

A Service Scheduler in a Trustworthy System

Yinong Chen

Computer Science & Engineering Department, Arizona State University
Tempe, AZ 85287-8809, USA, yinong@asu.edu

Abstract
The aim of the research is to investigate techniques that

support efficient service scheduling algorithms in a
service-oriented fault-tolerant real-time distributed system.
Techniques we developed include deadline- based
real-time scheduling, priority-based scheduling, and
redundant resource allocation for fault-tolerance. The
system model and scheduling algorithms are designed, and
a prototype is implemented to facilitate the investigation
and experimentation.

Keywords: Scheduling algorithm, resource allocation,
distributed system, fault-tolerant system

1. Introduction

Dependability has been defined as the property of a
computer system such that reliance can justifiably be
placed on the service it delivers. The dependability
attributes include reliability, availability, safety, security,
confidentiality, integrity, and maintainability [1]. Different
kinds of software and hardware dependable techniques
have been developed to produce various kinds of highly
dependable systems emphasizing on different depend-
ability attributes. For example, a mission-critical flight
control system requires the system to have an extreme high
reliability in a short period time. Frequent maintenances
are necessary to reassure the reliability. A long-life
unmanned spacecraft control system must work correctly
over a few years without any maintenance, and a telephone
exchanging system can accept short-term failure but
requires a high availability over a long period of time [2].

Highly dependable techniques are traditionally used in
dedicate control and monitoring systems. The recent
developments in pervasive computing, embedded systems,
database, high-speed networks, wireless communication,
and internet have resulted in large-scale distributed
systems used for operating the society’s critical
infrastructures, such as transportation, communication,
finance, healthcare, energy distribution, and the
combinations of such applications [2-4]. As a result, the
consequences of failures are becoming increasingly severe.
A trustworthy system is a large- scale distributed, real-time,

and dependable system integrating a variety of
safety-critical or business-critical applications and
emphasizing on all dependability attributes, including
reliability, availability, safety, security, confidentiality,
integrity, and maintainability [3-4].

The design of large-scale distributed systems is known
to be very difficult for a number of reasons. Maintaining
the integrity of global state information, reducing latency
and performance bottle-neck caused by communication,
coordinating and synchronizing concurrent behaviors of
combinatorial complexity, and the need for a higher degree
of dependability and real-time performance pose
significant scientific and engineering challenges that are
far from being met.

In the past a few years we have developed and
implemented a prototype of a dependable distributed
system on a local area network [5-9]. The components
used were diskless Intel Pentium computers connected by
redundant Ethernet network cards. The overall system
design was proposed in [5]. The reliability modeling was
reported in [6]. The prototype implementation and the
performance measured on the prototype were presented in
[7]. The implementations of the firewall rulebase based on
the system were investigated in [8-9]. Although the
prototype gave us realistic data on the dependability and
performance of the system, it was complex to use and
difficult to add new experiments on the system. On the
hardware prototype, we only collected data to evaluate the
throughput and reliability of connections between directly
connected pairs of computing nodes [7].

We have recently implemented a more sophisticated
version of the dependable distributed system and a
redundant firewall application using simulation [10]. The
simulation system allows us to experiment new algorithms
and techniques flexibly and quickly. Load balancing
algorithms and their performances under the redundant and
parallel task allocation were studied in [10]. This system is
outlined in the next section. Since we only implemented a
single application, the redundant firewall, the task
scheduler was limited to allocate the redundant copies of
the firewall to different nodes.

In this paper, we extend the redundant task scheduler

into a full service scheduler with many different types of
services, including real-time services, fault-tolerant
services, and ordinary prioritized services. The purpose of
this extension is to allow our distributed system to simulate
large-scale trustworthy applications in the future. The rest
of the paper will dedicate to this topic.

In the next section, the structure and the main
components of the simulated distributed system that we
have developed are outlined. Then, the model of the full
service scheduler is presented in section 3. Section 4
elaborates the scheduling algorithms used in the scheduler.
Section 5 outlines the architecture and the implementation
of a prototype of the service scheduler. Section 6 concludes
the paper.

2. Simulation of a Dependable System

The simulation system we have recently developed [10]
is depicted in figure 1. Each module in the diagram is a
program thread or a group of threads. At the bottom layer,
the system consists of a set of nodes. A graphic interface is
used to configure the system by assigning the number of
nodes, the number of tasks and the number of replicas of
each task. It also displays the states of the system including
the working nodes, failed nodes, the packets in each queue,
the replicas on each node, and the experiment data
measured. In the current system, we only implemented a
firewall application and thus all tasks are parallel and
redundant copies of the firewall application. The incoming
packets are generated by the packet generator and
approved packets by the firewalls are sent to the packet
collector. The packet generator and the packet collector
simulate the two sides of the firewall, e.g., the Internet and
the Intranet, respectively. The results from redundant
copies of firewalls will be checked by one of the
fault-tolerant protocols.

To simulate Internet applications, TCP/IP packets with
the required formats are generated. The packets are
distributed to the firewall tasks. In the current
implementation, three groups of firewall tasks are
implemented: single mode, double redundant mode and
triple redundant mode. The packets are randomly
distributed to the three groups. Within each group, multiple
(parallel) tasks can be running. For example, we can run
two single mode, three double mode, and one triple mode
firewalls. Generally, the tasks do not have to be firewalls.
They can be any kind of distributed applications. If they
are different applications, we have to send different data to
different application. This paper explores this extension by
presenting a full service scheduler that handles different
types of applications.

Upon receiving a packet, the firewall will check the
packet using its rulebase. The rulebase is a set of complex

conditions that define whether a packet should be accepted
or rejected. A typical rulebase consists of several
thousands of conditions and is the most time consuming
part of the firewall operation.

A comparison protocol and a voting protocol are built
on the underlying communication system. It exchanges,
compares and votes the output of redundant copies of tasks
in double and triple redundant modes, respectively. A
disagreement in comparison indicates a transient error in
one of the computing nodes or communication links
involved. We will mark each node with one error tick. A
disagreement with the majority in voting indicates a
transient error in the node or in its communication links
involved. The node will be marked two error ticks. The
accumulation of transient errors indicates possible
permanent fault and reconfiguration requirement. When
the number of ticks associated to a node exceeds the given
threshold, e.g., 10, the node will be considered faulty.

Figure 1. Overview of the simulation system

After a node fault is detected, a reconfiguration will be
performed. The reconfiguration is implemented by a task
reallocation that excludes the faulty node from
participating in executing the tasks. Workloads need to be
rebalanced among surviving nodes. Repaired or replaced
nodes will be reintegrated into the system and
reconfiguration is again need to reallocate the task to
include new nodes.

In the current implementation, we only implemented a
single application, the redundant firewall. Thus, the task
scheduler was focused on how to allocate the redundant

node
n-1

node
2

. . .node
1

node
n

Distributed
System

Scheduler:
Redundant task allocation,

load balancing
and reconfiguration

task
t11

task
t21

task
t5

task
t6

task
t7

task
t12

task
t13

task
t22

task
t31

task
t32

task
t41

task
t42

Graphic User Interface for
Configuration and Input / Output

Fault
injector

Packet Collector
(Intranet)

Evaluation
and reporting

Error log

Packet
Generator
(Internet)

Fault-tolerant protocols

node
n-1

node
2

. . .node
1

node
n

Distributed
System

Scheduler:
Redundant task allocation,

load balancing
and reconfiguration

task
t11

task
t21

task
t5

task
t6

task
t7

task
t12

task
t13

task
t22

task
t31

task
t32

task
t41

task
t42

task
t11

task
t21

task
t5

task
t6

task
t7

task
t12

task
t13

task
t22

task
t31

task
t32

task
t41

task
t42

Graphic User Interface for
Configuration and Input / Output

Fault
injector

Packet Collector
(Intranet)

Evaluation
and reporting

Error log

Packet
Generator
(Internet)

Fault-tolerant protocols

copies of the firewall to different nodes. In this paper, we
will extend the scheduler into a service-oriented scheduler
with many different types of services, including real-time
services, fault-tolerant services and ordinary prioritized
services. The rest of the paper will dedicate to this topic.

3. Design and Modeling of a Service
Scheduler

The system we outlined in section 2 can be abstracted as
a client-server system, as shown in figure 2. The server
consists of three major components: service manager,
service scheduler, and service agents. For example, the
packet generator is the client that sends request to the
packet collector, which is a service agent for certain
services. The firewall is a part the service manager that
checks the legitimacy of a packet sent to the service agent.
When many requests are generated at the same time, we
need the scheduler to define the order of the request’s
processing. In this section, we will discuss the service
scheduler in a more generic context without limiting to the
applications implemented on our distributed system.

The following is a scenario how the system works, as
shown in the sequence numbers in figure 2. (1) A client
reads the services published by the service manager and
registers for a list of services. The service manager opens
an account for the client, adds the service types in its
account, and sends back the client an id and a password. (2)
Using the user id and the password, the client requests a
service. The service manager verifies the client by
checking the id, the password, and the service types
registered. (3) The service manager forwards the request, if
approved, to the service scheduler. The service scheduler
puts the request into a queue. (4) The request is scheduled
according to its deadline, priority, and available resources.
The request is forwarded to the relevant service agent to
provide the service requested. (5) The service agents will
set up direct communication with the client to complete the
service requested. On completion, (6) the service agent
will inform the scheduler, and (7) send the accounting
information to the service manager.

In general, the service manager publishes services
available, registers clients, performs security check, and
keeps the accounting information of clients, etc. In our
current design, the service scheduler maintains three
queues: a simple queue that buffers the approved requests
from the service manager, a real-time queue for real-time
service requests; and a priority queue for the priority based
non-real-time service requests. A request buffered in the
simple queue is forwarded to the real-time queue or the
priority queue, according the nature the requests. The
scheduler also has a dispatcher that selects a service
request, reserve resources, and forward it to the service

agent according to the deadline or priority. The service
agent then acquires the resources and completes the actual
services requested.

Figure 2. Overview of the client-server

This section specifies and outlines our design of the
service scheduler.

3.1 The specification of the service scheduler
The functional specification of the scheduler is defined

by the preconditions that the service manager must meet
and the postconditions that the service scheduler must
meet.

Preconditions
Approved service requests by the service manager are

forwarded to the scheduler. The format of the requests is a
vector consisting of

• stype: the service code indicating what type of services
is being requested;

• dest: the destination identifying the service agent if the
name is known to the client. If the destination is not
specified, the service manager will allocate the service
agent according to the service code;

• sender: the source identifying the client that is
requesting the service;

• rset ∈ 2CRS: the requested resource set needed to
complete the service.

• dl: deadline, if the request is a real-time request; or

• pri: priority, if the request is a non-real-time request.
The deadline is an integer of greater than or equal to

zero that decreases with time. It is used to represent the
urgency of predetermined real-time applications. The
deadline of a request is initialized by the system according
to the nature of the service. The integer decreases with the
time and the request must be scheduled before the integer
drops to zero. For example, assume that the service is to
collect environment information in which some real-time
objects are moving and to issue commands to control the
next movement of the objects according the collected data.
The data must be collected, processed, and delivered in the
given time frames. It is assumed that the system is well
equipped with dedicate resources to handle the
predetermined real-time requests. The general resources

Service
Manager

Service
Scheduler

1

3 4

5

Server

Clients

2
6 Service

Agents
7

Service
Manager

Service
Scheduler

1

3 4

5

Server

Clients

2
6 Service

Agents
7

like CPU will be freed soon after the request is started and
the dedicate resources, e.g., the video/audio,
communication channel, and direct memory access (DMA)
coprocessors will execute the service to its completion. For
example, if an emergency call request is made, the system
must schedule the call, say, within 100 mini seconds. After
the emergency call is scheduled, a CPU will be needed for
a short period of time only to handle the initial set up. Then
the CPU can be freed while the dedicate resources like
audio coprocessor and the communication channel
continue to serve the request.

The priority is an integer between [0 .. p], p ≥ 0, which
can increase with the time. It is used to represent the
urgency of non-real-time applications from client’s point of
view. The initial priority is set by the client and it could be
linked to the price of the service. The priority-based
services will be given a quantum of execution. When the
quantum expires, the service is put back into the ready
queue. To ensure the fairness, the priority of a request
increases with the time in the ready queue. That is, the
longer a request has waited, the higher the priority will be.

Postconditions
A selected service request is forwarded to the service

agent. The format of the request is a vector:

• stype: the service type;

• dest: the destination identifying the service agent;

• sender: the source identifying the client;

• rset ∈ 2CRS: the requested resource set to complete the
service.

The selected request Ri must meet conditions:

• dl(Ri) > 0 if the task has a deadline, or

• pri(Ri) ≥ max(pri(Rj)) for j = 1, 2, ..., m, and j ≥ i.

3.2 Definition of resource and service mapping
This section will define the scope and the operational

procedure of the scheduler.

• There are n types of resources in the system: R1, R2, ...,
Rn, where n ≥ 1. For example, the CPUs, coprocessors,
shared memory, communication channels, and disks are
different types of resources.

• Each resource type Ri has pi equivalent resources,
denoted by Ri

1, Ri
2, ..., Ri

pi, where i = 1, 2, ..., n and pi >=
1. For example, if we have 5 type i resources and 3 type
j resources, then pi = 5 and pj = 3. Thus, the Complete
Resource Set (CRS) can be represented by

CRS = {R1

1
, R1

2
, ..., R1

p1, R2

1
, R2

2
, ..., R2

p2, …, Rn

1
,

Rn

2
, ..., Rni

pn}

The power set of CRS is represented by 2CRS, which is
the set of all subsets of CRS.

• two sets of service requests RRQ = {rr1, rr2, ..., rrg} and
PRQ = {pr1, pr2, ..., prh}, representing the real-time and
priority-based (non-real-time) requests, respectively.

• A service request Si can request a set of qi resources
{Ri1, Ri2, ..., Riq}, where Rij ∈ CRS, or {Ri1, Ri2, ..., Riq}
∈ 2CRS.

• A service mapping is a function SM: RRQ ∪ PRQ →
2CRS. The mapping function must meet the
postconditions defined in section 3.1.

3.3 Redundant resource scheduling
To support the high reliability requirement and fault

tolerant computing, the scheduler may schedule redundant
resources to gain extra reliability for certain services.
Figure 3 shows an example where a service request can be
met functionally with the basic resource allocation. The
redundant resource allocation allows the service to be
processed simultaneously by two sets of resources, e.g.,
use two processors to compute the results and stored the
results in two different memory locations.

Figure 3. Basic and redundant resource allocation

In figure 3, the fault tolerant management part shows
that two processors are allocated to perform duplicate
execution of a critical service. The duplicate results are
compared by the comparison protocol and the results are
written redundant memory locations if the comparison
produces an agreement.

The redundant task allocation algorithms studied in [10]
guarantee to allocate replicas of the same task on different
computing nodes. In the service scheduler presented in this
paper, this requirement is guaranteed, because different
CPUs and other resources are considered as separate
resources and a resource can only be allocated once to any
task. In other words, the same resource cannot be allocated
to the replicas of the redundant tasks.

request

processors memory channels disks

request

processor memory
channels disks

processor memory

(a) Basic resource allocation

(b) Redundant resource allocation

fault tolerant
management

request

processors memory channels disks

request

processor memory
channels disks

processor memory

(a) Basic resource allocation

(b) Redundant resource allocation

fault tolerant
management

4. Service Scheduling Algorithms

The inputs of the scheduling algorithm are two sets of

service requests RRQ = {rr1, rr2, ..., rrg} and PRQ = {pr1,

pr2, ..., prh}, representing the real-time and priority-based

requests, respectively, and the set of available resources

CRS = {R1

1
, R1

2
, ..., R1

p1, R2

1
, R2

2
, ..., R2

p2, …, Rn

1
, Rn

2
, ...,

Rni

pn}.

The parameter list of each service request Si is (stype,
sender, des, dl, pri, rset), where

• stype: the type of service.

• sender: sender id;

• dest: the service provider's id;

• dl: the deadline.

• pri: the priority.

• rset ∈ 2CRS: the requested resource set to complete the
service.

In this section, several scheduling algorithms are
defined, emphasizing different criteria of optimization.

4.1 Deadline-first scheduling
The deadline is the most important criterion that must

be satisfied. This algorithm first considers the request
whose deadline value is the lowest.

Three states are considered: running, ready, and blocked,
as showing in figure 4. Initially, all requests are in the
ready state and all resources are available. Then the
scheduling process enters into a loop of allocating and
de-allocating resources.

In each iteration of the loop, if there are real-time
requests, the request with the lowest deadline is selected
for dispatching. If the resources needed by this request are
available, the request is then dispatched into the running
state and the resources allocated to the running requests are
subtracted from the available resource set. Otherwise, the
priority-based services that is being executed and that have
the resources needed by the real-time request will be
preempted and their resource released to ensure the
execution of the real-time request.

If no real-time requests in the queue, the scheduler will
schedule the non-real-time requests according to their
priorities. The request with the highest priority will be
selected for dispatching. If the resources needed by this
request are available, the request is then dispatched into the
running state, and the resources allocated to the running
requests are subtracted from the available resource set.
Otherwise, the request is moved into the blocked state.
When a priority-based request is dispatched, the quantum
timer will be started so that a long service would not
occupy the resources for too long. When the quantum of

the request expires, the request is moved from running
state back into the ready state, the resources allocated to
this request is released, and the requests that are waiting for
the released resources are moved from the block state to
the ready state. During the execution of a non-real-time
service, the resources could be preempted and the serving
request is put into the blocked state if a real-time request is
dispatched.

Dynamic set data structures are used to hold the
requests in the ready, running and blocked states. The
ready state consists of the real-time queue and the
priority-based queue. They are implemented by two
heap-based priority queues that have a GetMinDeadline
method that returns the request with the lowest deadline
and a GetMinDeadline method that returns the request
with the highest priority, respectively.

Figure 4. States of the requests being executed

These analyses lead to the following resource
scheduling Algorithm 1.

Algorithm 1

Input
 RRQ = {rr1, rr2, ..., rrg};
 PRQ = {pr1, pr2, ..., prh},
 // RRQ ∪ PRQ forms the Ready set
 CRS = {R1

1
, R1

2
, ..., R1

p1, R2
1
, R2

2
, ...,

 R2
p2, …, Rn

1
, Rn

2
, ..., Rni

pn}
Resource := CRS;
Running := {};
Blocked := {};
While (True) Do
 If RRQ ≠ empty
 RealTimeSchedule(RRQ, Resource);
 Else
 PrioritySchedule(PRQ, Resource);
Endwhile
Subroutine RealTimeSchedule
 (RRQ, Resource);
 MinS := GetMinDeadLine(RRQ);
 // return request with lowest deadline
 If rset(MinS) ∈ 2Resource Then
 Resource := Resource – rset(MinS);
 Ready := RRQ - MinS;
 Dispatch MinS;

Running

Ready Blocked

Dispatch

Quantum
expire

Insufficient resources

Resources release

Preempt

CompleteRunning

Ready Blocked

Dispatch

Quantum
expire

Insufficient resources

Resources release

Preempt

Complete

 Else
 Preempt the priority-based services
EndSubroutine RealTimeSchedule;
Subroutine PrioritySchedule
 (PRQ, Resource);
 MaxS := GetMaxPriority(PRQ);
 // return request of highest priority
 If rset(MaxS) ∈ 2Resource Then
 Resource := Resource – rset(MaxS);
 PRQ := PRQ - MaxS;
 Dispatch MaxS;
 Start timer(quantum)
 for this request;
 Increase the priority of all
 requests in PRQ;
 Else
 Blocked := Blocked ∪ {MaxS};
 If the quantum of the running request S
times up;
 PRQ := PRQ ∪ S;
 Resource := Resource ∪ rset(S);
EndSubroutine PrioritySchedule.

4.2 Deadline and Priority Scheduling
Algorithm 1 simply schedules all real-time requests first

and then schedules the priority-based requests. Obviously,
this algorithm can guarantee the deadlines of the requests if
they can be guaranteed at all. However, if there are many
real-time requests, the priority-based requests may be
significantly relayed or not be executed at all, even if the
deadlines of some requests are not very tight. Algorithm 2
below tries to address this problem by executing
priority-based requests between the real-time requests, as
long the execution does not result in the deadline misses of
real-time requests. The two subroutines RealTime-
Schedule and PrioritySchedule used in
algorithms 2 are the same subroutines used in algorithm 1.

Algorithm 2

Input
 RRQ = {rr1, rr2, ..., rrg};
 PRQ = {pr1, pr2, ..., prh};
 // RRQ ∪ PRQ forms the Ready set
 CRS = {R1

1
, R1

2
, ..., R1

p1, R2
1
, R2

2
, ...,

 R2
p2, …, Rn

1
, Rn

2
, ..., Rni

pn}

Resource := CRS;
Running := {}; Blocked := {};
While (True) Do
 If RRQ ≠ empty
 MinS := GetMinDeadLine(RRQ);
 If dl(minS) ≤ quantum
 RealTimeSchedule(RRQ,
 Resource);

 Else
 PrioritySchedule(PRQ,
 Resource);
 Else
 PrioritySchedule(PRQ, Resource);
Endwhile.

The correctness of Algorithm 2 is based on the
assumption that the real-time requests on the system are
deterministic and the deadlines of requests can be met if a
request with lower deadline can be scheduled before it
deadline. More realistic models of real-time applications
are being studied and the service scheduler will be
extended based the new type of services.

5. A Prototype of the Service Scheduler

This section outlines the design and the implementation
of a prototype of the service scheduler.

5.1 Design of the prototype
A prototype of the service scheduler is implemented

using Microsoft .Net framework and C#. To test the service
scheduler, we implemented a very simple client node and a
few simple service agents on the server. The client in the
current implementation is a program that continuously
generates different kinds of requests in required formats.
The client resides on one computer and the server resides
on another computer. The client and server are connected
through the Internet, as shown in figure 5.

The requests are encoded into character strings and sent
to the Server through the TCP/IP protocol. A different
group is implementing the clients, service manager and
service agents. This prototype mainly implements the
service scheduler. Each component in the service scheduler
is implemented by a thread or a group of threads. The
requests are buffered in the Input Buffer Queue (IBQ). The
Distributor reads the requests in IBQ. If a request is a
priority-based non-real-time request, it is added into the
Priority Request Queue (PRQ). If a request is a real-time
request, the deadline is computed and the request added
into the Real-time Request Queue (RRQ). RRQ and PRQ
represent the Ready state. The Dispatcher that implements
the Algorithm 2 discussed in section 4 is the core
component of the scheduler. Requests in the ready state (in
one of the queues) are selected and dispatched into the
running state. Multiple requests can be processed at the
same time, depending on the available resources. The
real-time requests will be processed to completion once
they are dispatched. On the other hand, a non-real-time
request will go back to the Ready state if its quantum
expires or it will go to the Blocked state if it is preempted
due to scheduling of a real-time request that needs the
resources held by the non-real-time service.

Figure 5. The prototype on two computers

The Input Buffer Queue (IBQ) is a simple
first-in-first-out queue with one member of string type. It is
implemented as an array of strings with a front pointer and
a rear pointer.

The Priority Request Queue (PRQ) is a standard priority
queue using the user specified priority as the key. A
GetMaxPriority() method is used to dequeue the request
with the highest priority value. The heap data structure is
used to support the efficient execution of the
GetMaxPriority() operations. Since an incomplete request
can be sent back to the PRQ, the queue is a field to store the
breakpoint information so that the request can be
processed from the breakpoint when it is dispatched next
time.

The Real-time Request Queue is a standard priority
queue using the deadline as the key. A GetMinDeadline()
method is used to dequeue the request with the minimum
deadline value and heap data structure is used to support
the GetMinDeadline() operations. In the implementation,
the deadlines of requests are not decreased with the clock.
Instead, a RemainingTime() method is used to compute the
remaining time to serve a request according the initial
value of its deadline, the time when the request is added
into the RRQ, and the current time.

5.2 The graphic interface to the prototype
To demonstrate our service scheduler, we have

implemented a graphic interface and a few simple
applications: a firewall application as described in section
2, a chat room service that can open multiple windows for
different chat topics, a simple mortgage calculator, and a
simple weather service. We consider the firewall and chat
room applications require real-time response while the
other two services do not require real-time response. More
sophisticated clients, service manager, and service agents
are being developed by other groups in our research project.
Figure 6 shows the registration window of the service
manager. A client must register to the service manager and
select the desired services before it can request the services.
The service manager then creates an account for the user
and keeps accounting information of the user. The
accounting information includes user names, user login id,
password, registered services, and the lengths of accessing
services. After a client registered to the server, a client can
request a service that it has registered using its user name
and password.

Figure 6. Registration GUI on each client’s machine

Figure 7 shows a scenario of the chat application. The
GUI shows the nick names of all users who have entered
the chat room and the text each user has sent to the chat
room.

Figure 7. Chat room GUI on each client’s machine

The Server on Computer 2

Dispatcher Using Algorithm 2

IBQ
Input Buffer
Queue

Service requests

Available
resources

The Clients on Computer 1

RRQ PRQ

rr1

rr2

rrg

pr1

pr2

prh

Service Scheduler

Ready

Distributor

Blocked
Priority-

based
requests

Preempt

Quantum

… …firewall chat mtg weather…

Running

Resource release

Clients
generate requests with necessary parameter values.

Requests are encoded into a string.

Weather req . . .Mortgage reqChat reqFirewall req

The Server on Computer 2

Dispatcher Using Algorithm 2

IBQ
Input Buffer
Queue

Service requests

Available
resources

The Clients on Computer 1

RRQ PRQ

rr1

rr2

rrg

rr1

rr2

rrg

pr1

pr2

prh

Service Scheduler

Ready

Distributor

Blocked
Priority-

based
requests

Preempt

Quantum

… …firewall chat mtg weather…

Running

Resource release

Clients
generate requests with necessary parameter values.

Requests are encoded into a string.

Weather req . . .Mortgage reqChat reqFirewall req

Figure 8 is the administration GUI on the sever machine.
It dynamically shows the status of the input buffer queue
IBQ, the real-time request queue RRQ, and the
priority-based request queue PRQ. It approximately
illustrates the percentage of the fullness of each queue. On
the left-hand side of figure 8, the services currently
available are listed and briefly explained of its input
requirements.

Figure 8. Queue status GUI on the server

6 Conclusions and Future Work

In this paper, we first briefly introduced a simulated
dependable distributed system based on a prototype we
developed recently. A single application and a simple
scheduler were implemented in the system. In this paper,
we extended the simple scheduler to a full service
scheduler that could schedule different types of services,
including ordinary priority-based services, real-time
services, and fault-tolerant services. With the addition of
the service scheduler, the dependable distributed system
could be used to develop a service-oriented trustworthy
system. This work is a part of a large project aimed at
developing a full service-oriented trustworthy system,
including various client applications, service management,
and service agents. The scheduler will be integrated into
the underlying operating system to provide the resource
and service scheduling. Further fault-tolerant mechanisms
such as automatic checkpointing and recovering will be
implemented.

Acknowledgement

The requirement of a full service scheduler and the
ideas of developing such a service scheduler come from

numerous discussions with the colleagues Yann-Hang Lee,
Kyung Ryu, Wei-Tek Tsai, and Stephen Yau, in the
Computer Science and Engineering Department at the
Arizona State University. My students Manvendu
Bharadwaj, Christopher Boone, Michael Covarrubias,
Raquel Pena, and Jake Schwartz contributed to the
implementation of the service scheduler and the sample
applications.

References

[1] J. -C. Laprie, Dependable computing and fault tolerance:
Concept and terminology, IEEE 15th Annual int’l symposium on
fault-tolerant computing (FTCS-15), Ann Arbor, Michigan, June
1985, pp. 1 - 11.

[2] D.P. Siewiorek and R.S. Swarz, Reliable Computer Systems:
Design and Evaluation, third edition, A K Peters, 1998.

[3] N. Bowen, D. Sturman, T. Liu, Towards continuous
availability of Internet services through availability domains, the
International conference on dependable systems and networks,
New York, June 2000, pp. 559 - 566.

[4] F. Schneider, S. Bellovin, A. Inouye, Building Trustworthy
Systems: Lessons from the PTN and Internet, IEEE Internet
Computing, November-December 1999, pp.53 - 61.

[5] Y. Chen, V. Galpin, S. Hazelhurst, R. Mateer, C. Mueller,
Modeling software development of a decentralized virtual service
redirector for Internet applications, in Proc. the 7th IEEE
Workshop on Future Trends of Distributed Computing Systems,
Cape Town, December 1999, pp.235 - 241.

[6] Y. Chen, Z. He, Y. Tian, Efficient Reliability Modeling of the
Heterogeneous Autonomous Decentralized Systems, IEICE
Transactions on Information & Systems, Vol. E84-D, No. 10,
October 2001, pp.1360 - 1367.

[7] Y. Chen, R. Mateer, Performance Simulation of a Dependable
Distributed System, Simulation, Special Issue on Modeling and
Simulation Applications in Scheduling Multiprocessor Systems,
Simulation Councils Inc., Vol.77, No.5 - 6, November/December
2001, pp.230 - 237.

[8] S. Hazelhurst, A. Attar, R. Sinnappan, Algorithms for
improving the dependability of firewall and filter rule lists, the
International conference on dependable systems and networks,
New York, June 2000, pp. 576 - 585.

[9] R. Sinnappan and S. Hazelhurst, A reconfigurable approach to
packet filtering, in Proceedings the 11th International
Conference on Field Programmable Logic and Applications,
Belfast, United Kingdom, August 2001. pp. 638 - 642.

[10] Y. Chen, Z. He, The Simulation of a Highly Dependable
Distributed Computing Environment, Simulation, Trans. of the
Society for Modeling and Simulation International, Vol.79, No.
5-6, May – June, 2003, pp.316-327.

