
McBride, Jack, Hernandez-Castro, Julio and Arief, Budi (2018) Earworms
Make Bad Passwords: An Analysis of the Noke Smart Lock Manual Override.
 In: 2017 International Workshop on Secure Internet of Things (SIoT). IEEE.
ISBN 978-1-5386-4542-0.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/64302/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1109/SIoT.2017.00009

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/64302/
https://doi.org/10.1109/SIoT.2017.00009
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Earworms Make Bad Passwords:
An Analysis of the Nokē Smart Lock Manual Override

Jack McBride, Julio Hernandez-Castro, Budi Arief
School of Computing, University of Kent, United Kingdom

Email: {jlgm2, jch27, B.Arief}@kent.ac.uk

Abstract—This paper presents a security analysis of the
manual override feature of the Nokē smart lock. The Nokē
allows its user to operate, monitor and even share his smart
lock with others through a smartphone. To counter the risk
of being unable to open the lock when the smartphone is
unavailable, it provides an override mechanism. Nokē im-
plements this override feature using a quick-click scheme,
whereby its user can choose a sequence of eight to sixteen
short and long shackle presses (similar to a Morse code). To
explore the security implications of this feature, we conducted
a study collecting human-generated quick-click codes from 100
participants, and analysed and modelled the resulting dataset.
Our analysis shows that the override mechanism, at least in its
current implementation, presents a significant opportunity for
successful guessing attacks. We demonstrate this by building
a mechanical brute force tool that on average can test one
quick-click code in under three seconds. We conclude that
this speed, together with the low entropy of human-generated
passcodes, makes this manual override feature one of the most
significant weaknesses of the system and constitutes a promising
attack vector. We responsibly disclosed our findings to the
Nokē manufacturer. We also provide a list of potential coun-
termeasures that can help to address this risk. We believe that
alternative authentication methods such as quick-click codes
will become increasingly popular in ever-expanding Internet
of Things devices, so the weaknesses and the countermeasures
discussed in this paper are timely and relevant, as they can
also apply to other devices and security systems that rely on
unconventional user-generated authentication codes.

Keywords-security; brute force attack; smart locks; Internet
of Things; user study; passcode selection; override mechanism.

I INTRODUCTION

The Internet of Things (IoT) has the potential to make
lives more comfortable and effortless, through various assis-
tive products and services built using small, wireless devices;
for example, to enable personalised services (in which the
user gets their environment configured and presented to
their preference) or multi-factor effortless and continuous
authentication (where the user does not need to remember
burdensome passwords but uses instead biometrics and other
wearable tokens). However, these devices could also pose
new large-scale privacy and security risks that are not
properly understood yet, and constitute an ongoing research
challenge.

The recent Distributed Denial of Service (DDoS) attacks

utilising a massive botnet of compromised IoT devices [1][2]
highlights the serious risks posed by insecure IoT systems
further.

One of the biggest issues we face in this area is the
rapid growth of off-the-shelf IoT devices available on the
market. These can be quickly configured, connected and
operated even by users who have limited familiarity with
security. Available products range from smart versions of
domestic appliances (such as light-bulbs and coffee ma-
chines [3]) to home automation systems (especially home
security and environment control kits [4]) and connected
vehicles [5]. Several research papers have recently covered
the vulnerabilities that commonly plague these devices, some
of which are built upon commercial microcontrollers such as
the Arduino platform [6]. The impact of these vulnerabilities
has been clearly demonstrated; recent work has documented
the weaponisation of hundreds of devices into IoT botnets
[7], as well as the potential deployment of chained attacks
capable of disrupting large-scale networks featured in smart
cities [8].

In this paper, we focus our investigation on smart (IoT)
locks, which are growing in prevalence due to their ver-
satility, from securing doors, lockers and sheds to bikes
and other portable items. Our research aims to contribute
to the investigation of the way user-defined security is
implemented in current smart locks available on the market,
by analysing the strengths and weaknesses of user-based
heuristics, as well as through exploring the rationale behind
the choices made by users. Furthermore, we want to examine
in detail the impact of the different trade-offs between
usability and security in smart locks, and extract lessons
that can contribute to future, more robust and user-friendly
IoT devices.

The rest of the paper is organised as follows. Section
II introduces the concept of smart locks, along with a
discussion on the usability and security trade-offs related
to smart locks. Section III provides an overview of the
methodology used in our research. We conducted a data
collection phase where participants chose and used quick-
click codes and reported their rationale for the passcode
and other relevant data. Section IV describes a mechanical
tool that we designed and built to test our theory that it is
practical and feasible to break most of these user-chosen

codes within a reasonable time. Section V outlines the
findings gathered from the analysis of our data collection,
which led to the creation of a simple Markov model to reflect
the human biases previously observed in these codes. Section
VI discusses the impact of our results and highlights the
vulnerability caused by the override mechanism, as well as
potential countermeasures. Section VII concludes our paper
and Section VIII outlines ideas for future work.

II SMART LOCKS AND THEIR USABILITY AND
SECURITY TRADE-OFFS

There are several popular smart locks available on the
market, notably the Danalock1, Masterlock2 and Nokē3. The
smart lock market is expected to reach a value of $3.6
billion by 20194. Such locks can also be used in bike-sharing
schemes [9], which will expand their spread further.

One of the key requirements of a smart lock system is
to have the owner pair up their smartphone with their smart
lock so that the two can interact. This allows the owner to
control and monitor the lock remotely, or even to share it
with other users.

In contrast to their classical counterparts, smart locks
usually provide an override method to unlock them in case
the preferred method (smartphone control) is not available.
This is useful, for example, when the smartphone is stolen,
lost or otherwise unavailable.

Similar override features can be found in many com-
mercial non-IoT security products, such as TSA-approved
padlocks, which is commonly used by travellers coming to
the USA. Such padlocks allow TSA staff to inspect and
re-lock luggage without the need to break the padlock.
For this to be possible, TSA personnel use a master key
[10] to override the padlock’s security mechanism (which is
typically based on a physical key or a numerical combination
set by the owner) using the TSA master key. However,
while the intention here is to assist TSA staff and protect
consumer padlocks, this override feature broadens the attack
surface considerably. An attacker can easily use basic lock-
picking techniques to bypass the master key’s point of entry,
hence significantly reducing the time needed to open the
padlock, while at the same time, concealing any evidence
of tampering [11]. Consequently, this override mechanism
significantly decreases the security of the whole system and
frequently constitutes the preferred and easiest way to bypass
the security measures put in place.

In smart locks, manual override is a popular and arguably
necessary feature. This is due to the real risk that the smart-
phone may become unavailable due to a drained battery,
theft or loss. However, the way this manual override is
implemented varies greatly from one smart lock to the next,

1https://danalock.com/?page id=35
2http://www.masterlock.com/personal-use/product/4400d
3https://noke.com/pages/padlock
4https://goo.gl/4aFjZ1

as there are no standards or best practices that can aid smart
lock designers. For example, the Masterlock implements an
override known as the “primary code”, which is a user-
defined sequence of 7 button presses on the device’s direc-
tional pad (four possible options: up, down, left and right),
which – when entered correctly – will unlock the device
[12][13]. The code is initially set up via the Masterlock
application on the smartphone, but upon being saved to the
device, it will function independently of the user’s phone or
tablet. In comparison, the Nokē smart lock uses a quick-click
code [14]. This is a sequence of Morse-like clicks, which
are set and operated by pressing the shackle of the device
in a sequence of short and long presses. During the initial
setup of the Nokē, the application on the smartphone offers
the user a choice between opting for a randomly generated
quick-click code of sixteen characters or defining their user-
generated code with a length ranging from eight to sixteen
characters.

The lack of guidelines or any other suitable heuristic
makes not only the implementations of this override feature
vary widely, but also the user response to them highly
inconsistent. This presents a unique challenge and opens up
a possibility of design flaws and further weaknesses in the
system’s security. This is made worse by the fact that – as
we found out during our investigation – it is not possible
to disable the quick-click code feature. Furthermore, the
Nokē lock does not appear to log any records reflecting
neither failed nor successful attempts to unlock it by using
the quick-click code.

The role of the mobile device (smartphone or tablet) as
an “access token” for smart locks presents an interesting
issue. By encouraging users to rely on the mobile device for
trivial tasks, such as unlocking their front door or accessing
their valuables, successful authentication becomes heavily
skewed towards the requirement of possessing the device.
In this case, multi-factor authentication is achieved through
two means: the mobile device paired to the smart lock
(something the user owns) and the password credentials for
accessing the application (something the user knows) [15].

The option to set a user-defined password improves human
interaction by actively engaging the user in the security of
a product, and enhances the memorability of the passwords
[16][17][18]. The cost, however, is the associated potential
for weak, exploitable passwords being picked and, as a
result, the security of the system might be severely compro-
mised. In the case of the Masterlock, a fixed primary code
of length seven imposes a severe constraint on the code’s
entropy, turning it into an appealing attack surface for ad-
versaries. There are cases of security systems which attempt
to mitigate this problem, for example by favouring the use
of a fixed, pre-defined passcode or phrase as a backup, or by
allowing only the use of a randomly generated code created
by the system. These alternatives to user-defined heuristics
tend to come short regarding memorability, as their lack of

Figure 1: The Nokē smart lock (left) and the quick-click
code selection screen in the Nokē application (right).

user involvement and increased complexity make recalling
them a complex task for average users [19].

In this paper, we focus on the Nokē smart lock (see the
left image of Figure 1), which is one of the most popular
smart locks currently available on the market. Furthermore,
the Nokē lock is one of the only three smart locks that
have been highlighted as unbreakable in a presentation at
Defcon’165, which makes their study more challenging and
exciting. In particular, Nokē’s quick-click code seems to
constitute an appealing attack vector because this mechanism
can be user-generated and hence is potentially open to brute
force attacks.

The attack surface of the quick-click system is depen-
dent upon several factors. First, the strength of the quick-
click code is significantly affected by the users heuristic in
choosing the length and the pattern of the code. Second, as
with many user-defined heuristics, the inclusion of personal
details encoded in the quick-click code can be subject
to some forms of social engineering, particularly if those
details are easily gathered. Third, as the quick-click code is
physically entered in a public setting where the lock may
be in use, it is possible to “shoulder surf” while the user
is entering the code, even from a long distance with not
too specialised equipment (binoculars, telescope). From this,
critical information may be obtained regarding the structure
of the code, if not the full code itself. Finally, by collecting a
large enough set of quick-click codes, information about the
statistical properties and other quantitative and qualitative
data can be obtained, analysed and employed in an improved
attack.

III METHODOLOGY

We recruited 100 participants to collect quick-click codes
for later analysis. Participants were individually recruited on
a voluntary basis in a public setting, where they were briefed
on the study and invited to join in exchange for Amazon gift
cards with a value of £10. To provide a common structure
and background and to reduce or at least control priming,
an instructional video6 and short script was prepared and
shown to all participants. The video informed them of the

5https://goo.gl/ZkT7bY
6https://www.youtube.com/watch?v=EbANkK3nhmA

features of the Nokē padlock, with a focus on the quick-
click code. This assisted in demonstrating the outline of the
study, briefing the participant and establishing a consistent
approach to their interaction.

While watching the video, participants were requested to
independently create their quick-click code and save it to the
smartphone provided by the researcher. Whilst this taking
place, their interactions provided a source of qualitative
data, in which factors such as body language and verbal-
isations were observed and recorded. This complemented
the collection of raw data on code lengths and other char-
acteristics such as code patterns. This data gathering phase
was followed by a more advanced mathematical analysis
of the properties of the quick-click codes chosen, regarding
uniqueness and entropy.

The data from the first 50 participants constitute our
training data set. This was used as a base for developing a
model of human-generated passcodes. We collected further
50 participants’ codes, and this new, previously unseen
collected code was used as a testing data set for estimating
the success rate of our proposed attack.

We are aware of the relevance of questions regarding the
ecological validity of password studies [20], and we strive
to meet this key requirement in our study.

We gathered a sample of 100 participants (74 male,
26 female) of varying ages, backgrounds and occupations
and conducted semi-structured interviews with them, during
which time we introduced them to the Nokē device. The
interviews typically lasted between 5 and 10 minutes and
involved a briefing of the study using an instructional video
shown to the participant. This short video explained the
functionality of the quick-click code, and provided a visual
guide to show participants how to select a new code, without
priming them to pick any particular pattern or length. The
video also prompted the participant to consider their quick-
click code, and to make comments on the experience. The
video concluded by instructing the participant to save their
code in the Nokē smartphone app.

The image on the right of Figure 1 shows the app screen
for entering new codes. Once the code was successfully
saved to the Nokē, the participant was prompted to unlock
the device with their newly created code. During this stage,
participants were made to recall their code from memory.
The number of attempts required to unlock the device was
observed and recorded, and a follow-up unlock attempt was
requested to ensure adequate memorisation of the code. This
was also used to test the feasibility of a given code.

Once the Nokē was successfully unlocked for the second
time, the participant was asked “What was the rationale
behind your quick-click code?”, and the response was
recorded. The aim here was to determine the specific reason-
ing behind the structure of the code, for a later comparative
analysis. The participant’s code and length were recorded as
quantitative data.

In general, there are two groups of data collected: quick-
click data and observational data.

III-1 Quick-click data: This data is on the quantitative
measures of the passcodes and their statistical modelling and
other properties.

The data was encoded as a series of dots and dashes to
represent the sequence of short and long presses respectively
(reflecting on how it was displayed on the user interface
provided by the Nokē app). Gathering and studying this data
was one of the primary aims of the study, and it provided a
good insight on the passcode-using habits of the sample par-
ticipants and potentially even larger groups. We maximised
the ecological validity of this study by collecting data from
a general population of smartphone users as our sample,
across which there was a range of educational backgrounds,
ages, and occupations. Additionally, the interviews were
conducted in a public setting, where the participants were not
held to any particular time constraints when choosing their
codes. The Nokē smartphone app was used by participants
during this selection process, to emulate the process of a
real world owner selecting a code for their device. There
are three sets of data collected here:

• Quick-click code: we encoded each participants quick-
click code into a Morse-like sequence of dots and
dashes (e.g. • • • • - - - - for a code of length 8
formed of four consecutive dots and dashes).

• Length: to allow for average code lengths to be calcu-
lated and statistical analysis to be performed on them.

• Number of attempts: to determine the feasibility of the
code set by each participant.

III-2 Observational data: This was collected to form a
record of both qualitative and quantitative data. Our data
was split into two distinct areas:

• Information on the participants and their codes, thus
encapsulating the numerical codes and their rationale.
In Section V, we discuss how this data was processed
to reveal patterns and tendencies.

• Comments: Words or phrases used by the participant
whilst interacting with the lock and creating their code.

IV DESIGNING AND BUILDING THE BRUTE FORCER

In order to demonstrate the feasibility of carrying out
a brute force attack on the Nokē lock, we designed and
developed a mechanical prototype that can automate and
speed-up the process of entering quick-click codes (see
Figure 2). The main components of the brute forcer are:

• an analogue feedback servo with an arm attached
(which is strong enough to press down the shackle)

• an Arduino Uno microcontroller (for controlling the
servo so that the arm can be programmed to press the
Nokē shackle in a systematic way)

• a custom made 3D-printed casing (which can hold the
Nokē lock and the servo in place while the latter carries
out a systematic sequence of presses of the shackle)

The programming logic for the microcontroller is pretty
simple. Based on our attack model, a series of potential
quick-click codes are queued to be tested on the Nokē. Each
of these is represented as a sequence of binary numbers
(where 0 represents a short press and 1 a long press). The
Arduino controller sends these codes as instructions to the
servo, which then executes them as presses on the shackle.
This sequence of instructions is carried out in a loop until
one of two events occur: either the brute forcer finds the
correct quick-click code, or it enters a “locked out” mode
after 64 shackle presses have been made. This is due to
Nokē’s security mechanism for slowing down brute force
attacks, in which Nokē will be locked out for one minute
(i.e. it will not respond to any quick-click code) after 64
unsuccessful presses of the shackle. This measure reduces
the performance of the brute forcer somewhat, but such
an attack is still feasible and can be performed within a
reasonable time, as we discuss in Section V.

To allow others to replicate our set up and results we
share the blue print of the 3D casing at https://github.com/
exampleprogrammingbugs/bruteforcer.

V RESULTS

In this section, we present the main results of our study,
from the initial phases of data analysis to an evaluation of
the overall success of our approach. We describe in detail
how we created a simple Markov model based on the data
gathered from 50 of the 100 participants. Then, we used this
model in conjunction with the brute forcer device described
in Section IV to launch an attack against 50 passcodes
collected from a different set of participants, to evaluate the
feasibility of our brute force approach.

The full dataset of quick-click codes from 100 participants
can be found at: https://goo.gl/4eCEjk. The scanned version
of the questionnaire completed by the participants can be
found at: https://goo.gl/4T05Se.

A set of ten samples of the quick-click codes data is
presented in Table I. Each row contains data collected from
one participant, including their chosen quick-click code, its
length, the participant’s rationale for choosing that code,
some remarks from the researcher based on the observation
of the participant’s interaction when choosing the code,
and the category that the code belongs to (one of the five
categories defined in Section VI).

V-A Participant data and code length

Following the data set collection phase, we began the
analysis of patterns in the passcodes and studied which
factors could affect different security-related features. We
sorted our data based on specific participant criteria such as
age, gender and education to explore any relations between
individual participant factors and the properties of their
passcodes. No significant relations were found, apart from
a tenuous positive correlation between the participant’s age

Figure 2: The 3D model and the 3D-printed prototypes of the Nokē brute forcer.

Table I: Ten samples of participant’s data.

Participant Quick-click Code Length Comments Researcher Comments Category
P3 • • • • • - - • • • • • - - • • 16 “I need to think of a song...”, “All

the beats would be short presses”
Code inspired by Johann Strauss “The Blue
Danube Waltz”. The participant hummed the
melody when unlocking the Nokē.

Earworm

P5 • • - • • • • • - 9 “Based off of a song” Code inspired by Guns N Roses Paradise City.
When creating his combination, this participant
wrote it down on a piece of paper.

Earworm

P9 - • • • • • - • • • 10 “It’s Bob in Morse code” The participants code was based off of Morse
code, noting the similarities between that and the
Quick-Click code. It was the name Bob in Morse.
They explained it was something he would have
to look up online to remember how to encode.

Morse

P13 • - - - • • • • 8 “It’s Jess in Morse code” The participant designed their code after recognis-
ing the similarity between the Quick-Click code
and Morse code. To make it memorable, they
encoded the name Jess as their combination.

Morse

P15 • • • - • • • - • • • 11 “My favourite number is 3”, “...pat-
terns of 3 broken up by the longer
dash”

This participant created a pattern based upon a
repetition of their favourite number.

Numerical

P24 • • • • • - • • • 9 “I just set my code and tried to
remember what I chose”

The participant chose a code supposedly on a
random basis - keeping it short at a length of 9,
and splitting it into segments with a long press in
the 6th position.

Pseudo-
random

P28 - - • - • - - - - • - • - • • • 16 “I memorised the long presses as a
pin code”, “I randomised the way
the pattern was generated”, “I can
memorise this as 2-1-4-1-1’ ”

This participant tossed a coin for each press of the
code - the two sides corresponding to a long or
a short press. In this way, the code was pseudo-
randomised. The participant then memorised the
pattern of consecutive long presses as separated by
the short presses, making it easier to remember as
a number code rather than a sequence of presses.
They rationalised that this would be easier to recall
for long term use.

Numerical

P31 - - • - • • - - - • • - • - - 15 “I wanted to make it long and com-
plex but with some structure”

The participant devised a complex code which fea-
tured a mirror of two 7-length sequences separated
by a long press.

Pseudo-
random

P55 • - • • - • - • - 9 “Used my full name and syllables in
it. So last syllable in each name is
a long one, rest are short”

The participant encoded their first and surname
syllables by alternating between short and long
presses.

Name
Substitution

P85 - • - • • • - • - • - 11 “Easy to remember, Encoding of
first and last names vowels and con-
sonants with alternate presses”

The participant encoded their full name, using
short presses for vowels and long presses for
consonants

Name
Substitution

and the length of their password. Included in the gathered
data were direct quotes from participants while taking part
in the study. This intended to capture user thoughts and
behaviour when interacting with the device, as well as for
the use of their codes. To document our observations, we
recorded the data throughout the interview verbatim.

Figure 3 shows the breakdown of code length choices
made by participants. This provided a basis for our inquiry
into the way users perceived and dealt with the constraints
of the code regarding length and character selection.

We processed the data from the interview stage into
graphs and charts for easing visualisation, as shown in
Figures 3 and 4. From this, we drew further conclusions

Figure 3: Distribution of passcode lengths across the training
and test datasets.

about the characteristics of the codes the participants created.
This analysis intended to gain insights into code patterns, as
well as exploring just how unique each quick-click code
is, in comparison to other quick-click codes. Whilst the
sample size was relatively limited, the main characteristic
we focused on was code length.

V-B Auto-generated codes

A further investigation into the automatically generated
(random) codes created by the Nokē app itself was also con-
ducted. We aimed to assess the security of these seemingly
random codes by comparing them with the ones generated
by the participants. By investigating this human factor, we
were able to infer several statistical patterns and biases
common to the human generated codes that would later be
used to prepare an accurate model for the attack. Studies
indicate that optimal security can only be attained with
passwords that are randomly-generated [21]. As such, this
became an important metric in our study; to measure the
security of the randomly generated passcodes offered to
users in place of defining their own.

As it is apparent in Figure 4, the randomly generated
codes (right) significantly differ from the human generated
ones (left). Furthermore, the resultant random code seems
not to adhere to any specific pattern that might be advan-
tageously exploited by attackers. It is obvious that trying
to crack human generated codes will be significantly easier,
particularly when the attacker knows sensitive, encodable
information about the target victim – e.g. date of birth,
favourite number, or a musical melody connected to the
victim.

V-C Analysis of the passcodes

To complement our analysis of the participant data, we
analysed the 50 codes to learn about their exploitable proper-
ties. This included looking into code likeness and uniqueness
(for which we used string comparison with the Levenshtein
distance), and developing a basic Markov model of the codes
and studying any significant patterns.

To explore passcode similarities, we encoded passcodes
into a binary form: short presses (•) were replaced with 0,
and long presses (-) with 1. For example, a quick-click code
of (• • • • - - - -) was encoded as 00001111.

The following sections detail how the Levenshtein dis-
tance metric and the basic Markov model were used.

V-C1 Levenshtein distance: The Levenshtein distance
was used to measure the level of code uniqueness on a
broader scale, by comparing codes of different lengths.

The key difference in length variation allowed for a
comparison to be drawn between the participants’ codes
and the auto generated Nokē codes, as well as the breadth
of uniqueness of participant selected codes across various
lengths. A pairwise comparison of Levenshtein distances for

Table II: Chi-square test for user character distribution.

Character Expected Observed
0 265 304
1 265 226
χ2 0.455 11.479

the human generated and automatically generated codes can
be found in Figure 4.

Both figures have been colour-coded to emphasise patterns
in the data, based on the level of dissimilarity between
two codes. In this context, dissimilarity is the number of
differences between two strings [22].

• Teal: Dissimilarity between 12 and 16. The two cross-
referenced codes are considered uniquely different.

• Green: Dissimilarity between 8 and 12. The two cross-
referenced codes have a high difference level.

• Yellow: Dissimilarity between 4 and 8. A medium
distance between the cross-referenced codes.

• Orange: Dissimilarity between 0 and 4. Codes in this
category have significant similarities.

• Red: Dissimilarity equal to 0. Codes in this category
are identical.

V-C2 Markov model of participants’ quick-click codes:
One important observation is that there exists a clear user
preference towards codes with more zeroes than ones. For
example, on the 50 quick-click codes in the training dataset,
we found 304 zeroes and 226 ones out of a total of 530
characters (for an average length of 10.6 characters per
code). We computed the Chi-square statistic

χ̃2 =

n∑
k=1

(Ok − Ek)
2

Ek

corresponding (in this case) to two bins and thus 1 degree
of freedom, to measure whether this was enough evidence
of a strong bias towards zero in human-generated codes.
The value corresponding to a p-value of 0.001 is, for that
distribution, 10.827 and as the value obtained (see Table II)
is 11.479 > 10.827, we can conclude that users do indeed
significantly prefer zeroes over ones in quick-click codes,
with a p-value of p < 0.001.

Just for comparison’s sake, a similar analysis of the testing
data leads to the same conclusion, this time with an ever
more extreme value χ2 = 20.41.

We can conclude that it seems apparent that humans
prefer short shackle presses (represented by zeroes) than
long presses (ones). This is an important finding for our
later attack, that will somewhat improve its speed because
it is significantly quicker to enter a zero (150 milliseconds)
than a one (455 milliseconds) with our brute forcer device.

We continued our analysis by creating a simple Markov
model based on the user generated passcodes, a model that
we would use in the later study to generate likely codes to
feed the brute forcer in its attack of the Nokē. For that, we

Figure 4: A pairwise computation of Levenshtein distances between user-generated (L) and randomly generated (R) codes.

Table III: User passcode’s entropy per bit and nibble.

Group length Bit Entropy Nibble Entropy
8 0.9731 1.9296

8+ 0.9865 1.9877

analysed how the last character, last two characters and last
three characters influenced the selection of the next one in
human-generated codes (see Table IV).

An interesting observation is that a significant proportion
of the participants generated codes of the minimal length.
Concretely, 13 out of 50 (or approx. 26%) generated codes
of length 8, including the only repeated code (‘00010001’)
within the training set.

Our working hypothesis is that users generating these
shortest possible codes have an aversion to mental stress;
not only do they produce shorter codes but also these codes
tend to be less entropic when corrected for length. To test
this, we computed the entropy per bit and nibble for all the
8 bits passcodes and all the 8+ ones. The results are shown
in Table III.

Judging by the results in Table III, the hypothesis above
seems to hold but not significantly enough as to justify the
use of two different models (for 8 and 8+ codes) so we will
use a single one, characterised by the transition matrix of
Table IV.

We can use the probabilities shown in Table IV to
implement a simple Markov model of the human-generated
passcodes. The model will generate a passcode length fol-
lowing the distribution seen in the 50 codes of the training
set, then randomly generate a first digit according to the
{0.5735, 0.4264} distribution of Table II, and then the rest
until reaching the required length following the transition
matrix of Table IV. It is interesting to note that despite
the fact that the trigram model is supposed to be more
accurate than the bigram one – and this should be preferred
to the monogram model – in practical terms, we have
seen that experimentally, all perform equally well with no

Table IV: User passcode transition matrix for monograms,
bigrams and trigrams.

From → To 0 1
0 0.286 0.271
1 0.257 0.185

00 0.135 0.171
01 0.102 0.132
10 0.168 0.072
11 0.132 0.083

000 0.062 0.086
001 0.062 0.086
010 0.074 0.038
100 0.086 0.068
110 0.091 0.038
101 0.047 0.026
011 0.047 0.071
111 0.071 0.041

statistically significant differences, so for simplicity, we used
the monogram transition matrix in our study.

We used this model in our attack and measured its
effectiveness against our test data of new, previously unseen
50 codes from a different set of participants. The results
are in Figure 5. To compute this figure, we used the best
minimum times achieved with the brute forcer, which is
150ms for a zero and 455ms for a one. In a nutshell, we
can (on an average computed over 100 experiments) break
around 7% of the passcodes after 1 minute, approximately
40% of the codes after 10 minutes, and around 75% of
the passwords in the test dataset in 1 hour. On the other
hand, for achieving a 95% we will need around 6 hours
of code cracking with the brute forcer tool7. These figures
correspond to the most realistic model of the Nokē, with
the lockdown defence active. Otherwise, 2 hours would be
enough to crack 93% of our test passwords.

7https://www.youtube.com/watch?v=IExycL7zif8

Figure 5: Percentage of cracked codes from the test dataset
vs. Time in minutes.

VI DISCUSSION

The interview stage, which involved data gathering from
100 participants, provided us with an interesting view of
each user’s rationale behind selecting their codes. We anal-
ysed the lengths and other patterns of these user-generated
codes to come up with five categories.

VI-A Code Lengths and Patterns

From the code lengths that participants chose, it is inter-
esting to point out that lengths 13 and 14 were infrequently
used across the training and test data sets (see Figure 3).
A length of 8, which is the shortest possible, was chosen
by 29% of participants. Many of these cited memorisation
related reasons to justify this length, indicating that shorter
codes are easier to remember (“I’m worried I might forget
my code” or “I picked a pattern that is easy to remember”).

This data reinforced the importance of memorability as
a key feature in user-defined heuristics; drawing parallels
between manual overrides such as the quick-click code and
other security metrics such as passwords, PINs or other nu-
merical combinations. To further confirm this, the majority
of the participants selected a code of length between 8 and
12, with 87% of the dataset in this group. We consider this
to be a clear indication that a shorter and easier to remember
code is better suited to the average user, and as a result, will
be more frequently used than codes of maximum length;
which, although better regarding security, are not always
user-friendly.

Another trend we observed from our dataset was the
participants’ influences behind creating their quick-click
codes. There are many instances in which these were related
to songs, rhythmic cues or other structural repetitions, in
other words, earworms. Participants described up to 46%
(46/100) of codes as being inspired in this way. In larger
datasets, we predict that this value will scale proportionally.

In some cases, participants chose a direct repetition of a
pattern, by simply iterating it as many times as necessary to
meet the desired length, e.g. • • • - • • • - or - • - • • - •
- • • or • • • - • • • - • • • or • • • • - - - • • • •.

We conjecture that in a larger sample, there will be a non-
negligible number of (likely short) identical codes picked by
different users (birthday paradox), probably of at least 5%
of the codes. This is supported by our dataset, in which there
were 5 repeated codes (all of length 8 or 9) leading to 10
duplicated entries.

General security management advice, and in particular
the best practice and recommendations commonly employed
for creating secure passwords, are tough to apply in the
context of quick-click codes. Most of the readily avail-
able password generation guidelines (such as [23]) refer to
having a mixture of characters and enforcing a minimum
length; whilst the length of the quick-click code can be
constrained, introducing variation to the sequence of presses
is difficult given the limitation of having only long and short
presses available. As a result, there is a relatively small
number of unique combinations for the quick-click code
(130, 816 =

∑n=16
n=8 2n, or the equivalent of approximately

17 bits), which is very low when compared to other security
metrics.

VI-B Five Categories of Patterns
After analysing the 100 codes – in particular, looking at

their structural characteristics and the rationales given by
the participants in their selection process – we classify the
codes into five distinct categories, as can be seen in Table
V.

The “Earworm” category was shown to be by far the
largest in our dataset; with 46% of participants selecting
a code of this nature – many of whom cited the catchiness
of a given rhythmic sequence as a driving factor behind their
choice (“The code correlated with a tune in my head I could
remember”). Other common themes included Morse-like
codes (we label them as “Morse” in Table V), the encoding
of numerical data, such as birth dates and number sequences
(“Numerical”) and encoding strings of personal information
relating to the participant (“Name Substitution”).

Alternatively, 25% of our code sample was cited as
being randomly chosen by participants (“Pseudo-random”).
In some cases, this occurred where the participant, with the
intention to make it “harder to guess” devised a seemingly
complex and structureless code. Our results also show that
11 out of 29 of the minimal code length of 8 (38%) belonged
to this category.

VI-C Other Issues
A major issue we found in the Nokē is that the quick-click

code is a mandatory feature which cannot be disabled by
the user under any circumstances. The problem here resides
in the fact that the system compels the user into using the
code; which may result in poorly thought-out, quick and
dirty heuristics being used in place of a proper, secure code.

Considering the lack of variations in the quick-click code
alphabet (either a long press or a short press) this is con-
ducive to low entropy passwords, increasing the likelihood

Table V: Five categories of quick-click codes, sorted by their frequencies (n=100).

Category Description Freq.
Earworm Codes related to music, rhythmic cues or other structural repetitions. 46
Pseudo-random Codes which are seemingly unstructured, or cited by participants as being randomised. 25
Numerical Codes which feature numerical encodings, such as a favourite number or date of birth. 19
Morse Codes based on the encoding of words or phrases in Morse code. 8
Name Substitution Codes related to the participant’s name, e.g. by encoding vowels and consonants as presses. 2

that the correct codes are guessed quickly through semi-
randomised attempts. For an attack of this nature, it is
possible that brute forcing devices manipulating the shackle
could be a useful tool in the attacker’s arsenal to target
individual Nokē devices with a series of automated attempts.
This would be particularly effective if there were little in the
way of preventative measures in the device, as successive
code entry attempts could then be chained together to
recover the passcode at an increased rate.

Other IoT devices may employ different techniques, such
as a factory reset or pairing up with a new smartphone,
to deal with the possibility of the associated smartphone
becomes unavailable. Nevertheless, reduced entropy input is
common with smart locks, e.g. MasterLock uses directional
combination padlock and ResLock employs a dedicated
button for a Morse-code. Furthermore, many smart locks
designed for home security, such as the Schlage Connect,
feature numerical override systems built on user input, such
as a four digit passcode. These systems will also suffer from
weak entropy, and they are prone to our attack.

According to our model, 40% of the codes can be cracked
under 10 minutes. The success of a real world attack based
on this (e.g. for stealing a bike) depends on several factors.
Against more permanent targets, such as a storage container
or a shed our model indicates a 93% success rate after
running the brute forcer for 2 hours.

VI-D Potential Countermeasures

Our research has shown that smart locks with a manual
override, such as the Nokē, open themselves to a potential
vulnerability that can significantly reduce their overall secu-
rity. We propose several countermeasures to improve their
security (at the cost of reduced usability):

• Provide an option for the user to disable the quick-click
override mechanism. This would remove the risk of a
brute force attack, but the user might not be able to
open the lock if they lost their phone.

• Employ an additional movement (e.g. a different
shackle pressure) or add a button to indicate the be-
ginning of the quick-click code entry explicitly.

• Do the same (or even better, use a different marker) to
signify the end of the quick-click code explicitly.

• Remove the light/sound feedback when the user enters
the right code, as this eases automatic success detection.

• Implement immediate penalisation delays after every
failed attempt, or even a staggered increase of the
delay after repeated delayed attempts, as in the French
passport [24]. The current implementation allows users
to enter 64 wrong quick-click codes in succession
before triggering a lockout period of 1 minute. A
single attempt with 64 quick-click codes can potentially
be used to test up to 1,632 keys (not all necessarily
different), which of course simplifies the attacker’s task
quite significantly.
In general, triggering this lockout penalisation mech-
anism after m > 8 quick-click attempts allows the
attacker to try up to

∑m
i=8(m − i) + 1 = m · (m −

8) + (m+8)(m−8)
2 + m keys, so it is very important

for security reasons to keep these m as small as
possible without compromising usability too much. For
example, if the value of m is halved from the current
value of m = 64, the number of these spurious key
trials will be reduced by a factor of four, from 1,632 to
352. A further reduction to 16 would increase security
(up to a maximum of 96 spurious keys), but will
likely compromise usability too much. We recommend
reducing m to a value between 24 and 32.

These series of simple improvements would have a mas-
sive impact in reducing the effectiveness of our brute forcer
tool against the Nokē and similar smart-locks.

VII CONCLUSION

In this study, we investigated several aspects of user
behaviour when choosing a personal security metric such as
an override code for IoT smart locks. We have also compared
the statistical aspects of user-based heuristics for selecting
passcodes against those that are automatically generated by
the system and analysed patterns related to the selection of
these codes.

Based on the statistical analysis of the collected human-
chosen codes from 100 participants, we conclude that there
is a serious vulnerability in current implementations of smart
lock manual overrides, which would enable a brute force
attack to guess the passcode with very high probability in
only minutes.

The reasons behind this vulnerability include:
• Small range of unique code possibilities. For codes of

length 8, there are 256 unique combinations to choose
from, and just 65,536 for the maximum length of 16

– both of which are relatively small compared to other
security metrics (e.g. passwords).

• User behaviour reflects a stark inclination to choose
shorter length codes, with 29% opting for the minimal
length of 8.

• Users are heavily biased towards using more zeros than
ones in their codes, which further speeds up the attack
as zeros are 3x faster to click.

• The use of visible patterns and repetitions is a common
occurrence in our data which, severely affects the
entropy of the used codes.

• There is no option to disable the override feature, and
there are only limited measures in place to prevent or
detect attackers manipulating the device.

To demonstrate the feasibility of a brute force attack
on the manual override mechanism, we implemented a
mechanical brute forcer using information from our models.
The brute forcer takes 2.52 seconds on average to test a
single passcode, which is a significant advantage over a
human performing the same task manually (which in our
investigation has been empirically estimated at between 2-4
times slower than the brute forcer).

We proposed several countermeasures to mitigate this
vulnerability, but they have a cost regarding usability. This
highlights the need to explore further issues relating to
security and usability trade-offs in emerging technologies
such as IoT.

VIII FUTURE WORK

A promising area of our future work is the development of
a standard for vendors’ implementation of manual overrides
in smart locks. There is a lack of consistency between the
levels of security offered by different vendors; for example,
Masterlock has a feature where the legitimate owner is sent a
warning email when the manual override code is incorrectly
entered upon repeated attempts. Although the Masterlock
primary code is considerably shorter at a fixed length of 7,
this feature reinforces the user’s awareness of the device’s
status and serves as a useful tool in preventing theft. The
Nokē, and other future smart locks could benefit greatly from
a similar system alerting users to any suspicious activity.

Finally, to build upon the findings from our research, we
would like to expand the size of our dataset by collecting
more samples from a wider target population. Whilst the cur-
rent results successfully demonstrate patterns in the quick-
click code selection, with a larger participant sample we
would be able to observe more trends in the data and increase
the likelihood that they could be applied to the wider user
group of smart locks, and IoT devices in general.

ACKNOWLEDGEMENTS

We thank the group of participants who took part in our
study and shared their experience of using the Nokē smart
lock, and the anonymous reviewers for their useful feedback.

REFERENCES
[1] Brian Krebs. Krebs On Security Hit With Record

DDoS. https://krebsonsecurity.com/2016/09/krebsonsecurity-
hit-with-record-ddos/, 2016.

[2] Dan Goodin. Brace yourselvessource code
powering potent IoT DDoSes just went public.
http://arstechnica.com/security/2016/10/brace-yourselves-
source-code-powering-potent-iot-ddoses-just-went-public/,
2016.

[3] Eyal Ronen and Adi Shamir. Extended functionality attacks
on IoT devices: The case of smart lights. In Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on,
pages 3–12. IEEE, 2016.

[4] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security
analysis of emerging smart home applications. In Security
and Privacy (SP), 2016 IEEE Symposium on, pages 636–654.
IEEE, 2016.

[5] Charlie Miller and Chris Valasek. Remote exploitation of an
unaltered passenger vehicle. Black Hat USA, 2015, 2015.

[6] Dae Gyu Seo, Han Shin Ko, and Yong Deok Noh. Design
and Implementation of Digital Door Lock by IoT. KIISE
Transactions on Computing Practices, 21(3):215–222, 2015.

[7] Kishore Angrishi. Turning Internet of Things (IoT) into
Internet of Vulnerabilities (IoV): IoT Botnets. arXiv preprint
arXiv:1702.03681, 2017.

[8] Eyal Ronen, Colin OFlynn, Adi Shamir, and Achi-Or Wein-
garten. IoT Goes Nuclear: Creating a ZigBee Chain Reaction.
https://eprint.iacr.org/2016/1047.pdf, 2016.

[9] Gaja Kochaniewicz. Smart lock for bike sharing in corporate
environments. Master’s thesis, 2015-06-10.

[10] T. Valerio and S. Payne. Padlock, December 10 2009. US
Patent App. 12/515,296.

[11] Matt Blaze. Safecracking for the computer scientist. U. Penn
CIS Department Technical Report, 2004.

[12] L.B. Ranchod. Keyless padlock, system and method of use,
August 18 2015. US Patent 9,109,379.

[13] Masterlock. Masterlock Bluetooth Padlock, April 2017.
[14] Fuzdesigns. Noke Quick Click Code, April 2017.
[15] Theo Tryfonas and Ioannis Askoxylakis. Human Aspects of

Information Security, Privacy, and Trust: Third International
Conference, HAS 2015, Held as Part of HCI International
2015, Los Angeles, CA, USA, August 2-7, 2015. Proceedings,
volume 9190. Springer, 2015.

[16] Alain Forget and Robert Biddle. Memorability of Persuasive
Passwords. In CHI ’08 Extended Abstracts on Human Factors
in Computing Systems, CHI EA ’08, pages 3759–3764, New
York, NY, USA, 2008. ACM.

[17] Anne Adams, Martina Angela Sasse, and Peter Lunt. Making
passwords secure and usable. In People and Computers XII,
pages 1–19. Springer, 1997.

[18] Steffen Werner and Connor Hoover. Cognitive approaches
to password memorability–the possible role of story-based
passwords. In Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, volume 56, pages 1243–
1247. SAGE Publications, 2012.

[19] Jeff Jianxin Yan, Alan F Blackwell, Ross J Anderson, and
Alasdair Grant. Password Memorability and Security: Em-
pirical Results. IEEE Security & Privacy, 2(5):25–31, 2004.

[20] Sascha Fahl, Marian Harbach, Yasemin Acar, and Matthew
Smith. On the ecological validity of a password study. In
Proceedings of the Ninth Symposium on Usable Privacy and
Security. ACM, 2013.

[21] Anne Adams and Martina Angela Sasse. Users are not the
enemy. Communications of the ACM, 42(12):40–46, 1999.

[22] Michael Gilleland. Levenshtein distance, in three flavors.
Merriam Park Software: http://www.merriampark.com/ld.htm,
2009.

[23] Matteo Dell’Amico, Pietro Michiardi, and Yves Roudier.
Password Strength: An Empirical Analysis. In INFOCOM,
volume 10, pages 983–991, 2010.

[24] Tom Chothia and Vitaliy Smirnov. A traceability attack
against e-passports. In International Conference on Financial
Cryptography and Data Security, pages 20–34. Springer,
2010.

