A Secure Design Pattern Approach Toward Tackling
Lateral-Injection Attacks

Chidera Biringa
University of Massachusetts Dartmouth
Dartmouth, USA
cbiringa@umassd.edu

Abstract—Software weaknesses that create attack surfaces
for adversarial exploits, such as lateral SQL injection (LSQLi)
attacks, are usually introduced during the design phase of
software development. Security design patterns are sometimes
applied to tackle these weaknesses. However, due to the stealthy
nature of lateral-based attacks, employing traditional security
patterns to address these threats is insufficient. Hence, we present
SEAL, a secure design that extrapolates architectural, design, and
implementation abstraction levels to delegate security strategies
toward tackling LSQLi attacks. We evaluated SEAL using case
study software, where we assumed the role of an adversary and
injected several attack vectors tasked with compromising the
confidentiality and integrity of its database. Our evaluation of
SEAL demonstrated its capacity to address LSQLi attacks.

Index Terms—Lateral-Injection, Lateral-SQLi

I. INTRODUCTION

SQL injection attacks constitute a specialized set of attacks
where an adversary injects malicious inputs to compromise
the security of software or network [1]. An NTT report [2]
presented in a case study that SQL injection attacks alone cost
up to $196,000 to an anonymized national bank, which em-
phasizes the importance of robust defense systems. Common
Weakness Enumeration (CWE) regularly spotlights various
injection attack types on the top 25 most dangerous software
weaknesses [3]. Common targets of injection attacks are
software that allows the insertion of inputs, such as web
applications. In 2021, The Open Web Application Security
Project (OWASP) ranked injection attacks top 3 significant
threats to the security of the web [4]. These attacks violate
confidentiality, integrity, availability, and traceability (CIAT)
security concerns. In severe cases, they can potentially lead
to the total unavailability of critical services. Lateral SQL
Injection (LSQLi) attacks are derived from injection attacks
where an adversary conducts exploits in fragments through
time [5]. LSQLi differentiates itself from SQLi attacks by
persistently adopting multiple attack strategies to compromise
software security. After obtaining initial access, an adver-
sary employs several malicious mechanisms to stealthily and
progressively traverse through the system gaining elevated
privileges and trust levels. Secure design patterns have been
used to prevent the accidental or intentional introduction of
software weaknesses during the design phase of software
development [6], [7]. However, to the best of our knowledge,
no research has investigated tackling lateral-SQLi attacks from
the design level. The study of SQLi and lateral-SQLi attacks

Gokhan Kul
University of Massachusetts Dartmouth
Dartmouth, USA
gkul@umassd.edu

are comprehensive and reliable solutions proposed [8], and
language-dependent measures such as prepared statements are
adopted [9]. Recently, machine learning-based approaches [10]
have produced good results in this regard. The goal of this
paper is to explore the application of a secure design pattern
in addressing lateral SQLi attacks and not to propose concrete
secure methods and algorithms that prevent lateral SQLi
attacks from occurring. Hence, we present a Secure DEsign
pattern Approach towards tackling Lateral-injection attacks —
SEAL. SEAL is a secure design pattern that decomposes user
and security level features into independent but collaborative
components to tackle lateral-based in-band SQL injection
attacks. We split SEAL into three zones (i) Injection Zone
(IZ), (ii) Sensitive Zone (SenZ), and (iii) Security Zone (SecZ).
The IZ models a user interaction component through which a
potential adversary injects single or multiple attack vectors
to compromise software security. The SenZ is where we
store and manage sensitive data, such as user credentials
and authorization privileges. SecZ is the core component of
SEAL, responsible for accommodating secure algorithms to
tackle lateral-based SQLi, which provides the insertion and
deployment of concrete security algorithms.

Outline. In Section II, we describe the necessary background
for this work. Sections III and IV details proposed design
and threat model analysis. Section V evaluates SEAL and
Section VI concludes this paper.

II. BACKGROUND

Lateral SQLi Attacks: Inband Variant. Lateral in-band
SQLi attacks are a variant of SQLi attacks. In this case, an
adversary executes a lateral-augmented attack using traditional
entry points. Technically-adept adversaries typically employ
several attack vectors and strategies when attacking a system,
as in the case of Advanced Persistent Threats (APT) [11].
Thus, it is pertinent to have secure software systems that
are reactive to the evolving behavior of attack strategies. For
example, Figure 2 is a lateral SQLi attack tree that models
adversarial attacks comprising a collection of SQLi methods.
In this scenario, an adversary utilizes a multifaceted strategy
involving the persistent injection and substitution of payloads
until the attack is advanced and compromise successful.

We demonstrate SEAL using an in-band SQLi attack. An
in-band is the most typical of SQLi attacks. It describes an



Inject

SEAL

SEAL

User doesn't have
faculty privileges

User has faculty privileges

SEAL SEAL

User doesn't exist

Something went wrong

Fig. 1: A simplified demonstration of lateral SQLi exploits and secure strategy delegation using SEAL.

| sauiattack
[ SQuiMttack |

111In-band

'
111 Attacker uses |: > -
UNION operator to || [ 1.2 Inferential J

expose data T A

1| 111 Attacker usesa
| UPDATE operation to

13 Out-of-band
modifiy data ut-ol-ban

1.1.1 Attacker exploits
ERROR message to
expose data

1.2.1 Attacker uses
TIME result to expose
data

i| 121 Attacker uses
|| BOOLEAN result to
expose data

Fig. 2: SQLi Attack Tree. Dotted and dashed lines indicate that
the attack is highly probable and improbable. Components in
the dotted red box are in-band SQLi attack variants.

attack that uses the usual communication medium as exploits
point-of-entry and result generation [12]. Common types of
in-band SQLi include: UPDATE, ERROR, and UNION-based
attacks [12]. UPDATE-based attacks exploit the UPDATE SQL
operator to persist erroneous data in the database. ERROR-
based attacks utilize improperly thrown errors by the database
server to derive sensitive information about the structure and
schema of the database.

III. SEAL: SECURE DESIGN PATTERN

SEAL’s Overall Strategy. The primary objective of SEAL
is to delegate and substitute appropriate secure modules to
tackle lateral-SQLi. We describe its modules and the interac-
tion between them from the inception of an injected attack
vector to the selection of security modules. We focus on the
UPDATE and ERROR-based variants of SQLi. In Figure 3,
we display the structure of the design pattern. In designing
SEAL, we consider three major factors: (i) the design should
be generalized to all high-level programming languages, (ii)
the design should facilitate the decoupling of user and secu-
rity functionalities, and (iii) the design endpoints should be
sufficiently flexible to permit the easy insertion of concrete
security algorithms. SEAL comprises three design subsystems
and one architectural-level design. On the architectural level,
we distrustfully decompose processes into Injection (IZ), Sen-
sitive (SenZ), and Secure Zones (SecZ). The IZ comprises
a user interaction subsystem representing the communication
medium and a single access injection point for an adversary
to insert an attack vector or a collection of attack vectors. We
utilize a graphical user interface to facilitate user interaction.
SenZ represents the data we want to protect from malicious
activities. In our case, this is the Sensitive database and

its tables: User and Authorization. Finally, SecZ is the
core component of SEAL and is responsible for selecting
relevant security strategies to tackle these attacks. We detail
independent modules that comprise SecZ.

Secure Zone: Secure Strategy Delegation Process. SEAL
enhances security protection by providing a clear bifurcation
of security strategies that address lateral in-band SQLi attacks
and user-level functionality. The secure modules are aug-
mented to dynamically create objects in response to streams
of attack vectors from an adversary. Given an injected attack
vector through the 1Z, the Delegator module acts as a master
controller, which receives input from the IZ and calls the
InputValidation module that performs a light input validation,
validating the data for type. Post-validation, the payload is sent
to the ThreatHandler module, which detects whether or not it is
an UPDATE-based or ERROR-based injection attack through
the ThreatDetector interface. Next, the Delegator calls the Fac-
toryHandler module, which handles the creation of concrete
security strategies through the SecureFactory interface. Finally,
the SQLiContext modules take a factory argument and execute
a delegate_strategy () method, which calls the secure
functionality from the SensitiveZone to address the injected
attack vector.

IV. THREAT MODEL: DEMONSTRATING EXPLOITS AND
SECURE STRATEGY DELEGATION

The Anatomy of an In-band SQLi. We designed in-band
SQLi exploits (E) to demonstrate the utility of our proposed
design in tackling injected attacks by permitting the integra-
tion of concrete secure strategies. These attack vectors were
injected into our case study software and compromised its
security. Finally, we describe how these exploits are addressed
using SEAL.

E;: UPDATE-based In-band SQLi. The UPDATE-based
exploit maliciously modifies and persists database content.
We model the attack as the acquisition of initial access
by the adversary. Embedded in SEAL’s SenZ is an SQLite
relational database. The database consists of Users and
Authorization tables. Users table consists of four
non-identity columns: (i) Username, (ii) Student, (iii)
Faculty, and (iv) Trust, while the Authorization
table consists of 2 non-identity columns: (i) Trust and (ii)
Privilege. The Username column in the Users table
represents a valid student or faculty member. Student and
Faculty columns denote whether or not a user is a student



Injection Zone (IZ) ﬁ

N Delegator

+ handle() | O

<<interface>>
SecureFactory

L

SQLiContext

<<interface>>
SecureInbandSelection|

+ updateBased()
+ errorBased()

+ deligateUpdateStrategy() ™|
+ deligateErrorStrategy()

InputValidation

Secure Zone

+ validate()

N AN

<<interface>>
| | ThreatDetector

(SecZ)

ThreatHandler

[ Sensitive Zone (SenZ)
A

+ delegate()

:'/ ' + handle()
+ detect()

‘ UpdateBased ‘

+ updateBased()

+ updateBased()
+ errorBased()

+ errorBased()

UbiateThreat | | ErrorThreat ‘

N R \

‘

|
|

+ detect() | + detect() ‘

Fig. 3: SEAL: Secure Design Pattern. A trust boundary [13] exists between the IZ and SenZ. Hence, all data requests from

the IZ must pass through the SecZ secure strategy delegation.

or a faculty member. If the user is a student, the column
value is True and False for Faculty. If the user is a
faculty member, the column value is True and False for
student. The Privilege column in the Authorization
table denotes the authorization privileges of users. Trust
column represents a component in threat modeling-application
decomposition process [13] where we assigned trust levels”
privileges to valid users. In this context, T1 implies that a
student user only has authorization to View Grades, and
T2 implies a faculty user only has the authorization to Enter
Grades. An adversary with knowledge of this schema can
design SQLi attacks to compromise the confidentiality and
integrity of the database.

Root Cause Analysis. Listing 1 displays the result of
an executed query that obtains the authorization privileges
assigned for all users.

Listing 1: User Authorization Privilege

out: ('Userl', 'View Grades')
('User2', 'Enter Grades')
”Userl” has sole authorization to “View Grades” while

”User2” is only authorized to “Edit Grades.” Given that user
privileges are contingent on trust levels (T1, T2), an attacker
can exploit this by injecting malicious queries to assign T2
authorization privileges to a student user.

Listing 2: A Simple SQLi Exploit

'T2'" WHERE Username =

w

; UPDATE users SET Trust =
SELECT 1; —-"

'Userl’;

Listing 3: Vulnerable Faculty Privilege Function

1 def has_entergrades (username) :

2 with connect (self.sensitive) as conn:
3 cur = conn.cursor ()
4 cur.executescript ("SELECT Trust FROM users WHERE Username
= '%s'" %username)
trust_level = cur.fetchone()

return ValueError ("User doesn't exist!")
—— wTpn

.__repr__ ()

5
6 1f trust_level is None:
7
8 else False

return True if trust_level[0]

Listing 4: Secure Faculty Privilege Status

cur.execute ("SELECT Trust FROM users WHERE username =
(username, ))

on
S

In Listing 2, we display a simple SQLi exploit. We feed
the attack vector to the faculty privilege verification feature
shown in listing 3. It has a username input parameter,
which takes a name argument and returns a faculty status,
where {1 € T2} and {0 ¢ T2}. In this case, listing 3,
line 4 is the specific vulnerable code snippet we will be

SenZ is only accessible through SecZ.

exploiting. We pass the SQLi attack vector as a argument to
the has_entergrades () method. Post-exploit, we execute
the user authorization privilege query in listing 1, and the
result in listing 5 shows that "Userl”, a student user has the
authorization privilege to “Enter Grades.”

Listing 5: Post-Exploit User Authorization Privilege

('Userl',
('User2',

out : 'Enter Grades')

'Enter Grades')

The consequence of this exploit is apparent. The attacker has
access to modify the student’s course grade after being entered
by a faculty member. To achieve a fundamental comprehension
of how and why the SQLi exploits work, we investigate
the independent component of the query. In Listing 2, (';)
nullifies the original query, succeeding statement: (

UPDATE users SET Trust 'T2' WHERE Username

— 'Userl';)

performs an update operation where “Userl” is assigned
trust level T2. Finally, (sELEcT 1; --) always returns true
and invalidates subsequent statements using (--) single-line
comment.

We have detailed how an adversary can conduct an in-band
SQLi exploit to compromise the confidentiality and integrity of
a database system. We have also described the consequences
associated with this attack. Next, we discuss concrete secure
strategies plugged into SEAL to tackle the above-stated vul-
nerability. In Listing 4, we have adopted secure development
practices to rewrite the vulnerable code snippet in line 4 of
the has_entergrades () function. Inspecting the code,
we see that we have eliminated the executescript ()
method — which supports the execution of multiple queries
consecutively, creating an attack surface vulnerable to injection
— and replaced it with execute (). Next, we use secure-
query parameters rather than passing interpolating parameters,
which parse arguments directly to the database without input
validation or sanitization. We want to note that described
defense strategies in this work are solely demonstrative. It
shows how SEAL — a secure design pattern can be utilized
and extended. It doesn’t constitute a significant depth of SQLi
security measures, which is outside the scope of our work.
E,;: ERROR-based In-band SQLi. It is an oversight to
assume that the has_entergrades () functionality is en-
tirely secure. In the course of addressing the UPDATE-based
SQLi attack, we have exposed secret information to the ad-
versary violating the information hiding modularization prin-
ciple [14] and results in the exposure of sensitive information
(CWE-200) [3] . Listing 3, line 7 returns a (ValueError ("User



doesn't exist!")) stack trace error if the entered username
is not in the database. The above-stated exposure might seem
inconsequential to a less skilled adversary but not to an ad-
vanced adversary. For example, the has_entergrades ()
function checks whether or not supplied username has the
appropriate trust levels to enter student grades and returns
either a True or False status. This difference enables an
adversary to comprehend the state of the feature and aid in
discovering the authorization privileges of all users by trying
permutations of user input until the correct user is retrieved.
Hence, it makes it easier for an attacker to obtain some
necessary authentication credentials. While this information
may be helpful to a user, it is also useful to an attacker. To
address this, we enumerate a whitelist [15] of valid users in
the database, where the request fails securely if the injected
username doesn’t match the criteria. In practice, we change
code in line 7 to (return), which handles the error by totally
obfuscating the returned error message.

V. EVALUATION

We evaluate SEAL’s feasibility using four cases.

Case 1: Userl Benign Injection. In this case, we enter
a "Userl” into the entry field of SEAL’ s IZ and click
Inject. Given that (Userl € Student), (Student €
Trust) and (T1 € Trust), where (T1 D ”View Grades” 3
Userl). The software returns a response message indicating
that the injected input doesn’t have faculty authorization
privileges.

Case 2: User2 Benign Injection. In this case, we enter
a ”User2” into the entry field of SEAL’ s IZ and click
Inject. This case is the inverse of the first case, (User2 €
Faculty) with T2 trust levels, where (T2 D “Enter Grades”
3 User?2). The software returns a response message indicating
that the injected user is a faculty member with authorization
privileges.

Case 3: UPDATE-based Malicious Injection. In this case,
we enter the listing 2 UPDATE-based attack vector, exhaus-
tively described in Section IV in the entry field of
SEAL’ s IZ, and click inject. The Delegator module
receives the attack vector and calls the ITnputValidation
module to validate the input, and passes validated data to
the ThreatHandler module which detects an UPDATE-
based threat and calls the FactoryHandler module,
which creates an UPDATE-based secure factory. Finally,
the Delegator passes the above-stated factory as an ar-
gument to SQLiContext’s parameter, which calls the
delegate_update_strategy () with the injected attack
vector as an argument, concluding the tackling of UPDATE-
based attack returning a “User doesn’t exist” error message.
Case 4: ERROR-based Malicious Injection. In this case, the
adversary is unsuccessful with the initial UPDATE-based at-
tack and laterally proceeds to intentionally inject invalid inputs
to exploit the error generation process of the database server to
extract secret information about the SensitiveZone. The
delegation process is similar to the third case, only with a
different secure strategy. SEAL detects the threat pattern of the

injected payload and delegates ERROR-based security strat-
egy to address the attack, which includes the total obfuscation
of error and returning a ”Something went wrong” message.
Our evaluation showed that SEAL is practical in selecting
security strategies to address lateral in-band SQLi attacks. The
source code of SEAL and our case study software are pub-
licly available: https://github.com/biringaChi/

SEAL.
VI. CONCLUSION

Secure software design has proven reliable in providing
standardized security strategies for common recurring software
weaknesses and vulnerabilities. SEAL is a design pattern with
characteristics that model secure interaction between sensitive
and non-sensitive data in the software. To the best of our
knowledge, there isn’t an exploration and implementation of
this design pattern to tackle lateral-augmented in-band SQL
injection.

Acknowledgments. We want to thank Yi Liu, Ph.D. for her

review of this paper. REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of lipschitz-
hankel type involving products of bessel functions,” Philosophical
Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, vol. 247, no. 935, pp. 529-551, 1955.

[2] N. Group et al., “Ntt group 2014 global threat intelligence report,” NTT
Innovation Institute, 2014.

[3] A. Gueye, C. E. Galhardo, I. Bojanova, and P. Mell, “A decade of
reoccurring software weaknesses,” IEEE Security & Privacy, vol. 19,
no. 6, pp. 74-82, 2021.

[4] S. K. Lala, A. Kumar, and T. Subbulakshmi, “Secure web development
using owasp guidelines,” in 2021 5th International Conference on
Intelligent Computing and Control Systems (ICICCS). IEEE, 2021,
pp. 323-332.

[5] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of sql injec-
tion attack using machine learning techniques: A systematic literature
review,” Journal of Cybersecurity and Privacy, vol. 2, no. 4, pp. 764—
7717, 2022.

[6] J. Yoder and J. Barcalow, “Architectural patterns for enabling application
security,” in Proceedings of the 4th Conference on Patterns Language
of Programming (PLoP’97), vol. 2. Citeseer, 1997, p. 30.

[71 A. C. Ratnaparkhi and Y. Liu, “Towards tackling common web ap-
plication vulnerabilities using secure design patterns,” in 2021 IEEE
International Conference on Electro Information Technology (EIT).
IEEE, 2021, pp. 1-6.

[8] L. K. Shar and H. B. K. Tan, “Defeating sql injection,” Computer,
vol. 46, no. 3, pp. 69-77, 2012.

[9] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement

generation to remove sql injection vulnerabilities,” Information and

Software Technology, vol. 51, no. 3, pp. 589-598, 2009.

J. Hu, W. Zhao, and Y. Cui, “A survey on sql injection attacks,

detection and prevention,” in Proceedings of the 2020 12th International

Conference on Machine Learning and Computing, 2020, pp. 483—488.

S. Rass, S. Konig, and S. Schauer, “Defending against advanced persis-

tent threats using game-theory,” PloS one, vol. 12, no. 1, p. e0168675,

2017.

T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile,

“Detection of sql injection using machine learning: a survey,” Int. Res.

J. Eng. Technol.(IRJET), vol. 6, no. 11, pp. 239-246, 2019.

P. Torr, “Demystifying the threat modeling process,” IEEE Security &

Privacy, vol. 3, no. 5, pp. 66-70, 2005.

D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” in Pioneers and their contributions to software engineering.

Springer, 1972, pp. 479—498.

M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,

“Building a dynamic reputation system for {DNS},” in 19th USENIX

Security Symposium (USENIX Security 10), 2010.

[10]

(11]

(12]

[13]

[14]

[15]



