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Abstract 

Intruders often want to analyze traffic pattern to get 
information for his some malicious activities in 
ultra-secure network. This paper presents a general 
approach to prevent traffic pattern of IP-based network 
from being analyzed. It is an isolated scheme which can 
be used to prevent traffic analysis in overall network by 
achieving the same goal in each network segment 
independently. On each network segment, 
complementary traffic is generated according to its real 
traffic, and the combination of these two kinds of traffic 
constitutes the normalized traffic on each link. Main 
advantages of our approach are, from the performance 
viewpoint, 1) complementary traffic does not compete 
on the bandwidth with real traffic actively, and 2) 
complementary traffic does not consume the bandwidth 
of other network segment at all. In addition, by 
encrypting source and destination IP addresses of each 
packet, anonymous communication can be achieved and 
anonymous normalized traffic loses its value for the 
analysis of eavesdropped traffic by intruders.  

1. Introduction 

Generally, information security in the Internet is 
guaranteed by using security protocols, such as IP 
security protocol (IPSec) [1] and transport layer security 
(TLS) [2]. However, it is not enough for an ultra-secure 
communication network, such as a military network, to 
just encrypt and authenticate transmitted data. It is 
because in computer communication networks, a traffic 
series has its statistical patterns, which can provide extra 
useful information for intruders. For example, the 
research in traffic analysis exhibits ample evidence that 
traffic is a second-order stationary series with the 
statistical properties of long-range dependence (LRD), 
(asymptotical) self-similarity and heavy-tailed 
distribution at different layers [3-6]. Thus, intruders may 
obtain the statistical traffic pattern between any two 
network nodes, such as hosts or routers, by processing 

monitored data series. Using the known traffic patterns, 
he can distinguish special events happening from the 
pattern variations of a traffic series. Consequently, any 
methods used to prevent traffic pattern analysis on a 
packet-by-packet basis are beneficial for ultra-secure 
distributed systems.  

Several approaches have been reported in this area, 
see for examples [7-11]. In this paper, we propose a 
novel approach based on normalizing traffic pattern with 
anonymity. Our scheme to prevent traffic pattern 
analysis for IP-based network is based on the following 
two aspects: 1) steadily normalizing traffic, and 2) 
hiding IP addresses in packets. By steadily normalizing 
traffic, we mean that traffic pattern remains unchanged 
regardless of what happens to it. By hiding IP address in 
every packet, we mean the IP address in every packet is 
confidential to intruders. 

To achieve our goal, we insert a thin layer between 
the network layer and the link layer. Thus, during every 
unit time period, only one packet is sent (either a regular 
packet from the network layer or a padded packet when 
no regular packet is available, i.e. a dummy packet). 
Moreover, if the packet to be sent is shorter than an 
expected length, some extra bytes are padded to its rear 
so that packets sent by one network node always have 
constant size with constant rate, i.e., normalized traffic, 
in which dummy packet and extra bytes together make 
up the complementary traffic. In addition, when sending 
a packet, its source and destination IP addresses will be 
encrypted for anonymity so that intruders cannot trace 
the packet flow in network. Upon receiving a packet, a 
reverse procedure should be taken to recover the real 
packet. In this way, a normalized anonymous traffic is 
generated such that traffic pattern losses its analysis 
value for intruders from the security view. 

This paper is organized as follows. Section 2 
introduces some work related our study. Our scheme is 
discussed in Section 3. Conclusions are given in Section 
4.
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2. Related Work 

There are two categories of countermeasures to 
resist traffic analysis. One is anonymous communication 
and the other traffic camouflaging. Anonymous 
communication can prevent intruders from knowing 
who is communicating with whom, such as Onion 
Routing project [10-11], but it cannot hide the traffic 
pattern of the overall network. Traffic camouflaging 
[7-8] can prevent traffic analysis by padding and 
rerouting so that the traffic pattern between two hosts 
are not related to the operation status of application for 
intruders. However, it cannot provide anonymity and 
intruders can infer the differences of traffic patterns 
between the two hosts. 

In comparison with the previous work, the main 
advantage of our approach in function is that it can 
provide anonymous communication and hide traffic 
pattern simultaneously. Moreover, our approach is an 
isolated scheme. By isolated scheme, we mean two 
points: 1) to achieve its goal in the overall network by 
achieving the same goal in each network segment, and 2) 
not to assume any global parameters, such as the 
capacity between any two hosts like that in [7-8]. Being 
an isolated scheme, our approach, from the performance 
viewpoint, has two additional advantages: 1) 
complementary traffic does not compete on the 
bandwidth with the real traffic actively, and 2) 
complementary traffic does not consume the bandwidth 
of other network segment at all. Our approach can be 
deployed in an overall network by deploying it in each 
network segment gradually, thus making it to be 
practical in engineering. It should be mentioned that the 
link cover mode in [9] is to achieve constant traffic rate 
on each link, too. However, it depends on a finite 
end-to-end flow set to compute the link cover mode. We 
argue that this parameter is very difficult (if not 
impossible) to get because the two ends may have 
infinite flows. In [14], Kung et. al. propose an IP-layer 
anonymizing infrastructure to hide the server address 
from all clients to resist DOS attack, which is different 
from the anonymity in this paper.  

3. Methodologies 

Our approach consists of three components: a 
protocol to negotiate the parameters, such as the 
encryption algorithm and key; a procedure to normalize 
traffic; and cache management. In what follows, we will 
introduce each part in detail. 

3.1 Notations and Definitions 

As usual, a network can be described by a directed 
graph (N, E), where n ∈ N is a network node (e.g., hosts 
or routers). For n1, n2 ∈ N, if (n1, n2) ∈ E, then (n1, n2) is 
a link. For e ∈ E, we denote lene as the maximum length 
(bytes) of packets transmitted in e without fragment, i.e. 
MTU of e (we sometimes use lene to denote the payload 

length of a packet for brevity), and �e as the minimum 
interval time between two frames.  

Definition 1 (Link Feature): Let G = (N, E) be a 

directed graph. Let e ∈ E. Then the pair (lene, �e) is the 
feature of link e.

If the feature of a link is known, the goal of 
normalizing traffic on this link can be determined. 
Usually, a link can have other parameters and we 
abstract them away since they are not relevant with our 
work here. 

Let xe[t(i)] be the length of the ith packet to be sent 
to link e at time t(i) (i = 0, 1, 2, …). Define the 
normalized traffic as follows. 

Definition 2 (Normalized Traffic): Let G = (N, E) is a 
directed graph. For ∀e ∈ E, xe[t(i)] is the normalized 
traffic if the followings hold: 

1) (lene, �e) is e’s feature;  
2) xe[t(i)] = lene for each i;

3) t(i + 1) − t(i) <=��e for i>0;

4) t(i + 2) − t(i) >��e for i > 0. 

From the above definition, each frame in a 
normalized traffic has constant size lene and only one 

packet is sent in each time interval �e.

Remark 1. A normalized traffic is characterized by the 
feature of its link. 

Encryption operation needs keys and algorithms. 
With the notion of security association stated by the IKE 
protocol [13], we define the link security association 
below.  

Definition 3 (Link Security Association): Let G = (N,
E) is a directed graph. For ∀e ∈ E, a pair sae = (Ence, ke)
is called the security association of link e, where Ence is
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the encryption algorithm and ke is the relevant key. 

The address of packet transmitting on link e can be 
encrypted by the algorithm Ence with key ke. In addition, 
for simplicity, our approach does not support 
authentication. That is, the spoofing of the link address 
is not prohibited. 

3.2 Parameter Negotiation 

To normalize traffic in a link e, we need to know 

e’s feature (lene, �e) and the security association sae.
Given link e, lene depends on the characteristics of the 
link medium and link protocol. It is always configured 
by hand or negotiated by link protocol such as PPP. 
Therefore, we assume this parameter has been 
instantiated before the traffic normalization begins. For 

parameter �e, we just use it to characterize the 
normalized traffic and our scheme does not rely on it to 
implement normalization. Thus, it is also unnecessary to 
negotiate it with the parameter negotiation protocol. 
Therefore, sae is the only parameter we need to care, and 
this can be discussed by the following two cases: 

1) Link frame with encryption: For example, MPPE 
Protocol is used as the link protocol, or WEP 
encryption scheme is used in IEEE 802.11 wireless 
LAN. In this case, we are free to negotiate sae

because the traffic encryption will be done by the 
link protocol rather than by our scheme. 

2) Link frame without encryption: For example, 
ordinary Ethernet frame or HDLC frame belongs to 
this case. In order to provide anonymity and prevent 
intruders from detecting padding data or packets, 
our approach has to encrypt the source and 
destination addresses of packet from the network 
layer. For this purpose, the link security association 
needs to be negotiated. 

In theory, we can use IKE protocol for our purpose. 
In practice, however, we found that it might not be 
suitable for link communication since it is designed for 
Internet service. For example, we need not to worry 
about the denial of service attack at the link layer 
service. Below, we will describe the parameter 
negotiation protocol. For a link e = (n1, n2), this protocol 
defines two roles. One is master played by n1 and the 
other slave played by n2. The message sequence in this 
protocol is expressed by 

1. n1→ n2: g, gx mod g, Enc
2. n2→ n1: gy mod g, {g, gy, gx}k
3. n1→ n2: {g, gx, gy}k.

Obviously, this protocol is developed from the 
Diffie-Hellman key exchange protocol, in which g is a 
big prime, gx mod g and gy mod g being the two 
Diffie-Hellman public values, and gxy will be the 
symmetric session key. This protocol directly runs on 
the link layer. Hence, the link layer should be able to 
identify the frames for this protocol. 

After running the protocol, n1 and n2 can use the 
encryption algorithm Enc with key gxy mod g to provide 
anonymity for the network layer packet. In addition, we 
can assume that master n1 has a clock, which 
periodically invokes the protocol so that n1 and n2 can 
periodically refresh their link security associations. 

Though the man-in-the-middle attack of the 
Diffie-Hellman protocol is quite unlikely in the link 
layer, we still authenticate g, gy, gx by encrypting them 
with a key k = gx(i−1)y(i−1) mod g, where i > 1 indicates the 
ith run of this protocol. That is, k negotiated in the 
previous run will be used to authenticate messages in 
this run. It should be noted that the first run depends on 
gx(0) and gy(0) which must be configured on n1 and n2,
which are long term keys. 

3.3 Normalizing Traffic with Anonymity 

Suppose (lene, �e) is the link e’s feature. 
Normalized traffic on e consists of frames with constant 

size lene and constant interval �e between them. Thus, 

during a period of �e, if there is no packet to transmit on 
e, we need to send a dummy packet with length lene, or 
if the size of packet transmitting on e is less than lene,
then some extra bytes are needed to append at the rear of 
the packet such that it has size lene. Therefore, the 
following problems have to be solved: 

1) How dummy packets should be marked so that they 
are distinguishable from real packets for receiver 
and not for intruders? 

2) How extra bytes should be appended in a real 
packet so that receiver can distinguish them, but 
intruders cannot? 

3) How should the payload of dummy packets and 
extra bytes be constructed? 
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4) How should the interval between two frames be 

guaranteed to be �e?

With the assumption that the network protocol is IP, 
we just concern the four fields in an IP header, namely, 
total length, header checksum, source IP address and 
destination IP address. Therefore, a packet can be 
represented by <srcIP, dstIP, len, checksum, payload>. 
Let sae = (Ence, ke). Then, to provide anonymity, srcIP 
and dstIP must be encrypted: <{srcIP, dstIP}ke, len,
checksum, payload>.

Mark dummy packets

Obviously, we can insert a protocol indicator to tell 
whether the encapsulated packet is a dummy packet. 
That is a common way in protocol design. Here, we take 
a more efficient way to avoid the overhead of 
encapsulating packets as follows. When an IP packet is 
arrived, the receiver checks its header checksum. If this 
fails, the packet will be dropped. Therefore, we only 
need to negate a bit in the header checksum field of a 
real packet. In case of a dummy one, it will be dropped 
by the receiver. 

Formally, suppose <srcIP, dstIP, len, checksum,
payload> is a real packet. Then, <{srcIP, dstIP}ke, len,
checksum⊕r, payload>, where ⊕ denotes exclusive-or, r
is a member chosen from the following set randomly: 

{0x0001, 0x0002, 0x0004, 0x0008,  
0x0010, 0x0020, 0x0040, 0x0080, 
0x0100, 0x0200, 0x0400, 0x0800, 
0x1000, 0x2000, 0x4000, 0x8000} 

Moreover, intruders cannot know whether a packet 
is a dummy one or not because srcIP are dstIP are 
encrypted and he is unable to compute the checksum. 

Append extra bytes in a real packet

We can append enough random bits to the rear of a 
real packet such that it has the expected packet length. 

Suppose the link e’s feature is (lene, �e) and <srcIP,
dstIP, len, checksum, payload> is a real packet. Then, 
<srcIP, dstIP, len, checksum, payload+extra bytes> is a 
normalized packet, where length(payload+extra bytes)
= lene.

After doing this, we do not update the value of the 
field len. Otherwise, the real length is impossible to 
recover. However, if this field is transmitted as plaintext, 

intruders will know the real length even the real bytes 
and extra bytes are transmitted in one frame. Therefore, 
the value of this field needs to be confidential to 
intruders. That is, the field should be encrypted if the 
link does not provide privacy. After appending the extra 
bytes, the packets will be <{srcIP, dstIP}ke, {len} ke,
checksum, payload+extra bytes>, where 
length(payload+extra bytes) = lene and (Ence, ke) is the 
link e’s security association.  

Construct payload of dummy packets and extra bytes

Dummy packets including more bytes than extra 
bytes make the payload in full length. Here, we discuss 
a way to construct the payload of dummy packets 
because the extra bytes can be drawn from the 
constructed dummy packet. A simple way is to use the 
last real packet as the dummy packet by just flipping 
one bit in the header checker sum. However, the 
similarity between them can be observed by intruders, 
thus helping him to distinguish the dummy packet. Here, 
we would like to introduce some randomness to the 
payload. Suppose < {srcIP, dstIP}ke, {len}ke, checksum,
payload> is the last real packet, where length(payload)
= lene, and l is a random value and 1 < l < lene. Then, 
payload = payload1 + payload2, where length(payload1)
= l and length(payload2) = lene − l. In this way, the new 
payload in the dummy packet is payload′ = payload2 +
payload1. Therefore, a complete dummy packet can be 
represented as: 

<{srcIP, dstIP}ke, {len}ke, checksum⊕r, payload′>,

where r is defined above. 

Of course, we can generate a series of random bits 
with length lene as the payload of dummy packets, but it 
is an expensive computation to do [12]. 

Guarantee the interval between two frames to be �e

For a node u, if it has a timer more precise than �e,

it is easy to transmit a frame during every �e.

Unfortunately, �e is always much less than the timer in 

system. For example, �e in fast Ethernet is less than 120 

µs, but a tick in Linux is about 10 ms. So, �e is useless 
when practically normalizing traffic and it will not be 
negotiated in the parameter negotiation protocol. Here, 
we propose the best-effort transmitting scheme to make 
the interval time as small as possible, which will 
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approach �e.

In our scheme, we suppose a node u has two queues. 
One is for real packets, called real queue, and the other 
for dummy packets, called dummy queue. Of course, the 
packets in real queue are the output of u’s packet 
scheduling algorithm while dummy queue has only one 
packet which is the last real packet transmitted on the 
link. Those in dummy queue are sent only if there are no 
packets in real queue. At the same time, each packet is 
normalized and this is done by the traffic normalization 
scheduler. The following algorithm can illustrate this 
procedure. 

Algorithm 1: traffic normalization scheduler

INPUT: Ence, ke, lene, real queue, dummy queue 
OUTPUT: a normalized packet p

1. let < {srcIP, dstIP}ke, {len}ke, checksum, payload>
be the packet in dummy queue;

2. choose a random integer l, 1 < l < lene;
3. payload′= payload2 + payload1, where payload1+

payload2 = payload with length(payload1) = l and 
length(payload1) = lene-l.

4. if real queue is empty, then 
4.1 p = < {srcIP, dstIP}ke, {len}ke, checksum⊕r,

payload′>, where r is defined as that in 1);  
4.2  return p;

5. else 
5.1 let <srcIP, dstIP, len, checksum, payload> be 

the first packet in real queue;
5.2 if length(payload) < lene, then 

5.2.1 payload′′= payload + payload1, where 
payload1 is the prefix of payload′ with 
length lene- length(payload)); 

5.2.2 p = < {srcIP, dstIP}ke, {len}ke,
checksum, payload′′>;

5.3 else  
5.3.1 p = < {srcIP, dstIP}ke, {len}ke,

checksum, payload>;
5.4 substitute p for the packet in dummy packet; 
5.5 return p;

The output p in the above algorithm can be directly 
transmitted by the link layer. After sending a packet, the 
interrupt event will be generated, by which the above 
algorithm can be called in turn. Thus, a continuous 
normalized traffic with anonymity is generated.  

3.4 Cache Management 

Cache is usually a good way to improve the 
performance. In our approach, cache is used to improve 
the performance of cryptography operations, including 
encryption and decryption. We first introduce our cache 
management scheme and then discuss two problems 
from the point of view of cache hit rate. One problem is 
why the total length field and source/destination IP 
addresses are encrypted separately and the other why we 
do not identify dummy packets by modifying the value 
of the total length field in ciphertext. 

There are two cache tables in our approach. One is 
for the total length field and the other for the 
source/destination IP addresses. 

Cache table for total length field

Each entry in this cache table has the format 
(len_plaintext, len_ciphertext, valid), where 
len_plaintext is the len in a real packet; len_ciphertext is 
the result that len is encrypted under the current link 
security association sae; valid = 1 indicates that this 
entry is valid while valid = 0 invalid. This table is called 
lencache, which can be viewed as a set.  

The size of this table is bounded by lene. For 
example, the payload length in Ethernet frame is from 
46 to 1510 bytes. Hence, the number of entries in this 
table is at most 1464. For lencache, it is unnecessary for 
cache replacement algorithm. 

For a packet <srcIP, dstIP, len, checksum, payload>, 
when encrypting len field, if {len_ciphertext|
(len_plaintext, len_ciphertext, valid) ∈ lencache, valid =
1 and len = len_plaintext} ≠ Φ (null set), then the cache 
will be hit and the len_ciphertext in this set will be the 
encryption result of len. In this way, we can avoid the 
encryption operation. Otherwise, cache miss occurs and 
we encrypt len under the current link security 
association (Ence, ke) and then append (len, {len}ke, 1) 
to lencache.

For a packet < {srcIP, dstIP}ke, {len}ke, checksum,
payload>, when decrypting {len}ke, if {len_plaintext|
(len_plaintext, len_ciphertext, valid) ∈ lencache, valid =
1 and {len}ke = len_ciphertext} ≠ Φ, then the cache will 
be hit and the len_plaintext in this set will be the 
decryption result of {len}ke. Again, we can avoid the 
decryption operation. Otherwise, we decrypt {len}ke

under the current link security association (Ence, ke) and 
append (len, {len}ke, 1) to lencache.
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Obviously, if the link security association is
renegotiated, all the entries in lencache will have to be 
invalidated. 

Cache table for source/destination IP addresess

This cache is called IPcache, which consists of 
entries with the form of (srcIP_plaintext,
destIP_plaintext, IP_ciphertext, route, valid), where 
srcIP_plaintext and destIP_plaintext are the srcIP and 
destIP in a real packet respectively; IP_ciphertext is the 
encryption result of srcIP and destIP under the current 
link security association sae; valid = 1 indicates this 
entry is valid while valid = 0 invalid; route is the route 
information for the destIP.

For a packet <srcIP, dstIP, len, checksum, payload>, 
when encrypting srcIP and destIP fields, if 
{IP_ciphertext| (srcIP_plaintext, destIP_plaintext,
IP_ciphertext, route, valid) ∈ IPcache, valid = 1, srcIP
= srcIP_plaintext and destIP = destIP_plaintext} ≠ Φ,
the IP_ciphertext in this set will be the encryption result 
of srcIP and destIP. Otherwise, we encrypt them under 
the current link security association (Ence, ke) and 
append (srcIP, destIP, {srcIP, destIP }ke, route, 1) to 
IPcache, where route is looked up from the route table. 

For a packet <{srcIP, dstIP}ke, {len}ke, checksum,
payload>, when decrypting {srcIP, dstIP}ke, if 
{(srcIP_plaintext, destIP_plaintext, 
route)|(srcIP_plaintext, destIP_plaintext, IP_ciphertext,
route, valid) ∈ IPcache, valid = 1 and {srcIP, dstIP}ke =
IP_ciphertext} ≠ Φ, the cache will be hit and the 
srcIP_plaintext and destIP_plaintext in this set will be 
the decryption result of {srcIP, dstIP}ke and route gives 
the route information for this packet. Otherwise, we 
decrypt {srcIP, dstIP}ke under the current link security 
association (Ence, ke) and append (srcIP, destIP, {srcIP,
destIP }ke, route, 1) to IPcache, where route is looked 
up from the route table. 

Like lencache, all the entries in IPcache have to be 
invalidated if the link security association is
renegotiated. 

Two Problems

The first problem is why the total length field and 
source/destination IP addresses are encrypted separately. 
Given the current link security association, because the 
len range is finite, we can expect the probability of the 
cache hit rate to be 1 after some time. If we combine the 
total length field and IP address field, then even for two 

packets with the same len, their source/destination IP 
addresses are not necessarily the same. Thus, we cannot 
obtain benefits from the finite range of len. In a flow, 
the packets in it must have the same source/destination 
IP addresses, but their lengths can possibly be (very) 
different. Therefore, a cache hit must occur for the 
successive packets in the flow if we only encrypt and 
cache source/destination IP addresses. Otherwise, we 
cannot attain the benefits from the feature of the packet 
flow. As a result, we choose to encrypt and cache the 
total length field and source/destination IP addresses 
separately. 

The second problem is why we do not identify 
dummy packets by modifying the value of the total 
length field in ciphertext. Although it is feasible to mark 
dummy packets by this way, it might increase the rate of 
cache miss. Since a dummy packet is evolved from a 
real packet with the same length between them, after 
normalizing the real packet, its length value must be in 
the lencache. Consequently, if we modify the length 
value in ciphertext, it is possible that upon receiving the 
dummy packet we might have to decrypt the {len}ke

because of the cache miss. Therefore, we choose to 
modify the checksum field in the IP header instead of 
the total length field to mark dummy packets. 

4. Conclusions 

In this paper, we have presented and explained a 
general approach to prevent traffic analysis. Our 
approach works between the link layer and network 
layer and it includes three parts. Firstly, a parameter 
negotiation protocol is used to negotiate the link security 
association (i.e., an encryption algorithm and the 
corresponding key). To counter the cryptanalysis, these 
parameters should be negotiated periodically. If a link 
encryption is provided, this protocol is not necessary. 
Secondly, traffic is normalized with anonymity and this 
is the main part of our work. It concerns how to generate 
complementary traffic and combine it with real traffic to 
normalize the traffic on a link. By encrypting the IP 
address of each packet, anonymity is achieved. Thirdly, 
cache management is used to improve the efficiency of 
encryption operation when normalizing traffic. A high 
rate of cache hit can be attained because the packet 
length has a finite range and the packets in one flow 
have the same source and destination IP addresses. Each 
run of the parameter negotiation protocol will invalidate 
all the entries in lencache and addrcache. Since our 
approach is an isolated scheme and it does not need any 
global parameters, it can be easily deployed in each 
network segment independently. From the performance 
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viewpoint, by using the cache, the encryption can be 
done quickly and complementary traffic does not 
compete on the bandwidth with real traffic actively, nor 
does it consume the bandwidth of other network 
segments at all. Hence, it is an effective and practical 
approach to prevent traffic pattern analysis by intruders.  

5. References 

[1] S. Kent and R. Atkinson, “Security Architecture 
for the Internet Protocol”, RFC 2401. 

[2] T. Dierks and C. Allen. “The TLS protocol version 
1.0,” RFC 2246. 

[3] W. E. Leland, M. S. Taqqu, W. Willinger, and D. 
V. Wilson, “On the Self-Similar Nature of Ethernet 
Traffic (Extended Version),” IEEE Trans on 
Networking, 2 (1), Feb. 1994, 1-15. 

[4] V. Paxson and S. Floyd, “Wide Area Traffic: The 
Failure of Poison Modeling,” IEEE Trans. on 
Networking, 3 (3), June 1995, 226-244. 

[5] E. Crovella and A. Bestavros, “Self-Similarity in 
World Wide Web Traffic: Evidence and Possible 
Causes,” IEEE/ACM Trans. on Networking, 5 (6), 
Dec. 1997, 835-846. 

[6] B. Tsybakov and N. D. Georganas, “Self-Similar 
Processes in Communications Networks,” IEEE
Trans. on Information Theory, 44 (5), Sep. 1998, 
1713-1725. 

[7] Y. Guan, D. Xuan, P. U. Shernoy, R. B. Bettati, 
and W. Zhao, “NetCamo: Camouflaging Network 
Traffic for QoS-Guaranteed Mission Critical 
Applications,” IEEE Trans. on Systems, Man, and 

Cybernetics, Part AL Systems and Humans, 31 (4), 
253-265. 

[8] Y. Guan, C. Li, D. Xuan, R. Bettati, and W. Zhao, 
"Preventing Traffic Analysis for Real-Time 
Communication Networks," Proc., The IEEE 
Military Communication Conference 
(MILCOM’99), Nov. 1999. 

[9] S. Jiang, N. Vaidya, and W. Zhao. “Preventing 
Traffic Analysis in Packet Radio Networks,” 
Proc., DARPA Information Survivability 
Conference and Exposition (DISCEX II'01), 2001. 

[10] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, 
“Onion Routing for Anonymous and Private 
Internet Connections,” Communications of the 
ACM, 42 (2), 1999. 

[11] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, 
“Anonymous Connections and Onion Routing,” 
IEEE Journal on Selected Areas in Communication 
Special Issue on Copyright and Privacy 
Protection, 1998. 

[12] A. J. Menezes, P. C. van Oorschot and S. A 
Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996. 

[13] D. Harkins and D. Carrel, The Internet Key 
Exchange (IKE), RFC 2409. 

[14] H. T. Kung, C. M. Cheng, K. S. Tan and S. 
Bradner, “Design and Analysis of an IP-Layer 
Anonymizing Infrastructure”, The Third DARPA 
Information Survivability Conference and 
Exposition (DISCEX 3), April 2003.  

Proceedings of the 37th Annual Simulation Symposium (ANSS’04) 
1080-241X/04 $ 20.00 © 2004 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47


