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Abstract – Luby Transform codes (LT) were originally
designed for the Binary Erasure Channel (BEC) encoun-
tered owing to randomly dropped packets in the statistical
multiplexing aided classic wireline-based Internet, where
transmitted packets are not affected by the fading or noise
of the propagation environment of the wireless Internet.
For the sake of transmitting data over the BEC routinely
encountered in statistical multiplexing aided wireless In-
ternet - style scenarios, we applied the belief propagation
algorithm for decoding LT codes and designed a novel ver-
sion of LT codes, which we refer to as systematic LT codes.
When using soft decoding of the proposed systematic LT
code, the decoding process becomes capable of prevent-
ing the potentially avalanche-like inter-packet error prop-
agation. For example, the systematic LT(1000,3000) code
achieved a BER below 10−5 at Eb/N0 = 3.5dB after six
decoding iterations. An even lower Eb/N0 of 2.7dB was
required, when using a longer systematic LT(10000,30000)
code for transmission over the AWGN channel. In the
combined BEC-AWGN channel the BER recorded at the
output of the systematic LT(1000,3000) code was about
10−5 at Eb/N0 = 4.5dB, when encounter an erasure prob-
ability of Pe = 0.1.

1. INTRODUCTION

LT codes [1] were originally designed for the Binary Era-
sure Channel (BEC) channel, where transport packets may
be erased with an erasure probability of Pe. When applying
LT codes for transmitting data over wireless channels con-
taminated by Rayleigh fading and inter-symbol interference
(ISI), the packets may become contaminated, which may re-
sult in catastrophic inter-packet error propagation during LT
decoding [2]. LT codes were originally designed for error-
free BEC channels. For the sake of using LT codes to pro-
tect data for transmission over the wireless Internet, where
fading, noise and packet erasures are encountered, numerous
researchers endeavoured to improve the achievable perfor-
mance [2] [3] [4]. Naturally, the complexity of these schemes
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tends to be increased. For the sake of improving the error cor-
rection capability of LT codes, in this paper we propose the
soft decoding of LT codes using the probabilistic decoding
technique of Low Density Parity Check Codes (LDPC) [5].
The outline of the paper is as follows. Section 2 analyses
the disadvantages of the LT codes, when applying the mes-
sage passing algorithm and detail the design of systematic LT
codes. Section 3 analyses systematic LT codes using extrin-
sic information transfer (EXIT) charts and Section 4 charac-
terizes their performance over the wireless Internet channels.
Finally, Section 5 provides our conclusions.

2. LT CODE DESIGN FOR SOFT DECODING AND
THE SYSTEMATIC-LT CODE

LT codes were originally designed for hard-decoding [1] in
the context of the BEC. The error propagation phenomenon
of the LT decoding process is portrayed in Fig 1. For the sake
of avoiding this detrimental effect, they have been combined
with various forward error correcting (FEC) codes [2] [4].
These combined schemes substantially mitigated the effects
of error propagation. However, the attainable performance
improvement of these schemes were still limited owing to
the employment of hard-decision aided LT decoding. For
the sake of circumventing this deficiency, we introduce the
novel concept of soft LT decoding based on the classic belief-
propagation technique applying Tanner Graphs. We com-
mence our discourse by introducing the concept of single-bit
packets. The LT codes having larger packets will be consid-
ered as generalized the scenario. The soft LT decoding pro-
cess is based on the classic concept of LDPC decoding. Given
the generator matrix G of the LT code, we calculate the Par-
ity Check Matrix (PCM) H of the LT code similarly to that
of a classic LDPC code, namely by dividing the LT code’s
generator matrix into two matrices, where A and B have a
size of (K ×K) and (K ×M ), respectively. We choose the
non-singular matrix A based on the conventional LT decoding
process. Then the PCM is calculated as

H(M×N) = [(BT · (AT )−1)(M×K)|I(M×M)]. (1)

The LT decoding process may be implemented as follows.
An LT PCM can be represented by a classic Tanner graph [4].
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Fig. 1. An example of error propagation in the LT hard-
decoding process, when the LT decoder receives packets af-
fected by the channel error

To elaborate a little further, the filled circles and the filled

Fig. 2. A tree-based representation of LT code

squares of Fig. 2 represent the LT check nodes and the LT
check nodes, respectively, while the horizontal lines connected
to the variable nodes represent the intrinsic information pro-
vided by the channel’s output. Let us assume that the circular
node at the top of Fig. 2 represents the kth variable node in the
block of N number of single-bit LT encoded packets, which
is also termed as the root node [6]. The root node receives
information from the check nodes it is connected to at the
level seen below it in Fig. 2 and those check nodes also re-
ceive information from the variable nodes they are connected
to at the next level down, etc. The dotted lines in Fig. 2 indi-

cate that the above process is repeated further by expanding
the tree. The number of connections associated with a vari-
able node of the LT code - excluding the line representing
the intrinsic information - indicates the column weight of this
particular message node, while the number of connections as-
sociated with an LT check node represents the corresponding
row weight. The column weight and row weight of the LT
PCM are related to the degree distribution of LT packets.
The LT decoding process is implemented in the same way as
the classic LDPC decoding procedure. Initially, the LT de-
coder’s soft values are set to a value corresponding to the de-
modulator’s soft output. The decoder’s soft values of Ra

i,j and
Qa

i,j which denote the LLRs passed from the check nodes to
the variable nodes and vice versa are then iteratively updated
after each decoding iteration as follows:

tanh(
Ri,j

2
) =

∏
n∈{Ci},n 6=i

tanh(
Qn,j

2
), (2)

where we have

tanh(x/2) =
ex − 1
ex + 1

. (3)

After each iteration, the LT decoder outputs its tentative hard-
decision and checks, whether the product of the correspond-
ing codeword and the transpose of the PCM H is equal to zero
i.e whether a legitimate codeword was produced. If not, the
LT decoding process will be continued in an iterative fashion,
until the output codeword becomes legitimate or the maxi-
mum affordable number of iterations is exhausted. For the
sake of improving the performance of LT codes at high Eb/N0

values, we invoke hard-decoding after the last LT decoding
cycle in order to erase the low-confidence LT packets, namely
those, which have low Logarithm Likelihood Ratios (LLRs).
We employ a low complexity packet-reliability evaluation tech-
nique based on the average LLR of the packet.. However, the
soft LT decoding process based on the LT code’s PCM ex-
hibits some deficiencies owing to the following two reasons:

• the LT code’s PCM contains many zero-columns, which
degrades the performance of the LT code, when using
the above mentioned soft decoding process.

• The conventional non-systematic LT code will impose
error propagation, when using the above-mentioned hard-
decoding process for the sake of recovering the original
information packets from the erroneously decoded LT-
encoded packets, as seen in Fig.1.

Hence, for the sake of improving the LT code’s performance
in hostile wireless channels, we specifically design the LT
code’s degree distribution by expanding its generator matrix
with the aid of a unity matrix having a size of (K×K), which
results in a systematic LT code. The resultant relationship of
the systematic LT generator matrix G and the PCM H may
be stated as follows:
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Fig. 3. The Systematic LT generator matrix

• If we have a generator matrix GK×N = [IK×K/AK×M ],
where I is an identity matrix having a size of [K ×
K] and A is a non-singular matrix having a size of
[K × M ], then the PCM obeys the construction of H
= [AT /I ′], where AT is the transpose of A and I ′ is an
identity matrix having a size of [M × M ] [7], where
N = K + M is the number of rows in G and K is the
number of columns in G.

3. ANALYSIS OF SYSTEMATIC LUBY TRANSFORM
CODES BASED ON EXIT CHARTS

Extrinsic Information Transfer (EXIT) charts [8] [9] were
proposed by ten Brink and his collaborators. As mentioned
in Section 2, systematic LT codes may be decoded by be-
lief propagation. Hence, we can analyse systematic LT codes
based on EXIT charts [8] [10]. Since systematic LT codes
have a specific PCM construction, which contains the check
bits in the corresponding rows and the message bits in the
corresponding columns, while the second part of the PCM is
constituted by a unity matrix having a size of M × M con-
taining the check bits in both its rows and columns. Hence,
we have to re-define the passing of the LLR messages during
the systematic-LT decoding process as follows:

• The LLR messages are passed between the systematic
LT message nodes and the systematic LT parity nodes.

Let dm represents the degree of the message nodes and dc

the degree of the parity nodes. Furthermore, let K denote
the number of message nodes and N the number of variable
nodes. Then the number of parity nodes is given by M=N -K.
The degree distribution D(dc) of the check nodes is defined
as follows:

D(dc) =


0 if dc = 1 or dc > M

S ,
1+S+ν

Z·M if dc = 2,∑M−1
t=3 ( 1

t(t−1) + S
M · 1

t ) if 3 < dc < M ,
S
M · log S

δ if dc = M
S ,

(4)

where S, ν were defined in [2], We assume that the LT encod-
ing process of [2] using the ideal uniform random degree
distribution is employed. Then the degree distribution of the
message nodes D(dv) is defined as:

D[dm(dc)] = r, (5)

where r = K
N is the code rate of the systematic LT code. Let

us now consider the messages passed between the system-
atic LT message nodes and the check nodes, when the LLR
representation of the messages. Let Q′ as well as R′ denote
the LLR information passed from the information nodes to
the check nodes and that passed from the check nodes to the
information nodes, respectively. The soft bit message corre-
sponding to Q′ is repeated here again

Q = tanh(
Q′

2
). (6)

The extrinsic LLR information passing from the check nodes
to the information nodes is defined by:

Q′ =
dm−1∑
i=0

R′
i, (7)

where the initial soft channel-output message associated with
the variable nodes is given by (R′

0 = 4
N0

· y) and y denotes the
output of an AWGN channel. Furthermore, R′

i, i = 1 . . . dv−1
represents the LLR information arriving from the check nodes
to the information nodes, except from that particular check
node to which the LLR information message Q′ was sent. The
extrinsic LLR information R′ passed from the check nodes to
the information nodes is defined as:

tanh(
R′

2
) =

dc−1∏
i=1

tanh(
Q′

i

2
) ⇐⇒ R =

d−1∏
i=1

Ri, (8)

where Q′
i,i=1,. . .,dc-1 represents the LLR information arriv-

ing from the information nodes, except from that particular
information node to which the LLR information message R′

was sent. Let mR, mR0 and mQ denote the mean of R′, R′
0

and Q′. Then, from Equation (7) we have:

m
(l)
Q = mR0 + (dm − 1) ·m(l−1)

R , (9)

where l is the l′th iteration and mR0 = 4 · E
N0

, while E is
the transmitted bit energy, while N0

2 is the one-side power
spectral density of the noise. We assume that R′ is Gaussian
distributed. Hence, mR is can be updated according to:

m
(l)
R = J−1(I(X;R′(l))), (10)

where J(mR) is defined as follows:

J(mR) = I(X;Rl) = (11)

=
∫

1√
4πmR

e
− (l−mR)

4mR (1− log2(1 + e−l))dl.



From the equation used for calculating the mutual informa-
tion in [11] we have:

I(X;R′) =
1

ln2

∞∑
i = 1

1
2i(2i− 1)

[E(T 2i
Q )]dc−1, (12)

where:

φi(mQ) = E(T 2i
R ) (13)

=
∫ +1

−1

2t(2i)

(1− t2)
√

4πmQ

e−
(ln( 1+t

1−t )−mQ)2

4mQ
dt.

Finally, we arrive at the required update formulae for the means
mQ and mR as follows:

m
(l)
Q = mR0 + (dm − 1)m(l−1)

R (14)

m
(l)
R = J−1(

1
ln2

∞∑
i=1

1
2i(2i− 1)

[E(T 2i
mQl

)]dc−1.(15)

Based on Equation (14) we arrive at the variable node’s EXIT
function:

IEm = I(X;Q′) = I(X;R′
0, R

′
1, . . . , R

′
dm−1) (16)

= f(I(X;R′
0), I(X;R′)) = f(Ich, IAm

).

Similarly, from Equation (15) we derive the check node’s
EXIT function as follows:

IEc = I(X;R′) = I(X;Q′
1, . . . , Q

′
dc−1) = (17)

= f(I(X;Q′)) = f(IAc
) =

=
1

ln2

∞∑
i=1

1
(2i− 1)(2i)

[φi(J−1(IAc)]
dc−1,

where Ich = I(X;R′
0) is the average channel output infor-

mation, IAm = I(X;R′) is the average a priori information
at the input of the message node decoder and IEm is the av-
erage extrinsic information at the output of the message node
decoder.
The systematic LT code has the degree distributions D(dv)
and D(dc) formulated in Equations (4) and (5). Therefore,
the EXIT functions of the message and check nodes are given
in Equations (16) and (17), which depend on the degrees of
the message nodes and check nodes, respectively. Again, we
assumed that the LT encoding process of [2] using the ideal
uniform random degree distribution is employed. Hence,
all the LT message nodes have the same degree, namely a de-
gree of dc − 1. Finally, we arrive at the EXIT function of
the message nodes and the check nodes for the systematic LT
code are expressed in the following form:

• Message node EXIT function:

IEm
= f(Ich, IAm

) (18)
= J(J−1(Ich + (j − 1)J−1(IAm));

• Check node EXIT function:

IEc = f(IAc) =
dc∑

j=2

dcj IEcj
= (19)

=
dcmax∑
j=2

dc(j) ·
1

ln2

∞∑
i=1

(
1

2i(2i− 1)
)[φi(J−1(IAc)]

j−1

The EXIT chart of the systematic LT code is portrayed in Fig
4. The associated parameters are:
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Fig. 4. EXIT chart of the systematic LT(1000,3000) code

• The check bits obey the same degree distribution as the
LT packets, namely the Full Robust Soliton Distribu-
tion (RSD) proposed in [2].

• All of the message bits have a degree of one.

• A total of 500 blocks are transmitted and each of them
has 1000 bits. The rate of the systematic LT code was
set to r = 1

3 .

The systematic-LT code’s message-node-related EXIT curve
recorded at Eb/N0 = 1dB intersects the check-node-related
curve relatively close to the point of perfect convergence, namely
the (1,1) point of Fig 4, which was made more visible by ex-
panding the top right corner of Fig 4 in Fig 5. The point of
intersection is marked by a bold dot in Fig. 5. Owing to the
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Fig. 5. Expanded view of the Systematic-LT(1000,3000)
code’s EXIT chart

intersection between the message-node’s curve and the check-
node’s curve, the systematic-LT decoder is unable to reach an
infinitesimally low BER at Eb/N0 = 1dB. By contrast, ob-
serve in Fig. 5 that the systematic-LT decoder becomes capa-
ble of converging to the (1,1) point at Eb/N0 = 6dB after 10
iterations.

4. SIMULATION RESULTS

Fig. 6 shows the attainable performance of the systematic
LT(1000,3000) code using the message-passing decoding tech-
nique, when communicating over the AWGN channel, having
an erasure probability of PE=0. Fig 6 may be contrasted to
Fig 7, where transmission over the Wireless Internet associ-
ated with different Eb/N0 values and Pe = 0.1 is considered.
Fig. 8 shows the performance of the systematic LT code for
transmission over the BEC having different erasure probabil-
ities Pe, where the abscissa axis was scaled in terms of the
values of (1 − Pe). Again, the Robust Soliton degree dis-
tribution was used for the variable nodes of the systematic
LT(1000,3000) code characterized in Fig. 6, Fig. 7 and Fig. 8.
The degree distribution parameters of c=0.1 and δ = 0.5
were used as defined in [2]. We can see in Fig. 6 that for
Pe=0 the BER becomes as low as 10−5 at Eb/N0= 3.5dB. By
contrast, when the erasure probability is Pe=0.1, the decoder
reaches BER= 10−5 at Eb/N0= 4.5dB. The BER curves of
the systematic LT code are significantly more smooth than for
other combinations of LT codes and FEC codes [2]. The pro-
posed scheme has the potential of maintaining a lower BER
at Eb/N0 and that of tolerating higher Pe values than the sys-
tem of [2]. When we increase the length of the systematic-LT
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Fig. 6. BER versus Eb/N0 performance of the systematic
LT(1000,3000) code in AWGN channels using BPSK mod-
ulation and no erasures
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codes, their performance is improved, as seen in Fig. 9. More
specifically, a BER of 10−5 may be attained at Eb/N0 =
3.0dB after 6 iterations of the systematic-LT decoder. Finally,
observe in Fig 8 that the systematic LT decoder is capable of
maintaining an infinitesimally low BER for erasure probabil-
ities as high as Pe = 0.4 in the BEC.

5. CONCLUSIONS

The concept of systematic LT codes was introduced with the
aid of appropriately modifying the robust soliton degree dis-
tribution of [2]. The systematic LT coding concept facilitated
the employment of the classic belief-propagation based soft
decoding of the resultant systematic LT codes. The main ben-
efit of the proposed scheme is that it is capable of mitigat-
ing the effects of catastrophic error propagation across the
LT-encoded packets. Our future work will consider the em-
ployment of diverse classic FEC codes in the context of soft-
decoded LT codes for the sake of improving the associated
performance versus complexity as well as versus code-rate
trade-offs.
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