2 we
show a detailed description of the Internode model for the
cases of 1-input and 2-inputs SCMOS gates; in Sect. 3 the
extension to � -inputs SCMOS gates is presented; in Sect.
4 we demonstrate the functionality of the model showing
three different examples of modeling (a propagation delay
model, the degradation delay model, and a simple power
model); finally, in Sect. 5 we will finish with the main con-
clusions of this work.

2. Model description for 1-input and 2-inputs
SCMOS gates

The Internode (Internal Node Logic Computational)
model considers a FSM for the behavior of the gate. The
specific FSM depends on the gate structure and the num-
ber of states of the internal and output nodes. The model is
based on the notation used in the Moore automata [10]. In
this section we are going to present the model for 1-input
and 2-inputs SCMOS gates.
The simplest case is the one for the inverter gate (Fig. 2).

In this gate we have only one transistor in each MOS-tree
and there are no internal nodes. In this case, the correspond-
ing Internode model has only two states depending on the
output value, and transitions are determined by present in-
put values (Fig. 3). Note that, in the case of the inverter, the
corresponding Internode model is equivalent to the func-
tional model of the gate.
If we consider gates with two or more inputs, we al-

ways have two or more transistors in each MOS-tree with
one or more internal nodes. So, the corresponding Intern-
ode model must consider the state of these internal nodes
(charged or discharged) as well as the output value.

Figure 2. SCMOS structure for an INV gate.

Figure 3. Internode model corresponding to
an INV gate.



Figure 4. SCMOS structure for a NOR-2 gate.

Let us consider, for example, the case of the NOR-2 gate
(Fig. 4). This gate has two transistors in serial mode in
the PMOS-tree (�� and ��) and one internal node. On the
one hand, considering the output value (��) and the inter-
nal node state (��), we have four possible cases producing
four states in our Internode model. On the other hand, in
order to consider the behavior of the gate, it is necessary
to establish transitions between states due to input changes.
In Fig. 5 we show the Internode model for a 2-inputs NOR
gate (NOR-2).

Due to the gate structure, the state ���� � �� is impos-
sible to reach because, if �� is charged (�� � �), then

Figure 5. Internodemodel corresponding to a
SCMOS NOR-2 gate.

Figure 6. Internode model corresponding to a
SCMOS NAND-2 gate.

it must be connected to ��� and it would imply �� to
be connected to ��� too (producing �� � � instead of
�� � �). Also, the state ���� � �� is reached only
when the gate receives ������ � ��. The input case
������ � �� leads to state ���� � �� always, and the
input case ������ � �� leads to state ���� � ��.
With this operation method we can consider that each

state has a characteristic input value. However, it is possible
to stay in states ���� � �� or ���� � �� receiving other
input value (for example, ������ � ��).
In a similar and dual way it is possible to get the Intern-

ode model for the SCMOS NAND-2 gate (Fig. 6).
When we compare the Internode model for 2-inputs SC-

MOS gates (Fig. 5 and Fig. 6) with the functional model
for the same gates (Fig. 7 and Fig. 8), we can observe that
the Internode model deals with the internal state of the gate
much better than the functional model. If we intend to ap-
ply a dynamic behavioral model, we can reach a higher ac-
curacy using the Internode model because it allows to con-
sider different situations that are considered to be the same
in the functional model.
Let us consider, for example, a delay model for the case

of a NOR-2 gate. In the functional model we have only
one situation in which output raises: from state �� � � to
state �� � �. However, this raise can be reached from two
different real states: internal node charged (state ���� �

��) or internal node discharged (state ���� � ��). That
is, in the Internode model we can consider different delay
models for these different situations, while in the functional
model we have to use the same delay model for them both.

3. Extension to � -inputs SCMOS gates

The presented model can be easily extended to SCMOS
gates with more than two inputs. In this section, we will



Figure 7. Functional model corresponding to
a NOR-2 gate.

Figure 8. Functional model corresponding to
a NAND-2 gate.

extend it to � -inputs SCMOS gates. In order to do this, in
the easiest way, we are going to establish several behavioral
rules that we can apply to the implementation of the model.
The rules are the next:

1. A node is only charged if and just if connected to ��� .

2. A node is only discharged if and just if connected
to ground. Note that it is impossible for a node to
charge and discharge at the same time due to the stan-
dard CMOS structure (a node can not be connected to
ground and ��� simultaneously).

3. If there is a node (��) disconnected from ��� , that
previously has been charged, and due to a new input
configuration this node is connected to a second one
(��), then we consider that the charge remains at the
first node (��).

Note that in the case described by rule 3 actually the
charge would be distributed in both nodes. However, the
model performs correctly making the supposition of rule 3,
and this rule is necessary in order to maintain the model in
a logic level.
The two first rules imply that a new input in a gate (that

is, to model a gate with �� � ��-inputs instead of an � -
inputs one) only means a new state in the FSM of the In-
ternode model respect of the � -inputs case.

Figure 9. Structure of a SCMOS NOR-� gate.

Keeping these rules in mind, we are going to study the
� -inputs NOR and NAND gates (NOR-� and NAND-� ).
As we are going to see, it is possible to build an algorithm
for the Internode model in order to establish the specific
model for each NOR/NAND gate. The algorithm is a more
suitable representation of the model than the state diagram
we have used for the 1-input and 2-inputs gates because, for
the � -inputs case, the � -states diagram is more difficult
to manipulate and understand. Also, the algorithm shows a
possible implementation of the Internode model in a logic-
level tool.

3.1 Extension to NOR-� gates

For the NOR-� case, we can establish the next algo-
rithm in order to estimate the new state for a given gate
(Fig. 9):

1. Consider � � ���� ��� ���� ��� as the present state
of the gate having ��, ��, etc. as the internal nodes
charge indicators and �� as the output charge indica-
tor (�� is the internal node nearest to ���).

2. Consider �� � ����� ���� ���� ��� � as the present
input configuration (��� is the input nearest to ���).

3. Consider �� � ����� ���� ���� ���� as the future
state of the gate.

4. Initially, assume �� � �.



Figure 10. Structure of a SCMOS NAND-�
gate.

5. Analyze internal nodes from ��� to output node. If
��� is 0 then transistor �� is in on-state and internal
node �� is charged. So, if �� is in on-state, we study
��: if ��� is 0 then transistor �� is in on-state and
internal node �� is charged (because �� is connected
to ��� through �� and ��). While we are charging
nodes, we must continue until output node (�� ) is
reached.

6. Analyze transistors in NMOS tree. If there is any
transistor in on-state (name it �� ) then output node
(�� ) is discharged. So, if �� is discharged, we study
����: if ��� is 0 then transistor �� is in on-state
and internal node���� is discharged (because����
is connected to ground through �� and �� ). While
we are discharging nodes, we must continue until ��

is reached.

3.2 Extension to NAND-� gates

For the NAND-� case, we can establish a similar al-
gorithm in order to estimate the new state for a given gate
(Fig. 10):

1. Consider � � ���� ��� ���� �� � as the present state
of the gate having ��, ��, etc. as the internal nodes
charge indicators and �� as the output charge indica-
tor (�� is the internal node nearest to ground).

2. Consider �� � ����� ���� ���� ��� � as the present
input configuration (��� is the input nearest to
ground).

3. Consider �� � ����� ���� ���� ���� as the future
state of the gate.

4. Initially, assume �� � �.

5. Analyze internal nodes from ground to output node. If
��� is 1 then transistor �� is in on-state and internal
node �� is discharged. So, if �� is in on-state, we
study ��: if ��� is 1 then transistor �� is in on-state
and internal node�� is discharged (because�� is con-
nected to ground through �� and ��). While we are
discharging nodes, we must continue until output node
(�� ) is reached.

6. Analyze transistors in PMOS tree. If there is any tran-
sistor in on-state (name it �� ) then output node (�� )
is charged. So, if �� is charged, we study ����: if
��� is 1 then transistor�� is in on-state and internal
node ���� is charged (because ���� is connected
to ��� through �� and �� ). While we are charging
nodes, we must continue until �� is reached.

3.3 Implementation function for �-inputs gates

The presented algorithms can be easily implemented in
a single function. Now, we show the corresponding func-
tion in C language. Note that due to C syntax the internal
node further to the output node is �� and the output node
is ����. The input vector is changed in the same way: the
first input is now ��� and the last one is �����. The code
would be the next:

void qpgate(int G, int N, int Q[], int
IN[], int QP[])

// G: Gate type (0 = NOR, 1 = NAND)
// N: Number of inputs of the gate
// Q[]: Vector containing present
// state.
// IN[]: Vector containing present
// inputs.
// QP[]: Vector containing future state
// This function assumes that a NAND-N
// gate is in state Q receiving IN as
// present input configuration and ret-
// urns the future state QP of the gate
{
int b; // Flag
int n; // Counter
int ser_on; // Value that causes a
// serial ttor. to enter in on-state
int par_on; // Value that causes a



// paral. ttor. to enter in on-state
int A; // New Q[j] in serial process
int B; // New Q[j] in paral. process

if (G == 0) { // NOR gate
ser_on = 0;
par_on = 1;
A = 1;
B = 0;

}
else { // NAND gate

ser_on = 1;
par_on = 0;
A = 0;
B = 1;

}

// Initially we assume QP = Q:
for (n = 0; n < N; n = n + 1)

QP[n] = Q[n];

// We analyze internal nodes
// (dis)charge:
b = 1;
n = 0;
while (b && (n < N)) {

if (IN[n] == ser_on) {
QP[n] = A;
n = n + 1;}

else b = 0;
}

// We analyze if any parallel ttor.
// is in on-state:
b = 0;
for (n=0; (n<N) && (b==0); n=n+1)

if (IN[n] == par_on) b = 1;

// If there is any parallel ttor. in
// on-state we must analyze internal
// nodes (dis)charge:
if (b == 1) {

QP[N - 1] = B; // The output node
// is (dis)charged.

b = 1;
n = N - 1;
while (b & (n >= 1)) {
if (IN[n] == ser_on) {

QP[n - 1] = B;
n = n - 1;}

else b = 0;
}

}

}

Observe that the order of the function is � . For this
reason, the inclusion of a new transistor in the gate (a gate
with one more input) produces only one more iteration in
the estimation of the future state of the gate.
So, from the computational point of view, the usage of

the Internode model in a logic-level tool has the same per-
formance than the functional model. Also, as the domain of
the presented function is finite, we can use a look-up table
to store the precalculated future states for all the situations
the gate can reach. In this case, the order will be reduced to
a unit at simulation time.

4. Example applications of the Internode
model

In order to demonstrate the functionality of the Intern-
ode model, we want to show how to include a specific dy-
namic behavioral model into it. In this way, we will present
three different examples of modeling: (a) a propagation de-
lay model, (b) the degradation delay model (DDM), and (c)
a simple power model. To simplify, we will show the appli-
cation of the models in the case of a NAND-2 gate.

4.1 Application of the Internode model to a prop-
agation delay model

The value of the normal propagation delay (	��) depends
on both the output load, 
�, and the input transition time,
��	 [5, 1]. In previous papers [8, 9] we have applied this de-
pendence for obtaining a simple model for the normal prop-
agation delay.
The model is based in a characterization process in

which, for each gate, we measure the delay from each input
to the output for both falling and raising output transitions.
This results in a simple andwell-known heuristic model that
fits the normal propagation delay:

	�� � �
�
� �

���	 � �
� (1)

where �
�, 

�, and �
� are the model parameters. An
individual parameter value is obtained for each type of out-
put transition (� or � , noted by �) and each input of the
gate (noted by �). This model relies on the mentioned set of
parameters ��
�� 

�� �
�� which have to be characterized
for each gate and transition type.
Once the model has been roughly explained, we need

to include it into the corresponding Internode model. This
process consists of assigning an equation for 	�� in those
transitions in which output changes. The resulting diagram
can be observed in Fig. 11.



Figure 11. Internode model corresponding to
a SCMOS NAND-2 gate with a normal propa-
gation delay model included.

4.2 Application of the Internode model to the
Degradation Delay Model (DDM)

The DDM is a very accurate model that handles the gen-
eration and propagation of glitches [4, 7, 6]. The equation
to evaluate the propagation delay according to the DDM is:

	� � 	��

�
�� ��	

�
��� � ���

�

��
(2)

where � is the time elapsed since the last output transition,
	�� is the normal propagation delay and �� and ( are the
degradation parameters.
For each gate, (� and �� depend on the output load (
�),

the supply voltage (���), the input transition time (��	),
and the position of the input that is changing state (�). It has
been obtained [6] that this dependence can be expressed as:

�
��� � �
� ��
�
� (3)

��
 � ��	

�
�



�



�
���

�
(4)

where � stands for � or � depending on the sense of the
output transition (rise or fall respectively). So, a CMOS
gate is fully characterized with respect to the degradation
effect when the set ��
�� �
�� 

�� is obtained for each gate
input.
Once the model has been roughly explained, we can in-

clude it into the corresponding Internode model. The pro-
cess consists of assigning an equation for 	� in those tran-
sitions in which output changes (the corresponding 	�� can
be calculated as in Fig. 11). The resulting diagram can be
observed in Fig. 12.

Figure 12. Internode model corresponding to
a SCMOS NAND-2 gate with the degradation
delay model included.

4.3 Application of the Internode model to a simple
power model

Finally, we will show how to model power consumption.
In this way, we consider a simple model: only dynamic
power consumption is taken into account. So, if we rep-
resent the dissipation energy in the gate, we can model this
effect as: 
 � ���
�
��

�

�� , in both cases of output falling
and output rising. This equation must be included in those
transitions in which output changes, obtaining the diagram
showed in Fig. 13 (we assume an energy dissipation of zero
in the rest of transitions).

5. Conclusions

A mandatory way for improving accuracy is to consider
different models in the dynamic behavior, depending on the
different states associated to the logic behavior. So, in this
work, we have presented a computational behavioral model
for logic gates that considers the functionality of the gate
as well as all the different internal states the gate can reach.
This computational model can be used in logic-level tools
and is valid for any dynamic behavioral model (delay mod-
els, power models, switching noise models, etc.) that may
be developed for the different gates.
Firstly, we have presented the Internode model corre-

sponding to 1-input and 2-inputs gates. Secondly, we
have extended this explanation to a generic � -inputs
NOR/NAND gate showing how to implement themodel in a
standard programming language like C. We have mentioned



Figure 13. Internode model corresponding to
a SCMOS NAND-2 gate with a simple power
model included.

that the order of the implemented function is N (that is, the
amount of inputs). Also, it is possible to use a look-up table
due to the finite nature of the function domain, reducing this
order to a unit at simulation time.
Finally, we have demonstrated the functionality of the In-

ternode model showing how to include a specific dynamic
behavioral model into it. In this way, we have presented
three different examples of modeling: (a) a propagation de-
lay model, (b) the degradation delay model (DDM), and (c)
a simple power model.
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