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Abstract 
The aim of the research is to investigate techniques that 

support efficient service scheduling algorithms in a 
service-oriented fault-tolerant real-time distributed system. 
Techniques we developed include deadline- based 
real-time scheduling, priority-based scheduling, and 
redundant resource allocation for fault-tolerance. The 
system model and scheduling algorithms are designed, and 
a prototype is implemented to facilitate the investigation 
and experimentation. 

Keywords: Scheduling algorithm, resource allocation, 
distributed system, fault-tolerant system 

1. Introduction 

Dependability has been defined as the property of a 
computer system such that reliance can justifiably be 
placed on the service it delivers. The dependability 
attributes include reliability, availability, safety, security, 
confidentiality, integrity, and maintainability [1]. Different 
kinds of software and hardware dependable techniques 
have been developed to produce various kinds of highly 
dependable systems emphasizing on different depend-
ability attributes. For example, a mission-critical flight 
control system requires the system to have an extreme high 
reliability in a short period time. Frequent maintenances 
are necessary to reassure the reliability. A long-life 
unmanned spacecraft control system must work correctly 
over a few years without any maintenance, and a telephone 
exchanging system can accept short-term failure but 
requires a high availability over a long period of time [2]. 

Highly dependable techniques are traditionally used in 
dedicate control and monitoring systems. The recent 
developments in pervasive computing, embedded systems, 
database, high-speed networks, wireless communication, 
and internet have resulted in large-scale distributed 
systems used for operating the society’s critical 
infrastructures, such as transportation, communication, 
finance, healthcare, energy distribution, and the 
combinations of such applications [2-4].  As a result, the 
consequences of failures are becoming increasingly severe. 
A trustworthy system is a large- scale distributed, real-time, 

and dependable system integrating a variety of 
safety-critical or business-critical applications and 
emphasizing on all dependability attributes, including 
reliability, availability, safety, security, confidentiality, 
integrity, and maintainability [3-4]. 

The design of large-scale distributed systems is known 
to be very difficult for a number of reasons. Maintaining 
the integrity of global state information, reducing latency 
and performance bottle-neck caused by communication, 
coordinating and synchronizing concurrent behaviors of 
combinatorial complexity, and the need for a higher degree 
of dependability and real-time performance pose 
significant scientific and engineering challenges that are 
far from being met.  

In the past a few years we have developed and 
implemented a prototype of a dependable distributed 
system on a local area network [5-9]. The components 
used were diskless Intel Pentium computers connected by 
redundant Ethernet network cards. The overall system 
design was proposed in [5]. The reliability modeling was 
reported in [6]. The prototype implementation and the 
performance measured on the prototype were presented in 
[7]. The implementations of the firewall rulebase based on 
the system were investigated in [8-9]. Although the 
prototype gave us realistic data on the dependability and 
performance of the system, it was complex to use and 
difficult to add new experiments on the system. On the 
hardware prototype, we only collected data to evaluate the 
throughput and reliability of connections between directly 
connected pairs of computing nodes [7].  

We have recently implemented a more sophisticated 
version of the dependable distributed system and a 
redundant firewall application using simulation [10]. The 
simulation system allows us to experiment new algorithms 
and techniques flexibly and quickly. Load balancing 
algorithms and their performances under the redundant and 
parallel task allocation were studied in [10]. This system is 
outlined in the next section. Since we only implemented a 
single application, the redundant firewall, the task 
scheduler was limited to allocate the redundant copies of 
the firewall to different nodes.  

In this paper, we extend the redundant task scheduler 



 

into a full service scheduler with many different types of 
services, including real-time services, fault-tolerant 
services, and ordinary prioritized services. The purpose of 
this extension is to allow our distributed system to simulate 
large-scale trustworthy applications in the future. The rest 
of the paper will dedicate to this topic.  

In the next section, the structure and the main 
components of the simulated distributed system that we 
have developed are outlined. Then, the model of the full 
service scheduler is presented in section 3. Section 4 
elaborates the scheduling algorithms used in the scheduler. 
Section 5 outlines the architecture and the implementation 
of a prototype of the service scheduler. Section 6 concludes 
the paper. 

2. Simulation of a Dependable System 

The simulation system we have recently developed [10] 
is depicted in figure 1. Each module in the diagram is a 
program thread or a group of threads. At the bottom layer, 
the system consists of a set of nodes. A graphic interface is 
used to configure the system by assigning the number of 
nodes, the number of tasks and the number of replicas of 
each task. It also displays the states of the system including 
the working nodes, failed nodes, the packets in each queue, 
the replicas on each node, and the experiment data 
measured. In the current system, we only implemented a 
firewall application and thus all tasks are parallel and 
redundant copies of the firewall application. The incoming 
packets are generated by the packet generator and 
approved packets by the firewalls are sent to the packet 
collector. The packet generator and the packet collector 
simulate the two sides of the firewall, e.g., the Internet and 
the Intranet, respectively. The results from redundant 
copies of firewalls will be checked by one of the 
fault-tolerant protocols.  

To simulate Internet applications, TCP/IP packets with 
the required formats are generated. The packets are 
distributed to the firewall tasks. In the current 
implementation, three groups of firewall tasks are 
implemented: single mode, double redundant mode and 
triple redundant mode. The packets are randomly 
distributed to the three groups. Within each group, multiple 
(parallel) tasks can be running. For example, we can run 
two single mode, three double mode, and one triple mode 
firewalls. Generally, the tasks do not have to be firewalls. 
They can be any kind of distributed applications. If they 
are different applications, we have to send different data to 
different application. This paper explores this extension by 
presenting a full service scheduler that handles different 
types of applications. 

Upon receiving a packet, the firewall will check the 
packet using its rulebase. The rulebase is a set of complex 

conditions that define whether a packet should be accepted 
or rejected. A typical rulebase consists of several 
thousands of conditions and is the most time consuming 
part of the firewall operation. 

A comparison protocol and a voting protocol are built 
on the underlying communication system. It exchanges, 
compares and votes the output of redundant copies of tasks 
in double and triple redundant modes, respectively. A 
disagreement in comparison indicates a transient error in 
one of the computing nodes or communication links 
involved. We will mark each node with one error tick. A 
disagreement with the majority in voting indicates a 
transient error in the node or in its communication links 
involved. The node will be marked two error ticks. The 
accumulation of transient errors indicates possible 
permanent fault and reconfiguration requirement. When 
the number of ticks associated to a node exceeds the given 
threshold, e.g., 10, the node will be considered faulty.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of the simulation system 

After a node fault is detected, a reconfiguration will be 
performed. The reconfiguration is implemented by a task 
reallocation that excludes the faulty node from 
participating in executing the tasks. Workloads need to be 
rebalanced among surviving nodes. Repaired or replaced 
nodes will be reintegrated into the system and 
reconfiguration is again need to reallocate the task to 
include new nodes.  

In the current implementation, we only implemented a 
single application, the redundant firewall. Thus, the task 
scheduler was focused on how to allocate the redundant 
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copies of the firewall to different nodes. In this paper, we 
will extend the scheduler into a service-oriented scheduler 
with many different types of services, including real-time 
services, fault-tolerant services and ordinary prioritized 
services. The rest of the paper will dedicate to this topic. 

3.  Design and Modeling of a Service 
Scheduler 

The system we outlined in section 2 can be abstracted as 
a client-server system, as shown in figure 2. The server 
consists of three major components: service manager, 
service scheduler, and service agents. For example, the 
packet generator is the client that sends request to the 
packet collector, which is a service agent for certain 
services. The firewall is a part the service manager that 
checks the legitimacy of a packet sent to the service agent. 
When many requests are generated at the same time, we 
need the scheduler to define the order of the request’s 
processing. In this section, we will discuss the service 
scheduler in a more generic context without limiting to the 
applications implemented on our distributed system. 

The following is a scenario how the system works, as 
shown in the sequence numbers in figure 2. (1) A client 
reads the services published by the service manager and 
registers for a list of services. The service manager opens 
an account for the client, adds the service types in its 
account, and sends back the client an id and a password. (2) 
Using the user id and the password, the client requests a 
service. The service manager verifies the client by 
checking the id, the password, and the service types 
registered. (3) The service manager forwards the request, if 
approved, to the service scheduler. The service scheduler 
puts the request into a queue. (4) The request is scheduled 
according to its deadline, priority, and available resources. 
The request is forwarded to the relevant service agent to 
provide the service requested. (5) The service agents will 
set up direct communication with the client to complete the 
service requested. On completion, (6) the service agent 
will inform the scheduler, and (7) send the accounting 
information to the service manager. 

In general, the service manager publishes services 
available, registers clients, performs security check, and 
keeps the accounting information of clients, etc. In our 
current design, the service scheduler maintains three 
queues: a simple queue that buffers the approved requests 
from the service manager, a real-time queue for real-time 
service requests; and a priority queue for the priority based 
non-real-time service requests. A request buffered in the 
simple queue is forwarded to the real-time queue or the 
priority queue, according the nature the requests. The 
scheduler also has a dispatcher that selects a service 
request, reserve resources, and forward it to the service 

agent according to the deadline or priority. The service 
agent then acquires the resources and completes the actual 
services requested. 

 

 

 

 

 

 

 

Figure 2. Overview of the client-server 

This section specifies and outlines our design of the 
service scheduler. 

3.1  The specification of the service scheduler 
The functional specification of the scheduler is defined 

by the preconditions that the service manager must meet 
and the postconditions that the service scheduler must 
meet. 

Preconditions 
Approved service requests by the service manager are 

forwarded to the scheduler. The format of the requests is a 
vector consisting of 

•  stype: the service code indicating what type of services 
is being requested; 

•  dest: the destination identifying the service agent if the 
name is known to the client. If the destination is not 
specified, the service manager will allocate the service 
agent according to the service code; 

•  sender: the source identifying the client that is 
requesting the service; 

•  rset ∈  2CRS: the requested resource set needed to 
complete the service. 

•  dl: deadline, if the request is a real-time request; or 

•  pri: priority, if the request is a non-real-time request. 
The deadline is an integer of greater than or equal to 

zero that decreases with time. It is used to represent the 
urgency of predetermined real-time applications. The 
deadline of a request is initialized by the system according 
to the nature of the service. The integer decreases with the 
time and the request must be scheduled before the integer 
drops to zero. For example, assume that the service is to 
collect environment information in which some real-time 
objects are moving and to issue commands to control the 
next movement of the objects according the collected data. 
The data must be collected, processed, and delivered in the 
given time frames. It is assumed that the system is well 
equipped with dedicate resources to handle the 
predetermined real-time requests. The general resources 
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like CPU will be freed soon after the request is started and 
the dedicate resources, e.g., the video/audio, 
communication channel, and direct memory access (DMA) 
coprocessors will execute the service to its completion. For 
example, if an emergency call request is made, the system 
must schedule the call, say, within 100 mini seconds. After 
the emergency call is scheduled, a CPU will be needed for 
a short period of time only to handle the initial set up. Then 
the CPU can be freed while the dedicate resources like 
audio coprocessor and the communication channel 
continue to serve the request.  

The priority is an integer between [0 .. p], p ≥ 0, which 
can increase with the time. It is used to represent the 
urgency of non-real-time applications from client’s point of 
view. The initial priority is set by the client and it could be 
linked to the price of the service. The priority-based 
services will be given a quantum of execution. When the 
quantum expires, the service is put back into the ready 
queue. To ensure the fairness, the priority of a request 
increases with the time in the ready queue. That is, the 
longer a request has waited, the higher the priority will be. 

Postconditions 
A selected service request is forwarded to the service 

agent. The format of the request is a vector: 

•  stype: the service type; 

•  dest: the destination identifying the service agent; 

•  sender:  the source identifying the client; 

•  rset ∈  2CRS: the requested resource set to complete the 
service. 

The selected request Ri must meet conditions:  

•  dl(Ri) > 0 if the task has a deadline, or  

•  pri(Ri) ≥ max(pri(Rj)) for j = 1, 2, ..., m, and j ≥ i. 

3.2 Definition of resource and service mapping 
This section will define the scope and the operational 

procedure of the scheduler. 

•  There are n types of resources in the system: R1, R2, ..., 
Rn, where n ≥ 1. For example, the CPUs, coprocessors, 
shared memory, communication channels, and disks are 
different types of resources. 

•  Each resource type Ri has pi equivalent resources, 
denoted by Ri

1, Ri
2, ..., Ri

pi, where i = 1, 2, ..., n and pi >= 
1. For example, if we have 5 type i resources and 3 type 
j resources, then pi = 5 and pj = 3. Thus, the Complete 
Resource Set (CRS) can be represented by 

CRS = {R1

1
, R1

2
, ..., R1

p1, R2

1
, R2

2
, ..., R2

p2, …, Rn

1
, 

Rn

2
, ..., Rni

pn} 

The power set of CRS is represented by 2CRS, which is 
the set of all subsets of CRS. 

•  two sets of service requests RRQ = {rr1, rr2, ..., rrg} and 
PRQ = {pr1, pr2, ..., prh}, representing the real-time and 
priority-based (non-real-time) requests, respectively. 

•  A service request Si can request a set of qi resources 
{Ri1, Ri2, ..., Riq}, where Rij ∈  CRS, or {Ri1, Ri2, ..., Riq} 
∈  2CRS. 

•  A service mapping is a function SM: RRQ ∪  PRQ → 
2CRS. The mapping function must meet the 
postconditions defined in section 3.1. 

3.3 Redundant resource scheduling 
To support the high reliability requirement and fault 

tolerant computing, the scheduler may schedule redundant 
resources to gain extra reliability for certain services. 
Figure 3 shows an example where a service request can be 
met functionally with the basic resource allocation. The 
redundant resource allocation allows the service to be 
processed simultaneously by two sets of resources, e.g., 
use two processors to compute the results and stored the 
results in two different memory locations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Basic and redundant resource allocation 

In figure 3, the fault tolerant management part shows 
that two processors are allocated to perform duplicate 
execution of a critical service. The duplicate results are 
compared by the comparison protocol and the results are 
written redundant memory locations if the comparison 
produces an agreement. 

The redundant task allocation algorithms studied in [10] 
guarantee to allocate replicas of the same task on different 
computing nodes. In the service scheduler presented in this 
paper, this requirement is guaranteed, because different 
CPUs and other resources are considered as separate 
resources and a resource can only be allocated once to any 
task. In other words, the same resource cannot be allocated 
to the replicas of the redundant tasks. 
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4. Service Scheduling Algorithms 

The inputs of the scheduling algorithm are two sets of 

service requests RRQ = {rr1, rr2, ..., rrg} and PRQ = {pr1, 

pr2, ..., prh}, representing the real-time and priority-based 

requests, respectively, and the set of available resources 

CRS = {R1

1
, R1

2
, ..., R1

p1, R2

1
, R2

2
, ..., R2

p2, …, Rn

1
, Rn

2
, ..., 

Rni

pn}. 

The parameter list of each service request Si is (stype, 
sender, des, dl, pri, rset), where 

•  stype: the type of service. 

•  sender:  sender id; 

•  dest: the service provider's id; 

•  dl: the deadline. 

•  pri: the priority. 

•  rset ∈  2CRS: the requested resource set to complete the 
service. 

In this section, several scheduling algorithms are 
defined, emphasizing different criteria of optimization. 

4.1 Deadline-first scheduling 
The deadline is the most important criterion that must 

be satisfied. This algorithm first considers the request 
whose deadline value is the lowest. 

Three states are considered: running, ready, and blocked, 
as showing in figure 4. Initially, all requests are in the 
ready state and all resources are available. Then the 
scheduling process enters into a loop of allocating and 
de-allocating resources.  

In each iteration of the loop, if there are real-time 
requests, the request with the lowest deadline is selected 
for dispatching. If the resources needed by this request are 
available, the request is then dispatched into the running 
state and the resources allocated to the running requests are 
subtracted from the available resource set. Otherwise, the 
priority-based services that is being executed and that have 
the resources needed by the real-time request will be 
preempted and their resource released to ensure the 
execution of the real-time request.  

If no real-time requests in the queue, the scheduler will 
schedule the non-real-time requests according to their 
priorities. The request with the highest priority will be 
selected for dispatching. If the resources needed by this 
request are available, the request is then dispatched into the 
running state, and the resources allocated to the running 
requests are subtracted from the available resource set. 
Otherwise, the request is moved into the blocked state. 
When a priority-based request is dispatched, the quantum 
timer will be started so that a long service would not 
occupy the resources for too long. When the quantum of 

the request expires, the request is moved from running 
state back into the ready state, the resources allocated to 
this request is released, and the requests that are waiting for 
the released resources are moved from the block state to 
the ready state. During the execution of a non-real-time 
service, the resources could be preempted and the serving 
request is put into the blocked state if a real-time request is 
dispatched.  

Dynamic set data structures are used to hold the 
requests in the ready, running and blocked states. The 
ready state consists of the real-time queue and the 
priority-based queue. They are implemented by two 
heap-based priority queues that have a GetMinDeadline 
method that returns the request with the lowest deadline 
and a GetMinDeadline method that returns the request 
with the highest priority, respectively. 

 

 

 

 

 

 

 

Figure 4. States of the requests being executed 

These analyses lead to the following resource 
scheduling Algorithm 1. 

Algorithm 1 

Input  
 RRQ = {rr1, rr2, ..., rrg}; 
 PRQ = {pr1, pr2, ..., prh},  
 // RRQ ∪  PRQ forms the Ready set 
 CRS = {R1

1
, R1

2
, ..., R1

p1, R2
1
, R2

2
, ...,  

    R2
p2, …, Rn

1
, Rn

2
, ..., Rni

pn} 
Resource := CRS; 
Running := {}; 
Blocked := {}; 
While (True) Do 
 If RRQ ≠ empty 
  RealTimeSchedule(RRQ, Resource); 
 Else 
  PrioritySchedule(PRQ, Resource); 
Endwhile 
Subroutine RealTimeSchedule 
         (RRQ, Resource); 
 MinS := GetMinDeadLine(RRQ);  
 // return request with lowest deadline 
 If rset(MinS) ∈  2Resource Then 
  Resource := Resource – rset(MinS); 
  Ready := RRQ - MinS; 
  Dispatch MinS; 
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 Else 
  Preempt the priority-based services 
EndSubroutine RealTimeSchedule; 
Subroutine PrioritySchedule 
         (PRQ, Resource); 
 MaxS := GetMaxPriority(PRQ);  
 // return request of highest priority 
 If rset(MaxS) ∈  2Resource Then 
  Resource := Resource – rset(MaxS); 
  PRQ := PRQ - MaxS; 
  Dispatch MaxS; 
  Start timer(quantum)  
        for this request; 
  Increase the priority of all  
         requests in PRQ; 
 Else 
  Blocked := Blocked ∪  {MaxS}; 
 If the quantum of the running request S 
times up; 
  PRQ := PRQ ∪  S; 
  Resource := Resource ∪  rset(S); 
EndSubroutine PrioritySchedule. 

4.2 Deadline and Priority Scheduling 
Algorithm 1 simply schedules all real-time requests first 

and then schedules the priority-based requests. Obviously, 
this algorithm can guarantee the deadlines of the requests if 
they can be guaranteed at all. However, if there are many 
real-time requests, the priority-based requests may be 
significantly relayed or not be executed at all, even if the 
deadlines of some requests are not very tight. Algorithm 2 
below tries to address this problem by executing 
priority-based requests between the real-time requests, as 
long the execution does not result in the deadline misses of 
real-time requests. The two subroutines RealTime-
Schedule and PrioritySchedule used in 
algorithms 2 are the same subroutines used in algorithm 1. 

Algorithm 2 

Input  
 RRQ = {rr1, rr2, ..., rrg}; 
 PRQ = {pr1, pr2, ..., prh}; 
 // RRQ ∪  PRQ forms the Ready set 
 CRS = {R1

1
, R1

2
, ..., R1

p1, R2
1
, R2

2
, ..., 

      R2
p2, …, Rn

1
, Rn

2
, ..., Rni

pn} 

Resource := CRS; 
Running := {}; Blocked := {}; 
While (True) Do 
 If RRQ ≠ empty 
  MinS := GetMinDeadLine(RRQ);  
  If dl(minS) ≤ quantum 
   RealTimeSchedule( RRQ,  
          Resource); 

  Else 
   PrioritySchedule(PRQ,  
          Resource); 
 Else 
  PrioritySchedule(PRQ, Resource); 
Endwhile. 

The correctness of Algorithm 2 is based on the 
assumption that the real-time requests on the system are 
deterministic and the deadlines of requests can be met if a 
request with lower deadline can be scheduled before it 
deadline. More realistic models of real-time applications 
are being studied and the service scheduler will be 
extended based the new type of services. 

5. A Prototype of the Service Scheduler 

This section outlines the design and the implementation 
of a prototype of the service scheduler. 

5.1 Design of the prototype 
A prototype of the service scheduler is implemented 

using Microsoft .Net framework and C#. To test the service 
scheduler, we implemented a very simple client node and a 
few simple service agents on the server. The client in the 
current implementation is a program that continuously 
generates different kinds of requests in required formats. 
The client resides on one computer and the server resides 
on another computer. The client and server are connected 
through the Internet, as shown in figure 5.  

The requests are encoded into character strings and sent 
to the Server through the TCP/IP protocol. A different 
group is implementing the clients, service manager and 
service agents. This prototype mainly implements the 
service scheduler. Each component in the service scheduler 
is implemented by a thread or a group of threads. The 
requests are buffered in the Input Buffer Queue (IBQ). The 
Distributor reads the requests in IBQ. If a request is a 
priority-based non-real-time request, it is added into the 
Priority Request Queue (PRQ). If a request is a real-time 
request, the deadline is computed and the request added 
into the Real-time Request Queue (RRQ). RRQ and PRQ 
represent the Ready state. The Dispatcher that implements 
the Algorithm 2 discussed in section 4 is the core 
component of the scheduler. Requests in the ready state (in 
one of the queues) are selected and dispatched into the 
running state. Multiple requests can be processed at the 
same time, depending on the available resources. The 
real-time requests will be processed to completion once 
they are dispatched. On the other hand, a non-real-time 
request will go back to the Ready state if its quantum 
expires or it will go to the Blocked state if it is preempted 
due to scheduling of a real-time request that needs the 
resources held by the non-real-time service.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The prototype on two computers 

The Input Buffer Queue (IBQ) is a simple 
first-in-first-out queue with one member of string type. It is 
implemented as an array of strings with a front pointer and 
a rear pointer.  

The Priority Request Queue (PRQ) is a standard priority 
queue using the user specified priority as the key. A 
GetMaxPriority() method is used to dequeue the request 
with the highest priority value. The heap data structure is 
used to support the efficient execution of the 
GetMaxPriority() operations. Since an incomplete request 
can be sent back to the PRQ, the queue is a field to store the 
breakpoint information so that the request can be 
processed from the breakpoint when it is dispatched next 
time. 

The Real-time Request Queue is a standard priority 
queue using the deadline as the key. A GetMinDeadline() 
method is used to dequeue the request with the minimum 
deadline value and heap data structure is used to support 
the GetMinDeadline() operations. In the implementation, 
the deadlines of requests are not decreased with the clock. 
Instead, a RemainingTime() method is used to compute the 
remaining time to serve a request according the initial 
value of its deadline, the time when the request is added 
into the RRQ, and the current time. 

5.2 The graphic interface to the prototype 
To demonstrate our service scheduler, we have 

implemented a graphic interface and a few simple 
applications: a firewall application as described in section 
2, a chat room service that can open multiple windows for 
different chat topics, a simple mortgage calculator, and a 
simple weather service. We consider the firewall and chat 
room applications require real-time response while the 
other two services do not require real-time response. More 
sophisticated clients, service manager, and service agents 
are being developed by other groups in our research project. 
Figure 6 shows the registration window of the service 
manager. A client must register to the service manager and 
select the desired services before it can request the services. 
The service manager then creates an account for the user 
and keeps accounting information of the user. The 
accounting information includes user names, user login id, 
password, registered services, and the lengths of accessing 
services. After a client registered to the server, a client can 
request a service that it has registered using its user name 
and password. 

 

Figure 6. Registration GUI on each client’s machine 

Figure 7 shows a scenario of the chat application. The 
GUI shows the nick names of all users who have entered 
the chat room and the text each user has sent to the chat 
room.  

 

Figure 7. Chat room GUI on each client’s machine  
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Figure 8 is the administration GUI on the sever machine. 
It dynamically shows the status of the input buffer queue 
IBQ, the real-time request queue RRQ, and the 
priority-based request queue PRQ. It approximately 
illustrates the percentage of the fullness of each queue. On 
the left-hand side of figure 8, the services currently 
available are listed and briefly explained of its input 
requirements. 

 

Figure 8. Queue status GUI on the server 

6 Conclusions and Future Work 

In this paper, we first briefly introduced a simulated 
dependable distributed system based on a prototype we 
developed recently. A single application and a simple 
scheduler were implemented in the system. In this paper, 
we extended the simple scheduler to a full service 
scheduler that could schedule different types of services, 
including ordinary priority-based services, real-time 
services, and fault-tolerant services. With the addition of 
the service scheduler, the dependable distributed system 
could be used to develop a service-oriented trustworthy 
system. This work is a part of a large project aimed at 
developing a full service-oriented trustworthy system, 
including various client applications, service management, 
and service agents. The scheduler will be integrated into 
the underlying operating system to provide the resource 
and service scheduling. Further fault-tolerant mechanisms 
such as automatic checkpointing and recovering will be 
implemented. 
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