
A Secure Design Pattern Approach Toward Tackling
Lateral-Injection Attacks

Chidera Biringa ID

University of Massachusetts Dartmouth

Dartmouth, USA

cbiringa@umassd.edu

Gökhan Kul ID

University of Massachusetts Dartmouth

Dartmouth, USA

gkul@umassd.edu

Abstract—Software weaknesses that create attack surfaces
for adversarial exploits, such as lateral SQL injection (LSQLi)
attacks, are usually introduced during the design phase of
software development. Security design patterns are sometimes
applied to tackle these weaknesses. However, due to the stealthy
nature of lateral-based attacks, employing traditional security
patterns to address these threats is insufficient. Hence, we present
SEAL, a secure design that extrapolates architectural, design, and
implementation abstraction levels to delegate security strategies
toward tackling LSQLi attacks. We evaluated SEAL using case
study software, where we assumed the role of an adversary and
injected several attack vectors tasked with compromising the
confidentiality and integrity of its database. Our evaluation of
SEAL demonstrated its capacity to address LSQLi attacks.

Index Terms—Lateral-Injection, Lateral-SQLi

I. INTRODUCTION

SQL injection attacks constitute a specialized set of attacks

where an adversary injects malicious inputs to compromise

the security of software or network [1]. An NTT report [2]

presented in a case study that SQL injection attacks alone cost

up to $196,000 to an anonymized national bank, which em-

phasizes the importance of robust defense systems. Common

Weakness Enumeration (CWE) regularly spotlights various

injection attack types on the top 25 most dangerous software

weaknesses [3]. Common targets of injection attacks are

software that allows the insertion of inputs, such as web

applications. In 2021, The Open Web Application Security

Project (OWASP) ranked injection attacks top 3 significant

threats to the security of the web [4]. These attacks violate

confidentiality, integrity, availability, and traceability (CIAT)

security concerns. In severe cases, they can potentially lead

to the total unavailability of critical services. Lateral SQL

Injection (LSQLi) attacks are derived from injection attacks

where an adversary conducts exploits in fragments through

time [5]. LSQLi differentiates itself from SQLi attacks by

persistently adopting multiple attack strategies to compromise

software security. After obtaining initial access, an adver-

sary employs several malicious mechanisms to stealthily and

progressively traverse through the system gaining elevated

privileges and trust levels. Secure design patterns have been

used to prevent the accidental or intentional introduction of

software weaknesses during the design phase of software

development [6], [7]. However, to the best of our knowledge,

no research has investigated tackling lateral-SQLi attacks from

the design level. The study of SQLi and lateral-SQLi attacks

are comprehensive and reliable solutions proposed [8], and

language-dependent measures such as prepared statements are

adopted [9]. Recently, machine learning-based approaches [10]

have produced good results in this regard. The goal of this

paper is to explore the application of a secure design pattern

in addressing lateral SQLi attacks and not to propose concrete

secure methods and algorithms that prevent lateral SQLi

attacks from occurring. Hence, we present a Secure DEsign

pattern Approach towards tackling Lateral-injection attacks –

SEAL. SEAL is a secure design pattern that decomposes user

and security level features into independent but collaborative

components to tackle lateral-based in-band SQL injection

attacks. We split SEAL into three zones (i) Injection Zone

(IZ), (ii) Sensitive Zone (SenZ), and (iii) Security Zone (SecZ).

The IZ models a user interaction component through which a

potential adversary injects single or multiple attack vectors

to compromise software security. The SenZ is where we

store and manage sensitive data, such as user credentials

and authorization privileges. SecZ is the core component of

SEAL, responsible for accommodating secure algorithms to

tackle lateral-based SQLi, which provides the insertion and

deployment of concrete security algorithms.

Outline. In Section II, we describe the necessary background

for this work. Sections III and IV details proposed design

and threat model analysis. Section V evaluates SEAL and

Section VI concludes this paper.

II. BACKGROUND

Lateral SQLi Attacks: Inband Variant. Lateral in-band

SQLi attacks are a variant of SQLi attacks. In this case, an

adversary executes a lateral-augmented attack using traditional

entry points. Technically-adept adversaries typically employ

several attack vectors and strategies when attacking a system,

as in the case of Advanced Persistent Threats (APT) [11].

Thus, it is pertinent to have secure software systems that

are reactive to the evolving behavior of attack strategies. For

example, Figure 2 is a lateral SQLi attack tree that models

adversarial attacks comprising a collection of SQLi methods.

In this scenario, an adversary utilizes a multifaceted strategy

involving the persistent injection and substitution of payloads

until the attack is advanced and compromise successful.

We demonstrate SEAL using an in-band SQLi attack. An

in-band is the most typical of SQLi attacks. It describes an

doesn't exist!")) stack trace error if the entered username

is not in the database. The above-stated exposure might seem

inconsequential to a less skilled adversary but not to an ad-

vanced adversary. For example, the has_entergrades()

function checks whether or not supplied username has the

appropriate trust levels to enter student grades and returns

either a True or False status. This difference enables an

adversary to comprehend the state of the feature and aid in

discovering the authorization privileges of all users by trying

permutations of user input until the correct user is retrieved.

Hence, it makes it easier for an attacker to obtain some

necessary authentication credentials. While this information

may be helpful to a user, it is also useful to an attacker. To

address this, we enumerate a whitelist [15] of valid users in

the database, where the request fails securely if the injected

username doesn’t match the criteria. In practice, we change

code in line 7 to (return), which handles the error by totally

obfuscating the returned error message.

V. EVALUATION

We evaluate SEAL’s feasibility using four cases.

Case 1: User1 Benign Injection. In this case, we enter

a ”User1” into the entry field of SEAL’s IZ and click

Inject. Given that (User1 ∈ Student), (Student ∈

Trust) and (T1 ∈ Trust), where (T1 ⊃ ”View Grades” ∃

User1). The software returns a response message indicating

that the injected input doesn’t have faculty authorization

privileges.

Case 2: User2 Benign Injection. In this case, we enter

a ”User2” into the entry field of SEAL’s IZ and click

Inject. This case is the inverse of the first case, (User2 ∈

Faculty) with T2 trust levels, where (T2 ⊃ ”Enter Grades”

∃ User2). The software returns a response message indicating

that the injected user is a faculty member with authorization

privileges.

Case 3: UPDATE-based Malicious Injection. In this case,

we enter the listing 2 UPDATE-based attack vector, exhaus-

tively described in Section IV in the entry field of

SEAL’s IZ, and click inject. The Delegator module

receives the attack vector and calls the InputValidation

module to validate the input, and passes validated data to

the ThreatHandler module which detects an UPDATE-

based threat and calls the FactoryHandler module,

which creates an UPDATE-based secure factory. Finally,

the Delegator passes the above-stated factory as an ar-

gument to SQLiContext’s parameter, which calls the

delegate_update_strategy() with the injected attack

vector as an argument, concluding the tackling of UPDATE-

based attack returning a ”User doesn’t exist” error message.

Case 4: ERROR-based Malicious Injection. In this case, the

adversary is unsuccessful with the initial UPDATE-based at-

tack and laterally proceeds to intentionally inject invalid inputs

to exploit the error generation process of the database server to

extract secret information about the SensitiveZone. The

delegation process is similar to the third case, only with a

different secure strategy. SEAL detects the threat pattern of the

injected payload and delegates ERROR-based security strat-

egy to address the attack, which includes the total obfuscation

of error and returning a ”Something went wrong” message.

Our evaluation showed that SEAL is practical in selecting

security strategies to address lateral in-band SQLi attacks. The

source code of SEAL and our case study software are pub-

licly available: https://github.com/biringaChi/

SEAL.
VI. CONCLUSION

Secure software design has proven reliable in providing

standardized security strategies for common recurring software

weaknesses and vulnerabilities. SEAL is a design pattern with

characteristics that model secure interaction between sensitive

and non-sensitive data in the software. To the best of our

knowledge, there isn’t an exploration and implementation of

this design pattern to tackle lateral-augmented in-band SQL

injection.

Acknowledgments. We want to thank Yi Liu, Ph.D. for her

review of this paper. REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of lipschitz-
hankel type involving products of bessel functions,” Philosophical

Transactions of the Royal Society of London. Series A, Mathematical

and Physical Sciences, vol. 247, no. 935, pp. 529–551, 1955.
[2] N. Group et al., “Ntt group 2014 global threat intelligence report,” NTT

Innovation Institute, 2014.
[3] A. Gueye, C. E. Galhardo, I. Bojanova, and P. Mell, “A decade of

reoccurring software weaknesses,” IEEE Security & Privacy, vol. 19,
no. 6, pp. 74–82, 2021.

[4] S. K. Lala, A. Kumar, and T. Subbulakshmi, “Secure web development
using owasp guidelines,” in 2021 5th International Conference on

Intelligent Computing and Control Systems (ICICCS). IEEE, 2021,
pp. 323–332.

[5] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of sql injec-
tion attack using machine learning techniques: A systematic literature
review,” Journal of Cybersecurity and Privacy, vol. 2, no. 4, pp. 764–
777, 2022.

[6] J. Yoder and J. Barcalow, “Architectural patterns for enabling application
security,” in Proceedings of the 4th Conference on Patterns Language

of Programming (PLoP’97), vol. 2. Citeseer, 1997, p. 30.
[7] A. C. Ratnaparkhi and Y. Liu, “Towards tackling common web ap-

plication vulnerabilities using secure design patterns,” in 2021 IEEE

International Conference on Electro Information Technology (EIT).
IEEE, 2021, pp. 1–6.

[8] L. K. Shar and H. B. K. Tan, “Defeating sql injection,” Computer,
vol. 46, no. 3, pp. 69–77, 2012.

[9] S. Thomas, L. Williams, and T. Xie, “On automated prepared statement
generation to remove sql injection vulnerabilities,” Information and

Software Technology, vol. 51, no. 3, pp. 589–598, 2009.
[10] J. Hu, W. Zhao, and Y. Cui, “A survey on sql injection attacks,

detection and prevention,” in Proceedings of the 2020 12th International

Conference on Machine Learning and Computing, 2020, pp. 483–488.
[11] S. Rass, S. König, and S. Schauer, “Defending against advanced persis-

tent threats using game-theory,” PloS one, vol. 12, no. 1, p. e0168675,
2017.

[12] T. Pattewar, H. Patil, H. Patil, N. Patil, M. Taneja, and T. Wadile,
“Detection of sql injection using machine learning: a survey,” Int. Res.

J. Eng. Technol.(IRJET), vol. 6, no. 11, pp. 239–246, 2019.
[13] P. Torr, “Demystifying the threat modeling process,” IEEE Security &

Privacy, vol. 3, no. 5, pp. 66–70, 2005.
[14] D. L. Parnas, “On the criteria to be used in decomposing systems into

modules,” in Pioneers and their contributions to software engineering.
Springer, 1972, pp. 479–498.

[15] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for {DNS},” in 19th USENIX

Security Symposium (USENIX Security 10), 2010.

