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throughout the Internet [5]. Moreover, the OT devices like
PLCs or other controlling devices were not designed with
the consideration of security vulnerabilities [5]. An attacker
can gain access to the OT network by bypassing the IoT
network using lateral movement. Lateral movement or east-
west traffic enables an attacker to compromise the entire
network, including internal servers and other devices [6]. This
compromisation of controlling devices may result in massive
damage in the industrial domain. For instance, an attacker took
control over the main server of Oldsmar’s water treatment
plant, Florida, the USA, in February 2021 [7]. By taking
control at the water treatment plant, the attacker abnormally
increased the amount of NaOH in the water, which may cause
vision problems, pain, shock if consumed. Securing the IoT
devices may prevent lateral movement.

However, the IoT network is vulnerable to various security
threats [8], and these vulnerabilities create loopholes for lateral
movement. Moreover, replacing the cloud network with edge
devices cut the centralized control over the IoT devices. An
attacker can hack or snitch the IoT devices at the network
edge and inject malware. Without special security measures,
any device in the network can access any other device like
in Mesh topology [9], which enables the malware to reach
anywhere in the network. This malware enables an attacker
to compromise the internal servers. Therefore, securing the
IoT network for preventing lateral movement has become
indispensable. But according to a survey, 99% of security
professionals are struggling to secure the IoT devices and
facing challenges to update security patches using firmware
update [10].

Network MS is a promising way to prevent lateral move-
ment throughout the IoT network. MS prevents lateral move-
ment and reduces the attack surface by splitting a large
network into several smaller network segments [11]. Then,
the access control of each device in a micro-segment is
restricted within the segment perimeter by imposing specific
security rules. Therefore, the devices within a micro-segment
cannot communicate with other devices outside of its restricted
perimeter. Restricting the access can confine a malware or
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I. INTRODUCTION

Information technology (IT) is the application of computers,
networking devices, communication technologies for collect-
ing, processing, storing, and communicating digital data [1].
On the contrary, OT involves industrial infrastructures, which
use SCADA or control system networks for direct monitoring
and controlling the industrial equipment [2]. Unlike the IT,
the OT network, which includes devices like Programmable
Logic Controllers (PLC), has power issues, slower processing
capability, low memory and a much longer upgrade cycle [3].
The integration of the Industrial Internet of Things (IIoT) in
the industrial manufacturing environment converges the IT and
OT networks.The convergence of IT and OT offers various
benefits i ncluding i mproved s afety, i ncreased productivity,
efficiency, and predictive maintenance [4].

Along with these benefits, t he c onvergence o f I T a nd OT
networks faces severe security risks. Due to the connection
with the IIoT network, the OT network becomes accessible



an attacker within the segment and reduce further movement
outside the compromised device’s segment. Although MS is
widely applied to secure the cloud and workloads of servers
[11], it is challenging for the IoT networks due to several
reasons. First of all, the IoT network is large and dynamic,
which creates difficulty in identifying proper segments. Sec-
ondly, it is difficult to maintain and update a large number of
micro-segments with the security rules periodically. Intelligent
algorithms can be used to overcome these tedious jobs of
maintaining MS and security policies for the IoT networks.

In this work, we have proposed an automated MS procedure
and security rules generation for each segment based on ML
algorithms. The micro-segments are generated through the
OPTICS clustering algorithm. Then a Decision Tree (DT)
classification algorithm is used to separate the malicious
network traffic from the legitimate traffic data. These traffic
data are then used to generate packet filtering policy.

In section II we have discussed the related works. Section III
presents the system model including, the network model, threat
model, and proposed MS process. Section IV demonstrates
the experimental results. In section V we have analyzed the
security enhancement by MS, and finally, section VI concludes
this paper with future works.

II. LITERATURE REVIEW

A very few research works have been conducted for pre-
venting lateral movement in IoT network domain - some
related studies are discussed in this section. The authors in [6]
proposed a micro-segmentation technique based on edge cloud
architecture for smart home IoT networks, using Open flow
rules. The proposed model blocks attackers from accessing
the LAN and WAN of the smart home IoT network. However,
the open flow rules are static and need to be updated manually.
Also, the approach applied for smart homes is not suitable for
large scale and dynamic IIoT networks.

The authors in [12] proposed an evidence reasoning lateral
movement detection technique for the cloud-edge environ-
ment. The authors also introduced vulnerability correlation
process in lateral movement detection. However, this model
is not appropriate for networks which replace the cloud
architecture with only edge computing devices.

A micro-segmentation technique is proposed in [13] based
on K-means clustering algorithm for enterprise network. How-
ever, it is required to define the number of clusters initially for
the K-means algorithm, which is not effective for a large scale
network like industrial IoT or other sensor networks.

The MITRE ATT&CK framework also takes into consider-
ation lateral movements. MITRE ATT&CK can be defined as
the set of individual techniques performed by an attacker to
accomplish malicious tasks. It was shown in [14] that MITRE
ATT&CK encompasses 440 attack techniques belonging to
27 different tactics. These malicious activities may include
gaining access to the IoT network through the use of phishing
links that may compromise other devices through lateral
movements. Furthermore, a public repository ( referred to as
the MITRE ATT&CK Framework) is available which contains
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Fig. 1: Edge enabled IIoT network where different types
of sensors are connected with the industrial machines. The
elements of the network are PS– Pressure sensor, TS– Temper-
ature sensor, RTU– Remote terminal unit, ED– Edge device,
CC– Control centre and Serv– Server.

adversary tactics, techniques and procedures based on real-
world observations [15]. This publicly available knowledge
base provides a rich resource for the development of specific
attack detection, prediction and mitigation models.

III. SYSTEM MODEL

A. Network Model

In the traditional OT network like SCADA, all the data are
collected and analyzed in the centralized server. However, the
IIoT network improves the SCADA network by introducing
edge devices at the network edge. Figure 1 shows the IIoT
and edge enabled SCADA network, where edge devices are
connected with the RTUs. These edge devices then receive
data from the sensors, which are connected with the industrial
equipment. After receiving data, the edge devices process and
provide a real-time decision for maintaining the industrial
machinery. An administrator can control the whole network
from the control centre and send commands through the RTUs.
Also, the data are stored in the central servers for future
analysis and optimization [16]. This integration of IIoT and
edge devices enable the administrators to monitor and control
the industrial control system remotely.

B. Threat Model

In this work, we considered the threat due to lateral
movement by an attacker. Advanced Persistent Threats (APT)
[17] are severe and long-lasting cyber attacks, where lateral
movement is an attack phase in which the attacker moves from
the compromised devices to other devices [18] [19]. APT can
be defined as the theft of intellectual property or espionage
as opposed to achieving immediate financial gain and are
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Fig. 2: Proposed Micro-segmentation generation model based on ML where, the clusters or micro-segments are generated
through OPTICS algorithm and DT is used for traffic data classification. Security policies (SP) are used to restrict the redundant
links.

prolonged, stealthy attacks [20] [21] . For taking control of
the main server of the industrial control system, the attacker
moves deeper inside the network after hacking an IoT device.
Therefore, the attacker can gradually compromise the whole
network. This compromisation may result in a devastating
situation. Moreover, an internal employee may intentionally
try to compromise a device and achieve a malicious goal.

C. Background on ML algorithm

1) OPTICS Clustering algorithm: OPTICS is the upgraded
version of the DBSCAN algorithm. It was demonstrated
in [22] that DBSCAN performs well in clustering network
traffic compared to other models. However, unlike DBSCAN,
OPTICS is better suited for large scale dataset [23] and do
not require the epsilon parameter (the domain knowledge). For
these reasons, here we chose the OPTICS clustering algorithm.

2) DT algorithm: A DT is a supervised classification tech-
nique that includes internal nodes, which represent the features
of the traffic data (for instance, IP address, Flow ID); branches
represent the decision rules, and the leaf nodes represent the
outcomes (Malicious or Normal). This algorithm uses various
feature selection measures like information gain or Gini index
to select the best features as the root node or the internal nodes.
Information gain (IG) can be defined as in equation (1) [24],
which tells us how much a feature provides information about
a class.

Gain(S,A) = E(S)−
n∑
i

|si|
|S|

E(Si) (1)

where, n = number of attributes A, |Si| = number of cases
in partition Si, |S| = total cases and E is the Entropy as defined
below:

E(S) = −
c∑
i=1

pi log2(pi)

D. Microsegmentation

In this subsection, we will discuss the MS generation pro-
cess using ML algorithms discussed in the previous subsection.
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Fig. 3: Confusion matrix of IoTID20 dataset. Here, 0 denoted
the Anomaly class and 1 denotes the Normal class

Figure 2 shows the proposed MS creation model based on ML
algorithms. As shown in [11], MS implementation consists of
several steps.

Firstly, we need to identify and group the devices which
show similar functionalities or behavior. Here, we have chosen
the similarity of traffic data to group the IoT devices through
the OPTICS clustering algorithm. Each group of IoT devices
will then work as a micro-segment.

After generating the groups of similar devices, the traffic
information of each group of devices will be classified as
malicious or normal for creating the security policies. For
classification tasks, we have considered the DT classifier algo-
rithm. After classifying, the algorithm will look for multiple
connection of each IoT device and restrict the access of
redundant links except one link for each IoT nodes. Upon
failure of the current link, the algorithm will make one of the
restricted link available for use. This will result in blocking
the malicious traffics as well.

IV. EXPERIMENTS

The experimental environment comprises of Intel(R)
Core(TM) i5-10210U CPU @ 1.60GHz 2.11 GHz, 16GB
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Fig. 4: Confusion matrix of UNSW dataset. Here, 0 denoted
the Normal class and 1 denotes the Anomaly class

RAM and Windows 10 OS. We have considered Python’s
Scikit learn ML library for importing the OPTICS clustering
algorithm and the DT classifier. Also, other functions are
called from the library for instance train test split function
and StandardScalar() for normalizing data.

A. Dataset

For the experiment, we have taken the UNSW-NB15 [25]
and IoTID20 [26] datasets. These datasets contain various fea-
tures of network traffic, including anomalous and normal data.
The UNSW-NB15 dataset contains 48 features of the network
traffic. The last feature of this dataset is the class label that is
either 0 for normal and 1 for malicious traffic. The IoTID20
dataset comprises 80 network features including, three class
labels. The Normal and Anomaly class are subdivided based
on various cyber attacks.

B. Data Pre-processing

Before applying the ML models on the datasets, we per-
formed data preprocessing. First, the categorical features are
encoded using LabelEncoder() function and normalized us-
ing StandardScaler() function. Both of the datasets are high
dimensional. Therefore, we conducted a correlation analysis
and found that 8 pairs of features are highly correlated with
each other in the UNSW-NB15 dataset. However, among the 8
pairs of features, only (’swin’, ’dwin’), (’Stime’, ’Ltime’) pairs
of feature showed 100% correlation. Therefore, from UNSW-
NB15 dataset ’swin’ and ’Stime’ features are dropped. On
the contrary, from the IoTID20 dataset 21 highly correlated
features which showed 100% correlation are dropped from
the dataset. We choose the correlation threshold as 0.95.

To further reduce the dimensions of the datasets, we ap-
plied Principle Component Analysis (PCA). From PCA, we
found it is sufficient to consider only the first 30 principal
components to represent the overall information of the UNSW-
NB15 dataset. For the IoTID20 dataset, the first 20 principal
components are adequate. However, for the DT classifier, we
did not conduct the PCA procedure.

C. Training and testing

The OPTICS clustering algorithm and the DT classifier are
implemented using the pythons sci-kit learn library. We took
1000 samples from each dataset randomly to conduct OPTICS
clustering operations since our experimental configuration fails
to do clustering for the entire dataset. We set min samples=2,
max eps=np.inf, metric=’chebyshev’, cluster method =’xi’
for the OPTICS clustering method’s parameters. We found
that for the ’chebyshev’ distance metric the OPTICS yields
good results.

On the other hand, for classification algorithm, our environ-
ment supported the entire dataset. We split the entire dataset
to a 70 : 30 ratio for training and testing the DT classifier.

D. Results

After performing the OPTICS clustering algorithm, we got
178 clusters (micro-segments) for UNSW-NB15 dataset and
295 clusters (micro-segments) for IoTID20 dataset based on
the random 1000 samples of each dataset. Table I shows the
clustering results.

TABLE I: Number of clusters generated for each dataset

Dataset Number of Clusters
UNSW-NB15 178

IoTID20 295

TABLE II: Classification performance of DT over UNSW and
IoTID20 dataset

Dataset Accuracy Sensitivity Specificity
UNSW-NB15 99.82% 97.20% 99.91%

IoTID20 99.99% 99.90% 99.99%

After training and testing the DT classifier on both of
the dataset, we have computed the Accuracy, Sensitivity and
Specificity metrics. Table II shows the evaluation results. From
this table, we can see that the DT classifier performed similarly
on both datasets in terms of Accuracy and Specificity, but the
Sensitivity for UNSW-NB dataset is slightly lower than the one
for the IoTID20 dataset. Figures 3 and 4 show the confusion
matrices of the DT classifier for IoTID20 dataset and UNSW-
NB15 dataset respectively. Then, we have used this trained DT
classifier to differentiate between the normal and malicious
traffic in each cluster or micro-segment (as depicted in Figure
2).

Table III shows the security policies for a security group
generated by a clustering algorithm. The MS model with
the DT classifier will block the traffics generated outside of
a security perimeter from entering into the micro network
bestowed by that perimeter. Also, any malicious traffics will
be blocked. From table III we can see that the IoT device
with the IP address 149.171.126.6 is only allowed to commu-
nicate with 59.166.0.4. But other devices with IP addresses
59.166.0.1 and 59.166.0.5 are blocked from communicating
with 149.171.126.6. Hence, a single device is restricted to
access the redundant links (Section V explains in more detail).
The malicious traffics will be blocked automatically.



TABLE III: Security rules for a Micro-segment

DID SIP SPort DIP DPort Proto Action
436047 59.166.0.3 10138 149.171.126.0 42769 udp Block
31392 59.166.0.4 8515 149.171.126.6 53 udp Allow

345291 59.166.0.7 11498 149.171.126.0 5190 tcp Block
632042 59.166.0.1 9310 149.171.126.6 53 udp Block
505483 59.166.0.5 24688 149.171.126.6 58616 tcp Block
381348 59.166.0.8 50725 149.171.126.4 53 udp Block

Legend: DID– Device ID; SIP– Source IP; SPort– Source Port; DIP– Destination IP; DPort– Destination Port; Proto– Protocol
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Fig. 5: A security group of IoT devices connected through
mesh network

V. SECURITY ANALYSIS

If any restriction is not imposed explicitly, an IoT device
can communicate with multiple other devices like in Mesh
topology [9]. Therefore, multiple links help malware to spread
more rapidly within a network. The attackers get more paths
to move laterally within the network and compromise the
devices. It is not acceptable to block the redundant links of
an IoT device since IoT devices must communicate through
other available links if the current link fails. However, we can
control the number of links to reduce the spreading of malware
through lateral movement. MS has the potential to minimize
the spreading of malware over the network by imposing
specific security policies. In this section, we will theoretically
analyze the effectiveness of MS in terms of reducing malware
dissemination. As an example, let us consider a segment of the
IoT network shown in Figure 5, where D5 is the gateway node
and D1, D2, D3 and D4 are the sensor nodes. The devices are
connected in a Mesh topology. Without any specific security
measures, the malware may spread through all the links. The
number of links of this mesh topology is

5C2 =
5(5− 2)

2
= 10 (2)

Through MS, we can restrict the access to communicate
with the gateway node D5. For instance, initially the device
D1 could communicate with D5 through device D4, D3 and
D2. But using MS, we can restrict node D1 from accessing
D5 through D4, D3 and D2 except the direct link numbered

2. Therefore, MS restricts the access of the links numbered
1, 3 and 4 for device D1. Similarly, after restricting all the
redundant links for other devices, the total number of allowed
links in this security group will be reduced from 10 to 4.

Now, we can use the deterministic epidemic model to figure
out the IoT device infection rate for MS and for without MS.
The epidemic model can be defined as [27]-

dI(t)

dt
= βI(t)[N − I(t)] (3)

where β is the infection rate and it is constant for specific
malware, N is the total number of devices, and I(t) is the
number of infected devices at time t. However, from the above
analysis, we can see that the parameter β is proportional to
the number of links in the IoT network for any malware.
As the number of links increases, the probability of device
infection also raises. Therefore, we have considered β as the
link parameter. A close form equation of the epidemic model
is also shown in [27] as,

I(t) = I(0)eβNt (4)

where, I(0) is the number of devices infected at t = 0 unit of
time. Figure 6 (Log plot) shows the device infection rate of
the Mesh network shown in figure 5 with I(0) = 1, t = 15
time unit, β = 10 for without MS and β = 4 for with MS,
and finally N = 5. We can see device infection rate is higher
without applying MS than the infection rate after applying
MS. Therefore, it is evident that, MS reduces device infection
rate by declining lateral movements (at t = 14 almost 3
devices are infected without MS but only 2 devices are infected
with MS). The device infection rate increases exponentially
according to equation 4. Therefore, if we consider a large
network instead of the simple Mesh network depicted in Figure
5, the difference between the two lines shown in Figure 6
will increase. After applying MS, it will take more time to
move from the compromised device to the internal nodes.
Therefore, the administrator will be able to identify and revoke
the compromised devices before the attacker takes control of
the main server or device.

VI. CONCLUSION

In this work, we have proposed an automated MS model
based on the OPTICS clustering algorithm and a DT classifier
for preventing lateral movement in IIoT. We have considered
ML algorithms to automate the micro-segmentation process
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Fig. 6: Plot of equation (3). Where, the blue line shows the
device infection rate before applying MS with β = 10 and the
orange line shows the device infection rate after applying MS
for β = 4.

since it is difficult and tedious to maintain micro-segmentation
for large-scale IoT networks. We have considered the network
traffic to find and group similar IoT devices using the OPTICS
clustering algorithm. The IoT devices which produce similar
traffic information can be grouped together. Then, we have
trained a DT classifier and used the DT model obtained to
separate the normal traffic from the malicious one. The model
will restrict accessing the redundant links of each IoT device,
which will reduce the spreading of malware. MS will also
reduce the lateral movement of an attacker or malware over the
entire IIoT network by imposing security rules. Furthermore,
we have analyzed the effectiveness of MS in the IIoT network
and showed MS reduces device infection rate.

However, in the security analysis section only a static
Mesh topology of IoT devices is considered. In reality, the
IoT network is more complex, heterogeneous, and dynamic.
Therefore, in future work, we will apply statistical distribution
for modeling the dynamic nature of large scale IIoT networks.
Also, we intend to integrate a malware detection model with
the MS process to identify and revoke the infected device
before an extensive portion of the network becomes compro-
mised through lateral movement. We also believe our work
will open the door to further experiments of lateral movement
prevention using ML in IoT networks.
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