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Style Transfer and Self-Supervised Learning
Powered Myocardium Infarction Super-Resolution
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Abstract—This study proposes a pipeline that incorporates a
novel style transfer model and a simultaneous super-resolution
and segmentation model. The proposed pipeline aims to enhance
diffusion tensor imaging (DTI) images by translating them
into the late gadolinium enhancement (LGE) domain, which
offers a larger amount of data with high-resolution and distinct
highlighting of myocardium infarction (MI) areas. Subsequently,
the segmentation task is performed on the LGE style image.
An end-to-end super-resolution segmentation model is intro-
duced to generate high-resolution mask from low-resolution
LGE style DTI image. Further, to enhance the performance
of the model, a multi-task self-supervised learning strategy is
employed to pre-train the super-resolution segmentation model,
allowing it to acquire more representative knowledge and im-
prove its segmentation performance after fine-tuning. https:
github.com/wlc2424762917/Med_Img

Index Terms—Diffusion tensor imaging, late gadolinium en-
hancement, myocardium infarction segmentation, style transfer,
self-supervised learning

I. INTRODUCTION

Diffusion tensor (DT) cardiovascular magnetic resonance
(CMR) is a novel noninvasive tool that enables inference
of sheetlet orientations, which are altered under pathological

conditions [1]]. Preliminary studies have demonstrated the
potential of DT CMR to detect microstructural abnormalities
in myocardial infarction (MI) [2], suggesting the feasibility of
MI segmentation on diffusion tensor imaging (DTI) images.
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Fig. 1. Visualized data example of diffusion tensor imaging (DTI) and Late
gadolinium enhancement (LGE) images. For DTI image, different components
including DT D and the corresponding original signal Sp are presented.

However, the domain of DTI has not been previously
explored for MI segmentation. Current researches [3]-[6] were
predominantly conducted using late gadolinium enhancement
(LGE) images, due to certain limitations of DTI image com-
pared to LGE image, including the lack of direct MI indication,
a comparatively lower resolution, and a dearth of labeled data,
as demonstrated in Fig.
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Fig. 2. The proposed pipeline. During the training phase, the style transfer
model undergoes unsupervised training, while the super-resolution segmen-
tation model is pre-trained using self-supervised pre-training and supervised
fine-tuning strategy. In the inference phase, the Segmentor is excluded, and the
pipeline is integrated. Lossgan, Lossysg, Losspsc, Lossc g stand for
the CycleGAN loss [[7], mean square error loss, dice loss, and cross-entropy
loss respectively.

To this end, we propose a novel pipeline to leverage the
advantages of LGE data for MI segmentation on DTI image.
The pipeline consists of a style transfer model and a super-
resolution segmentation (SSeg) model, as depicted in Fig
The style transfer model first converts the DTI image into
LGE style, where MI areas are highlighted, and more labeled
data is available. Then the SSeg model directly generates
the high-resolution segmentation mask, facilitating improved
segmentation of small foreground regions.

Our style transfer model is based on the CycleGAN [7].
To preserve the underlying segmentation mask throughout the
style transfer, we develop the CycleGAN with a segmentation
sub-network model, namely CycleGANSeg, aiming at keeping
the integrity of the underlying MI segmentation mask.

Inspired by the Dual Super-Resolution Learning framework
[8], we propose our SwinTransformer [9] based end-to-end
SSeg model, namely SwinSSegNet. The SwinSSegNet aims
to leverage more detailed information in the training process,
and directly generates high-resolution segmentation masks in
the inference process.

Moreover, despite the relatively higher availability of LGE
images, the quantity remains limited. To address this con-
straint, we construct a hybrid dataset by incorporating LGE
images obtained from publicly available datasets, ACDC [10]
and LiVScar [[11]. Based on the hybrid dataset, we adopt a
multitask self-supervised learning (SSL) pre-training strategy,
including contrastive learning [[12], masked image modeling
[13]], and rotation prediction [14]]. This approach enables our
model to acquire a broad range of representation knowledge
of LGE images, thereby enhancing its performance after fine-
tuning. In summary, our contributions are as following:

1. We introduce a novel pipeline powered by style tansfer
and SSL for MI super-resolution segmentation on DTI image.
This pipeline effectively harnesses the abundant LGE data, and
enhance the accuracy of MI segmentation on DTI image.

2. We present the CycleGANSeg, which incorporates a
segmentation sub-network within the CycleGAN framework.

This model is capable of converting DTI image to the LGE
style, while preserving the integrity of the MI region. Notably,
the CycleGANSeg can be trained in an unsupervised manner.

3. We propose the SwinSSegNet, an end-to-end super-
resolution segmentation model that can directly generate high-
resolution segmentation mask. This end-to-end paradigm has
superior performance comparing to utilizing the 2-stage (first
segmentation, then up-sample) paradigm.

4. We design a 2D multi-task self-supervised learning pre-
training strategy on our curated hybrid LGE dataset to further
enhance the performance of the SwinSSegNet model.

II. METHODS

As shown in Fig our proposed pipeline contains two
models, a style transfer model, i.e., CycleGANSeg, and an
SSeg model, i.e., SwinSSegNet. The CycleGANSeg initially
translates the DTI image into the LGE style, with a resolution
of 64 x 64. Subsequently, the SwinSSegNet generates the MI
segmentation mask with an upsampled resolution of 512 x512.

A. CycleGAN with Segmentor

As shown in Fig [3] the style transfer model is based on
the CycleGAN. To keep the underlying segmentation mask
unchanged in the style transfer process, a pre-trained segmen-
tation network, namely Segmentor, is incorporated, along with
two specific loss functions.
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Fig. 3. The dataflow of CycleGANSeg. Gs~1, G~ g, and SEG indcate the
generator from DTI image to LGE image, the generator from LGE image to
DTI image, and the Segmentor respectively. The black arrows, red arrows, and
blue arrows depict the flow of data within the LGE domain, the bidirectional
flow from LGE to DTI and back to LGE, and the bidirectional flow from DTI
to LGE and back to DTI, respectively.

For the input and output data settings, we use the paired DTI
images and LGE images as input, to ensure they have the same
MI segmentation mask. Since our proposed CycleGANSeg
comprises three sub-networks (a generator, a discriminator,
and the Segmentor), the computational cost escalates sig-
nificantly, as the resolution increases. Hence, to maintain
efficiency during training, we standardize the resolution of all
inputs and outputs to 64 x 64.

The Segmentor outputs the segmentation mask of the orig-
inal LGE image, the generated LGE image, and the recon-
structed LGE image. To keep the integrity of the underlying
segmentation mask, two mean square error (MSE) losses
are adopted, as shown in and (2). This approach only
requires paired images from different domains, therefore the



CycleGANSeg offers the advantage of unsupervised training,
obviating the need for extensive annotation.

LOSSTransferSeg = (MQSktrans - -Z\I(]“S]’Cc)ri)2 ’ (1)

LOSSReconSeg = (MaSkrecon - ]\4a5kori)2 ) (2)

where Maskirans, Maskyecon, and Mask,,; stand for the
mask of the generated LGE style DTI image, the reconstructed
LGE image, and the original LGE image respectively.

B. SwinTransformer Super-resolution Segmentation Model

The SwinSSegNet is designed to directly generate the high-
resolution segmentation mask, by utilizing SwinTransformer
as the encoder, employing a series of convolution-based blocks
as the decoder. It is designed as a flexible framework, in
which the upsample scale is adjustable and different backbones
can be plugged in as the encoder. We set the downsampled
LGE image (64 x 64) as the training input, and the original
segmentation mask (512 x 512) as output. To keep more
detailed information, the patch size is set as 2.
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Fig. 4. The architecture of the SwinSSegNet. scale stands for the upsampling
scale. H x W and C represents the origianl spatial shape and the channel
number of the feature map respectively. The decoder of the SwinSSegNet can
be divided into two parts. The first part focuses on upsampling the feature
map to match the spatial dimensions of the input image. The subsequent part
is responsible for generating the upsampled output segmentation mask.
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As shown in Fig. [ within each layer of the first part,
skip connection enables the transmission of detailed infor-
mation from the encoder to the decoder. The second part
has the flexibility to adjust the upsample scale. Each decoder
block comprises an interpolation upsampling layer followed
by a double convolution layer. The double convolution layer
consists of two stacks, encompassing convolution, Rectified
Linear Unit, and Batch Normalization layers.

C. Universal Multi-task Self-supervised Learning Pre-training

Motivated by the recent work on 3D patch-wise SSL pre-
training framework for Swin UNETR [15], we adopt a 2D
SSL pre-training strategy to fully harness the capabilities
of the SwinTransformer encoder. This strategy encompasses
various components, including contrastive learning, which
aims to encourage the model to capture general semantic
features; masked image modeling, which assists the model
in learning detailed features; and rotation prediction, which
promotes the acquisition of spatial features. Additionally, we
collect and crop LGE images from the ACDC and LiVScar
datasets, incorporating them alongside our private dataset to
form a hybrid dataset. Subsequently, the SSL pre-training is
performed on this hybrid dataset, leading to the formulation
of a novel strategy termed universal multi-task self-supervised
learning (U-SSL) pretraining strategy.
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Fig. 5. The 2D mutli-task self-supervised learning framework. Input late
gadolinium enhancement images are augmented with rotation and random
masking, subsequently fed to the encoder as input.

In the implementation, the same data augmentation method
is utilized to generate similar/dissimilar pairs for contrastive
learning, masked images for masked image modeling, and
rotated images for the rotation prediction task. As shown in
Fig. Pl the SSL data engine contains two sets of augmen-
tation operations, AUG1 and AUG2. Each set encompasses
rotation and masking. To exemplify, within AUGI, a batch
of images, (I1, I2, ..., I,), initially undergo rotation to yield
(X1,X3,...,X}), and then are randomly masked out to pro-
duce (Y{1,Y3, ..., Y.1). The rotation prediction task predicts
Yr, the rotation angle of (I;, X;), and the associated loss,
Lossgror, is designed as (E[), where ground truth y, € 0°,
90°, 180°, 270°. The masked image modeling task aims at
generating I; from Z;, and the loss, Lossyrras, is designed
as (@). Contrastive learning task maximizes the dot product
similarity (sim) between positive embedding pairs (Zil7 Zi2),
while minimizing that between the other negative embedding
pairs, and the loss, Losscy,, is designed as @

3
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where t is the measurement of normalized temperature scale.
1r; is the indicator function evaluating to 1 if k # 4.

III. EXPERIMENTS
A. Dataset

Our private dataset consists of 277 unlabeled DTI images
and 271 labeled LGE images, with the resolution of 64 x 64
and 512 x 512 respectively. Among these, 77 DTI-LGE image
pairs share identical segmentation masks. We denote the 271
labeled LGE images as the LGE sub-dataset, and the 77 DTI-
LGE image pairs with same segmentation masks as paired
DTI-LGE image sub-dataset. Both the LGE image and DTI
image have the target subject, MI. Manual segmentation of



MI was undertaken by a CMR physicist with over 3 years
of experience; these segmentations serve as the ground truth
for the training and assessment of our proposed SwinSSegNet
and pipeline. Additionally, We incorporate images from the
ACDC and LiVScar datasets into our LGE subset to construct
a hybrid LGE dataset for U-SSL pre-training. The ACDC
dataset comprises 100 cine MRI scans (1,902 slices), and the
LiVScar contains 30 images (200 slices). From each slice, the
region of interest is cropped and upsampled to the resolution
of 512 x 512 for our U-SSL pre-training process.

B. Implementation and Evaluation Details

We conducted our experiments on an NVIDIA RTX3090
GPU with 24GB GPU RAM. The masking rate was set as
45% for the SSL pretraining strategy. The AdamW optimizer
was used. The CycleGANSeg was trained on our paired DTI-
LGE image sub-dataset. The SwinSSegNet was pre-trained on
the hybrid LGE dataset and fine-tuned on our LGE sub-dataset.
All training procedures adopted the batch size of 24.

With respect to the SwinSSegNet, the Dice similarity co-
efficient [16] (DSC), indicative of the congruity between the
segmentation outcome and the ground truth segmentation mask
of the LGE image, was employed as the evaluation metric. In
the context of the pipeline, the DSC between the segmentation
result of the LGE style DTI image and the ground truth
segmentation mask was utilized as the evaluation metric.

C. Results of the SwinSSegNet

We compared our proposed SwinSSegNet with state-of-the-
art segmentation baselines (SwinUNet [17], UNet-2022 [18]],
and TransUNet [19]) on the LGE sub-dataset (Fig. @(A)).
To ensure fairness, all models were trained from scratch.
Compared with other models, the proposed SwinSSegNet
achieves the best performance.
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Fig. 6. (A). Comparison of the SwinSSegNet with baselines. SwinSegNet
indicates adopting the upsample scale as 1 for the SwinSSegNet, and using
interpolation to upsample the segmentation mask. (B). Comparison of the up-
sample methods and the different pre-training strategies. SSeg stands for the
end-to-end paradigm and Seg stands for the 2-stage paradigm (segmentation
followed by bilinear interpolation upsampling). “_N”, “_SSL”, and “_U-SSL”
represent trained from scratch, trained with multi-task self-supervised pre-
training strategy, and trained with universal multi-task self-supervised pre-
training strategy, respectively.

Furthermore, a series of ablation studies were conducted to
investigate various aspects of the proposed methodology. The
performance of different up-sample paradigms and the perfor-
mance of different pre-training strategies are compared in Fig.
[6l(B). The result indicates that the SSeg models are superior
to the Seg models. Moreover, the employment of the SSL

leads to enhanced model performance, and the incorporation
of the public data can further boost the enhancement. A note-
worthy observation is the decreasing standard deviation across
model trained from scratch, model pre-trained with SSL, and
model pre-trained with U-SSL. This observation highlights the
substantial impact of contrastive learning, which facilitates
the acquisition of comprehensive representation knowledge.
Consequently, the model becomes adept at effectively handling
segmentation tasks, even for challenging samples that initially
exhibited subpar performance. Moreover, we compared the
effect of choosing different backbone models as the encoder,
the result is shown in Table. [l

[ Encoder | ResNet [20] ConvNext [21]  Biformer [22]  SwinTransformer |
‘ DSC ‘ 0.71840.0094 0.73240.0093 0.745+0.0093  0.75540.0090 ‘
TABLE I

COMPARISON OF USING DIFFERENT BACKBONE MODEL AS ENCODER.

In the encoder comparison, we adopted the patch size as 2
for Biformer and SwinTransformer, and the downsample size
as 2 for the first pooling layer in ResNet and ConvNext. The
result indicates that SwinTransformer stands out as the most
effective encoder.

D. Results of the Pipeline

To illustrate the superiority of our proposed pipeline (Cycle-
GANSeg+SSeg), i.e., introducing the CycleGANSeg to con-
vert DTI image to LGE style before using the SwinSSegNet
trained with U-SSL pre-training strategy to perform segmenta-
tion, we compared the cases of not using style transfer model
(DTI SSeg) and using the original CycleGAN as the style
transfer model (CycleGAN+SSeg).

—

DTI SSeg CycleGAN+SSeg  CycleGANSeg+SSeg

Fig. 7. Comparison of different pipelines. DTI SSeg stands for the SwinSSeg-
Net trained from scratch on DTT image data. CycleGAN+SSeg stands for using
the original CycleGAN as the style transfer model, and the SwinSSegNet
trained with U-SSL pre-training strategy on LGE data as the SSeg model.

The quantitative result shown in Fig. [7] and the visualized
results Fig. [§] indicate that our pipeline effectively highlights
the MI area and achieves the best MI segmentation perfor-
mance. The DTI SSeg model demonstrates poor performance,
while CycleGAN+SSeg improves performance but introduces
increased variance. This aligns with expectations, as the
original CycleGAN lacks a dedicated mechanism to preserve
the underlying segmentation mask. In contrast, the proposed
CycleGANSeg+SSeg enhances the average performance while
mitigating the range of both upper and lower bounds. This is
achieved through the integration of the Segmentor in training
process, which effectively helps the model to preserve the orig-
inal segmentation mask, thereby stabilizing the style transfer
process.
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Fig. 8. Visualized results of the different pipelines. Row A illustrates the
ground truth LGE image and SSeg mask. Row B illustrates the SSeg results
of DTI SSeg model. Row C and Row D illustrate the LGE style DTI image,
SSeg results of CycleGAN+SSeg pipeline and CycleGANSeg+SSeg pipeline
respectively.

IV. CONCLUSIONS

We present a novel pipeline for MI super-resolution seg-
mentation on DTI image, incorporating the CycleGANSeg and
the SwinSSegNet. The CycleGANSeg transforms DTI image
to LGE style, bridges domain gaps, and simplifies MI segmen-
tation. The SwinSSegNet surpasses the two-step segmentation
paradigm in generating high-resolution segmentation mask,
and the integration of the U-SSL pre-training strategy further
enhances the segmentation performance.
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