
Normalizing Traffic Pattern with Anonymity for Mission Critical Applications

Dongxi Liu, Chi-Hung Chi, Ming Li
School of Computing

National University of Singapore
Lower Kent Ridge Road

Singapore 119260
Emails: chich@comp.nus.edu.sg

Abstract

Intruders often want to analyze traffic pattern to get
information for his some malicious activities in
ultra-secure network. This paper presents a general
approach to prevent traffic pattern of IP-based network
from being analyzed. It is an isolated scheme which can
be used to prevent traffic analysis in overall network by
achieving the same goal in each network segment
independently. On each network segment,
complementary traffic is generated according to its real
traffic, and the combination of these two kinds of traffic
constitutes the normalized traffic on each link. Main
advantages of our approach are, from the performance
viewpoint, 1) complementary traffic does not compete
on the bandwidth with real traffic actively, and 2)
complementary traffic does not consume the bandwidth
of other network segment at all. In addition, by
encrypting source and destination IP addresses of each
packet, anonymous communication can be achieved and
anonymous normalized traffic loses its value for the
analysis of eavesdropped traffic by intruders.

1. Introduction

Generally, information security in the Internet is
guaranteed by using security protocols, such as IP
security protocol (IPSec) [1] and transport layer security
(TLS) [2]. However, it is not enough for an ultra-secure
communication network, such as a military network, to
just encrypt and authenticate transmitted data. It is
because in computer communication networks, a traffic
series has its statistical patterns, which can provide extra
useful information for intruders. For example, the
research in traffic analysis exhibits ample evidence that
traffic is a second-order stationary series with the
statistical properties of long-range dependence (LRD),
(asymptotical) self-similarity and heavy-tailed
distribution at different layers [3-6]. Thus, intruders may
obtain the statistical traffic pattern between any two
network nodes, such as hosts or routers, by processing

monitored data series. Using the known traffic patterns,
he can distinguish special events happening from the
pattern variations of a traffic series. Consequently, any
methods used to prevent traffic pattern analysis on a
packet-by-packet basis are beneficial for ultra-secure
distributed systems.

Several approaches have been reported in this area,
see for examples [7-11]. In this paper, we propose a
novel approach based on normalizing traffic pattern with
anonymity. Our scheme to prevent traffic pattern
analysis for IP-based network is based on the following
two aspects: 1) steadily normalizing traffic, and 2)
hiding IP addresses in packets. By steadily normalizing
traffic, we mean that traffic pattern remains unchanged
regardless of what happens to it. By hiding IP address in
every packet, we mean the IP address in every packet is
confidential to intruders.

To achieve our goal, we insert a thin layer between
the network layer and the link layer. Thus, during every
unit time period, only one packet is sent (either a regular
packet from the network layer or a padded packet when
no regular packet is available, i.e. a dummy packet).
Moreover, if the packet to be sent is shorter than an
expected length, some extra bytes are padded to its rear
so that packets sent by one network node always have
constant size with constant rate, i.e., normalized traffic,
in which dummy packet and extra bytes together make
up the complementary traffic. In addition, when sending
a packet, its source and destination IP addresses will be
encrypted for anonymity so that intruders cannot trace
the packet flow in network. Upon receiving a packet, a
reverse procedure should be taken to recover the real
packet. In this way, a normalized anonymous traffic is
generated such that traffic pattern losses its analysis
value for intruders from the security view.

This paper is organized as follows. Section 2
introduces some work related our study. Our scheme is
discussed in Section 3. Conclusions are given in Section
4.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

2. Related Work

There are two categories of countermeasures to
resist traffic analysis. One is anonymous communication
and the other traffic camouflaging. Anonymous
communication can prevent intruders from knowing
who is communicating with whom, such as Onion
Routing project [10-11], but it cannot hide the traffic
pattern of the overall network. Traffic camouflaging
[7-8] can prevent traffic analysis by padding and
rerouting so that the traffic pattern between two hosts
are not related to the operation status of application for
intruders. However, it cannot provide anonymity and
intruders can infer the differences of traffic patterns
between the two hosts.

In comparison with the previous work, the main
advantage of our approach in function is that it can
provide anonymous communication and hide traffic
pattern simultaneously. Moreover, our approach is an
isolated scheme. By isolated scheme, we mean two
points: 1) to achieve its goal in the overall network by
achieving the same goal in each network segment, and 2)
not to assume any global parameters, such as the
capacity between any two hosts like that in [7-8]. Being
an isolated scheme, our approach, from the performance
viewpoint, has two additional advantages: 1)
complementary traffic does not compete on the
bandwidth with the real traffic actively, and 2)
complementary traffic does not consume the bandwidth
of other network segment at all. Our approach can be
deployed in an overall network by deploying it in each
network segment gradually, thus making it to be
practical in engineering. It should be mentioned that the
link cover mode in [9] is to achieve constant traffic rate
on each link, too. However, it depends on a finite
end-to-end flow set to compute the link cover mode. We
argue that this parameter is very difficult (if not
impossible) to get because the two ends may have
infinite flows. In [14], Kung et. al. propose an IP-layer
anonymizing infrastructure to hide the server address
from all clients to resist DOS attack, which is different
from the anonymity in this paper.

3. Methodologies

Our approach consists of three components: a
protocol to negotiate the parameters, such as the
encryption algorithm and key; a procedure to normalize
traffic; and cache management. In what follows, we will
introduce each part in detail.

3.1 Notations and Definitions

As usual, a network can be described by a directed
graph (N, E), where n ∈ N is a network node (e.g., hosts
or routers). For n1, n2 ∈ N, if (n1, n2) ∈ E, then (n1, n2) is
a link. For e ∈ E, we denote lene as the maximum length
(bytes) of packets transmitted in e without fragment, i.e.
MTU of e (we sometimes use lene to denote the payload

length of a packet for brevity), and �e as the minimum
interval time between two frames.

Definition 1 (Link Feature): Let G = (N, E) be a

directed graph. Let e ∈ E. Then the pair (lene, �e) is the
feature of link e.

If the feature of a link is known, the goal of
normalizing traffic on this link can be determined.
Usually, a link can have other parameters and we
abstract them away since they are not relevant with our
work here.

Let xe[t(i)] be the length of the ith packet to be sent
to link e at time t(i) (i = 0, 1, 2, …). Define the
normalized traffic as follows.

Definition 2 (Normalized Traffic): Let G = (N, E) is a
directed graph. For ∀e ∈ E, xe[t(i)] is the normalized
traffic if the followings hold:

1) (lene, �e) is e’s feature;
2) xe[t(i)] = lene for each i;

3) t(i + 1) − t(i) <=��e for i>0;

4) t(i + 2) − t(i) >��e for i > 0.

From the above definition, each frame in a
normalized traffic has constant size lene and only one

packet is sent in each time interval �e.

Remark 1. A normalized traffic is characterized by the
feature of its link.

Encryption operation needs keys and algorithms.
With the notion of security association stated by the IKE
protocol [13], we define the link security association
below.

Definition 3 (Link Security Association): Let G = (N,
E) is a directed graph. For ∀e ∈ E, a pair sae = (Ence, ke)
is called the security association of link e, where Ence is

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

the encryption algorithm and ke is the relevant key.

The address of packet transmitting on link e can be
encrypted by the algorithm Ence with key ke. In addition,
for simplicity, our approach does not support
authentication. That is, the spoofing of the link address
is not prohibited.

3.2 Parameter Negotiation

To normalize traffic in a link e, we need to know

e’s feature (lene, �e) and the security association sae.
Given link e, lene depends on the characteristics of the
link medium and link protocol. It is always configured
by hand or negotiated by link protocol such as PPP.
Therefore, we assume this parameter has been
instantiated before the traffic normalization begins. For

parameter �e, we just use it to characterize the
normalized traffic and our scheme does not rely on it to
implement normalization. Thus, it is also unnecessary to
negotiate it with the parameter negotiation protocol.
Therefore, sae is the only parameter we need to care, and
this can be discussed by the following two cases:

1) Link frame with encryption: For example, MPPE
Protocol is used as the link protocol, or WEP
encryption scheme is used in IEEE 802.11 wireless
LAN. In this case, we are free to negotiate sae

because the traffic encryption will be done by the
link protocol rather than by our scheme.

2) Link frame without encryption: For example,
ordinary Ethernet frame or HDLC frame belongs to
this case. In order to provide anonymity and prevent
intruders from detecting padding data or packets,
our approach has to encrypt the source and
destination addresses of packet from the network
layer. For this purpose, the link security association
needs to be negotiated.

In theory, we can use IKE protocol for our purpose.
In practice, however, we found that it might not be
suitable for link communication since it is designed for
Internet service. For example, we need not to worry
about the denial of service attack at the link layer
service. Below, we will describe the parameter
negotiation protocol. For a link e = (n1, n2), this protocol
defines two roles. One is master played by n1 and the
other slave played by n2. The message sequence in this
protocol is expressed by

1. n1→ n2: g, gx mod g, Enc
2. n2→ n1: gy mod g, {g, gy, gx}k
3. n1→ n2: {g, gx, gy}k.

Obviously, this protocol is developed from the
Diffie-Hellman key exchange protocol, in which g is a
big prime, gx mod g and gy mod g being the two
Diffie-Hellman public values, and gxy will be the
symmetric session key. This protocol directly runs on
the link layer. Hence, the link layer should be able to
identify the frames for this protocol.

After running the protocol, n1 and n2 can use the
encryption algorithm Enc with key gxy mod g to provide
anonymity for the network layer packet. In addition, we
can assume that master n1 has a clock, which
periodically invokes the protocol so that n1 and n2 can
periodically refresh their link security associations.

Though the man-in-the-middle attack of the
Diffie-Hellman protocol is quite unlikely in the link
layer, we still authenticate g, gy, gx by encrypting them
with a key k = gx(i−1)y(i−1) mod g, where i > 1 indicates the
ith run of this protocol. That is, k negotiated in the
previous run will be used to authenticate messages in
this run. It should be noted that the first run depends on
gx(0) and gy(0) which must be configured on n1 and n2,
which are long term keys.

3.3 Normalizing Traffic with Anonymity

Suppose (lene, �e) is the link e’s feature.
Normalized traffic on e consists of frames with constant

size lene and constant interval �e between them. Thus,

during a period of �e, if there is no packet to transmit on
e, we need to send a dummy packet with length lene, or
if the size of packet transmitting on e is less than lene,
then some extra bytes are needed to append at the rear of
the packet such that it has size lene. Therefore, the
following problems have to be solved:

1) How dummy packets should be marked so that they
are distinguishable from real packets for receiver
and not for intruders?

2) How extra bytes should be appended in a real
packet so that receiver can distinguish them, but
intruders cannot?

3) How should the payload of dummy packets and
extra bytes be constructed?

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

4) How should the interval between two frames be

guaranteed to be �e?

With the assumption that the network protocol is IP,
we just concern the four fields in an IP header, namely,
total length, header checksum, source IP address and
destination IP address. Therefore, a packet can be
represented by <srcIP, dstIP, len, checksum, payload>.
Let sae = (Ence, ke). Then, to provide anonymity, srcIP
and dstIP must be encrypted: <{srcIP, dstIP}ke, len,
checksum, payload>.

Mark dummy packets

Obviously, we can insert a protocol indicator to tell
whether the encapsulated packet is a dummy packet.
That is a common way in protocol design. Here, we take
a more efficient way to avoid the overhead of
encapsulating packets as follows. When an IP packet is
arrived, the receiver checks its header checksum. If this
fails, the packet will be dropped. Therefore, we only
need to negate a bit in the header checksum field of a
real packet. In case of a dummy one, it will be dropped
by the receiver.

Formally, suppose <srcIP, dstIP, len, checksum,
payload> is a real packet. Then, <{srcIP, dstIP}ke, len,
checksum⊕r, payload>, where ⊕ denotes exclusive-or, r
is a member chosen from the following set randomly:

{0x0001, 0x0002, 0x0004, 0x0008,
0x0010, 0x0020, 0x0040, 0x0080,
0x0100, 0x0200, 0x0400, 0x0800,
0x1000, 0x2000, 0x4000, 0x8000}

Moreover, intruders cannot know whether a packet
is a dummy one or not because srcIP are dstIP are
encrypted and he is unable to compute the checksum.

Append extra bytes in a real packet

We can append enough random bits to the rear of a
real packet such that it has the expected packet length.

Suppose the link e’s feature is (lene, �e) and <srcIP,
dstIP, len, checksum, payload> is a real packet. Then,
<srcIP, dstIP, len, checksum, payload+extra bytes> is a
normalized packet, where length(payload+extra bytes)
= lene.

After doing this, we do not update the value of the
field len. Otherwise, the real length is impossible to
recover. However, if this field is transmitted as plaintext,

intruders will know the real length even the real bytes
and extra bytes are transmitted in one frame. Therefore,
the value of this field needs to be confidential to
intruders. That is, the field should be encrypted if the
link does not provide privacy. After appending the extra
bytes, the packets will be <{srcIP, dstIP}ke, {len} ke,
checksum, payload+extra bytes>, where
length(payload+extra bytes) = lene and (Ence, ke) is the
link e’s security association.

Construct payload of dummy packets and extra bytes

Dummy packets including more bytes than extra
bytes make the payload in full length. Here, we discuss
a way to construct the payload of dummy packets
because the extra bytes can be drawn from the
constructed dummy packet. A simple way is to use the
last real packet as the dummy packet by just flipping
one bit in the header checker sum. However, the
similarity between them can be observed by intruders,
thus helping him to distinguish the dummy packet. Here,
we would like to introduce some randomness to the
payload. Suppose < {srcIP, dstIP}ke, {len}ke, checksum,
payload> is the last real packet, where length(payload)
= lene, and l is a random value and 1 < l < lene. Then,
payload = payload1 + payload2, where length(payload1)
= l and length(payload2) = lene − l. In this way, the new
payload in the dummy packet is payload′ = payload2 +
payload1. Therefore, a complete dummy packet can be
represented as:

<{srcIP, dstIP}ke, {len}ke, checksum⊕r, payload′>,

where r is defined above.

Of course, we can generate a series of random bits
with length lene as the payload of dummy packets, but it
is an expensive computation to do [12].

Guarantee the interval between two frames to be �e

For a node u, if it has a timer more precise than �e,

it is easy to transmit a frame during every �e.

Unfortunately, �e is always much less than the timer in

system. For example, �e in fast Ethernet is less than 120

µs, but a tick in Linux is about 10 ms. So, �e is useless
when practically normalizing traffic and it will not be
negotiated in the parameter negotiation protocol. Here,
we propose the best-effort transmitting scheme to make
the interval time as small as possible, which will

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

approach �e.

In our scheme, we suppose a node u has two queues.
One is for real packets, called real queue, and the other
for dummy packets, called dummy queue. Of course, the
packets in real queue are the output of u’s packet
scheduling algorithm while dummy queue has only one
packet which is the last real packet transmitted on the
link. Those in dummy queue are sent only if there are no
packets in real queue. At the same time, each packet is
normalized and this is done by the traffic normalization
scheduler. The following algorithm can illustrate this
procedure.

Algorithm 1: traffic normalization scheduler

INPUT: Ence, ke, lene, real queue, dummy queue
OUTPUT: a normalized packet p

1. let < {srcIP, dstIP}ke, {len}ke, checksum, payload>
be the packet in dummy queue;

2. choose a random integer l, 1 < l < lene;
3. payload′= payload2 + payload1, where payload1+

payload2 = payload with length(payload1) = l and
length(payload1) = lene-l.

4. if real queue is empty, then
4.1 p = < {srcIP, dstIP}ke, {len}ke, checksum⊕r,

payload′>, where r is defined as that in 1);
4.2 return p;

5. else
5.1 let <srcIP, dstIP, len, checksum, payload> be

the first packet in real queue;
5.2 if length(payload) < lene, then

5.2.1 payload′′= payload + payload1, where
payload1 is the prefix of payload′ with
length lene- length(payload));

5.2.2 p = < {srcIP, dstIP}ke, {len}ke,
checksum, payload′′>;

5.3 else
5.3.1 p = < {srcIP, dstIP}ke, {len}ke,

checksum, payload>;
5.4 substitute p for the packet in dummy packet;
5.5 return p;

The output p in the above algorithm can be directly
transmitted by the link layer. After sending a packet, the
interrupt event will be generated, by which the above
algorithm can be called in turn. Thus, a continuous
normalized traffic with anonymity is generated.

3.4 Cache Management

Cache is usually a good way to improve the
performance. In our approach, cache is used to improve
the performance of cryptography operations, including
encryption and decryption. We first introduce our cache
management scheme and then discuss two problems
from the point of view of cache hit rate. One problem is
why the total length field and source/destination IP
addresses are encrypted separately and the other why we
do not identify dummy packets by modifying the value
of the total length field in ciphertext.

There are two cache tables in our approach. One is
for the total length field and the other for the
source/destination IP addresses.

Cache table for total length field

Each entry in this cache table has the format
(len_plaintext, len_ciphertext, valid), where
len_plaintext is the len in a real packet; len_ciphertext is
the result that len is encrypted under the current link
security association sae; valid = 1 indicates that this
entry is valid while valid = 0 invalid. This table is called
lencache, which can be viewed as a set.

The size of this table is bounded by lene. For
example, the payload length in Ethernet frame is from
46 to 1510 bytes. Hence, the number of entries in this
table is at most 1464. For lencache, it is unnecessary for
cache replacement algorithm.

For a packet <srcIP, dstIP, len, checksum, payload>,
when encrypting len field, if {len_ciphertext|
(len_plaintext, len_ciphertext, valid) ∈ lencache, valid =
1 and len = len_plaintext} ≠ Φ (null set), then the cache
will be hit and the len_ciphertext in this set will be the
encryption result of len. In this way, we can avoid the
encryption operation. Otherwise, cache miss occurs and
we encrypt len under the current link security
association (Ence, ke) and then append (len, {len}ke, 1)
to lencache.

For a packet < {srcIP, dstIP}ke, {len}ke, checksum,
payload>, when decrypting {len}ke, if {len_plaintext|
(len_plaintext, len_ciphertext, valid) ∈ lencache, valid =
1 and {len}ke = len_ciphertext} ≠ Φ, then the cache will
be hit and the len_plaintext in this set will be the
decryption result of {len}ke. Again, we can avoid the
decryption operation. Otherwise, we decrypt {len}ke

under the current link security association (Ence, ke) and
append (len, {len}ke, 1) to lencache.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

Obviously, if the link security association is
renegotiated, all the entries in lencache will have to be
invalidated.

Cache table for source/destination IP addresess

This cache is called IPcache, which consists of
entries with the form of (srcIP_plaintext,
destIP_plaintext, IP_ciphertext, route, valid), where
srcIP_plaintext and destIP_plaintext are the srcIP and
destIP in a real packet respectively; IP_ciphertext is the
encryption result of srcIP and destIP under the current
link security association sae; valid = 1 indicates this
entry is valid while valid = 0 invalid; route is the route
information for the destIP.

For a packet <srcIP, dstIP, len, checksum, payload>,
when encrypting srcIP and destIP fields, if
{IP_ciphertext| (srcIP_plaintext, destIP_plaintext,
IP_ciphertext, route, valid) ∈ IPcache, valid = 1, srcIP
= srcIP_plaintext and destIP = destIP_plaintext} ≠ Φ,
the IP_ciphertext in this set will be the encryption result
of srcIP and destIP. Otherwise, we encrypt them under
the current link security association (Ence, ke) and
append (srcIP, destIP, {srcIP, destIP }ke, route, 1) to
IPcache, where route is looked up from the route table.

For a packet <{srcIP, dstIP}ke, {len}ke, checksum,
payload>, when decrypting {srcIP, dstIP}ke, if
{(srcIP_plaintext, destIP_plaintext,
route)|(srcIP_plaintext, destIP_plaintext, IP_ciphertext,
route, valid) ∈ IPcache, valid = 1 and {srcIP, dstIP}ke =
IP_ciphertext} ≠ Φ, the cache will be hit and the
srcIP_plaintext and destIP_plaintext in this set will be
the decryption result of {srcIP, dstIP}ke and route gives
the route information for this packet. Otherwise, we
decrypt {srcIP, dstIP}ke under the current link security
association (Ence, ke) and append (srcIP, destIP, {srcIP,
destIP }ke, route, 1) to IPcache, where route is looked
up from the route table.

Like lencache, all the entries in IPcache have to be
invalidated if the link security association is
renegotiated.

Two Problems

The first problem is why the total length field and
source/destination IP addresses are encrypted separately.
Given the current link security association, because the
len range is finite, we can expect the probability of the
cache hit rate to be 1 after some time. If we combine the
total length field and IP address field, then even for two

packets with the same len, their source/destination IP
addresses are not necessarily the same. Thus, we cannot
obtain benefits from the finite range of len. In a flow,
the packets in it must have the same source/destination
IP addresses, but their lengths can possibly be (very)
different. Therefore, a cache hit must occur for the
successive packets in the flow if we only encrypt and
cache source/destination IP addresses. Otherwise, we
cannot attain the benefits from the feature of the packet
flow. As a result, we choose to encrypt and cache the
total length field and source/destination IP addresses
separately.

The second problem is why we do not identify
dummy packets by modifying the value of the total
length field in ciphertext. Although it is feasible to mark
dummy packets by this way, it might increase the rate of
cache miss. Since a dummy packet is evolved from a
real packet with the same length between them, after
normalizing the real packet, its length value must be in
the lencache. Consequently, if we modify the length
value in ciphertext, it is possible that upon receiving the
dummy packet we might have to decrypt the {len}ke

because of the cache miss. Therefore, we choose to
modify the checksum field in the IP header instead of
the total length field to mark dummy packets.

4. Conclusions

In this paper, we have presented and explained a
general approach to prevent traffic analysis. Our
approach works between the link layer and network
layer and it includes three parts. Firstly, a parameter
negotiation protocol is used to negotiate the link security
association (i.e., an encryption algorithm and the
corresponding key). To counter the cryptanalysis, these
parameters should be negotiated periodically. If a link
encryption is provided, this protocol is not necessary.
Secondly, traffic is normalized with anonymity and this
is the main part of our work. It concerns how to generate
complementary traffic and combine it with real traffic to
normalize the traffic on a link. By encrypting the IP
address of each packet, anonymity is achieved. Thirdly,
cache management is used to improve the efficiency of
encryption operation when normalizing traffic. A high
rate of cache hit can be attained because the packet
length has a finite range and the packets in one flow
have the same source and destination IP addresses. Each
run of the parameter negotiation protocol will invalidate
all the entries in lencache and addrcache. Since our
approach is an isolated scheme and it does not need any
global parameters, it can be easily deployed in each
network segment independently. From the performance

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

viewpoint, by using the cache, the encryption can be
done quickly and complementary traffic does not
compete on the bandwidth with real traffic actively, nor
does it consume the bandwidth of other network
segments at all. Hence, it is an effective and practical
approach to prevent traffic pattern analysis by intruders.

5. References

[1] S. Kent and R. Atkinson, “Security Architecture
for the Internet Protocol”, RFC 2401.

[2] T. Dierks and C. Allen. “The TLS protocol version
1.0,” RFC 2246.

[3] W. E. Leland, M. S. Taqqu, W. Willinger, and D.
V. Wilson, “On the Self-Similar Nature of Ethernet
Traffic (Extended Version),” IEEE Trans on
Networking, 2 (1), Feb. 1994, 1-15.

[4] V. Paxson and S. Floyd, “Wide Area Traffic: The
Failure of Poison Modeling,” IEEE Trans. on
Networking, 3 (3), June 1995, 226-244.

[5] E. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes,” IEEE/ACM Trans. on Networking, 5 (6),
Dec. 1997, 835-846.

[6] B. Tsybakov and N. D. Georganas, “Self-Similar
Processes in Communications Networks,” IEEE
Trans. on Information Theory, 44 (5), Sep. 1998,
1713-1725.

[7] Y. Guan, D. Xuan, P. U. Shernoy, R. B. Bettati,
and W. Zhao, “NetCamo: Camouflaging Network
Traffic for QoS-Guaranteed Mission Critical
Applications,” IEEE Trans. on Systems, Man, and

Cybernetics, Part AL Systems and Humans, 31 (4),
253-265.

[8] Y. Guan, C. Li, D. Xuan, R. Bettati, and W. Zhao,
"Preventing Traffic Analysis for Real-Time
Communication Networks," Proc., The IEEE
Military Communication Conference
(MILCOM’99), Nov. 1999.

[9] S. Jiang, N. Vaidya, and W. Zhao. “Preventing
Traffic Analysis in Packet Radio Networks,”
Proc., DARPA Information Survivability
Conference and Exposition (DISCEX II'01), 2001.

[10] D. M. Goldschlag, M. G. Reed, and P. F. Syverson,
“Onion Routing for Anonymous and Private
Internet Connections,” Communications of the
ACM, 42 (2), 1999.

[11] M. G. Reed, P. F. Syverson, and D. M. Goldschlag,
“Anonymous Connections and Onion Routing,”
IEEE Journal on Selected Areas in Communication
Special Issue on Copyright and Privacy
Protection, 1998.

[12] A. J. Menezes, P. C. van Oorschot and S. A
Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

[13] D. Harkins and D. Carrel, The Internet Key
Exchange (IKE), RFC 2409.

[14] H. T. Kung, C. M. Cheng, K. S. Tan and S.
Bradner, “Design and Analysis of an IP-Layer
Anonymizing Infrastructure”, The Third DARPA
Information Survivability Conference and
Exposition (DISCEX 3), April 2003.

Proceedings of the 37th Annual Simulation Symposium (ANSS’04)
1080-241X/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

