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ABSTRACT the additive complexity of full DCFFT, TCFFT, and ICFFT

Cyclotomic fast Fourier transform (CFFT) was recently pro-by more thar80%, and the additive complexity of our im-

posed and shown to be efficient for lengths up to 511. In thigrclatvedf BgEETr II<512% stmalle::than t?alt(lanl[:Af_l]_, the _best re—d
paper, we propose a novel algorithm to reduce the additiv U1s o NOWN o US. ot partia » ourimprove

complexity of CFFT. When used in transform-domain Reed- CFFT achieve0% saving on additive complexity over that

: in [6]. Using full and partial CFFTs instead of prime-factor
ﬁ; lc())fr?r? : t?:r?sof%?rrr? ,p%ljr{ig?]plor;\;er)dtél;l:'T reduces the comple FT algorithm in [3], we reduce the complexity of the DFT

and IDFT portions of the transform-domain decoder in [3] by
Index Terms— Discrete Fourier transforms, Galois fields, up to72% for RS codes of lengths up to 1023.

Reed-Solomon codes, Complexity theory, Optimization The rest of the paper is organized as follows. In Section
[2, we briefly review various cyclotomic FFT algorithms. Sec-
1. INTRODUCTION tion[3 presents our CSE algorithm. Reduced-complexity full

and partial CFFTSs are discussed in Sectlonk[4.1-4.3. Finall
Due to the widespread applications of Reed-Solomon (RSke apply the improved CFFT to transform-domain RS de-
codes in various digital communication and storage systemsoders in Section 4.4.
efficient decoding of RS codes has been an important research
topic. All syndrome-based decoding methods for RS codes
involve discrete Fourier transform (DFT) over finite fields:[ 2. CYCLOTOMIC FFT
partial DFT is used in syndrome evaluation, and transform-
domain decoders use inverse DFT to recover transmitted codeor a primitive elemente € GF(2™), the transform from
words. Thus, efficient FFT algorithms can be used to rea polynomialf(z) = Y )! fiz* € GF(2™)[z] to F =
duce the complexity of RS decoders. Using the prime-factotf(a?), f(al),..., f(a"~1))T isreferredto as a DFT gf =
FFT algorithm in [2], Truonget al. proposed an inverse-free (fo, f1,--., fa—1)?. Representing the original polynomial
transform-domain RS decoder whose complexity is substanf(z) as a sum of linearized polynomials by cyclotomic de-
tially lower than time-domain decoders [3]. composition [4, 5], cyclotomic FFF = ALf = ALILf,
Cyclotomic FFT (CFFT) was recently proposed [4, 5] andwhereA is ann xn binary matrix,f" = (£, £, -+, fi’1)
shown to be efficient for lengths up to 511 [4]. Furthermdre, iis a permutation of the input vectgf, IT is a permutation
was shown that inverse cyclotomic FFT (ICFFT) was efficientmatrix, andL = diag( Lo, L1, - - - , L;—1) is a block diagonal
for syndrome evaluation of length-255 RS codes [6]. Transmatrix with square matriceg;'s on the diagonal. Mapped
pose cyclotomic FFT (TCFFT) was also proposed for synto normal basisL; becomes a quadratic generalized Vander-
drome evaluation [5]. To avoid confusion, we call the oridin monde matrix. Thus, the product & and f; can be com-
form of CFFT in [4] direct cyclotomic FFT (DCFFT). puted as a cyclic convolution over finite fields, for whichtfas
Though cyclotomic FFT is attractive for its low multi- algorithms are available. These fast algorithms can be writ
plicative complexity, its additive complexity is very high  ten in matrix form asL; f; = Q,(c; - P; f;), whereQ, and
implemented directly. In [4], a heuristic algorithm based o P; are both binary matrices;; is a constant vector, and
decoding in the binary erasure channel [7] was used to redustands for pointwise multiplications. Hence DCFFT is given
the additive complexity. by F = AQ(c- Pf'), whereQ = diagQ, Q,,--- , Q,_,)
Realizing that it is actually an NP-complete problem tois a block diagonal matrix witl@),’s on the diagonalP =
minimize the additive complexity of CFFT, we propose a novedliag(Po, - - - , P;_1) is a block diagonal matrix wittP;'s on
common subexpression elimination (CSE) algorithm that sigthe diagonal, and = (c¢f,¢f, -+, ¢/ ).
nificantly reduces the additive complexity of CFFT. Com-  Fedorenko [5] constructed an equivalent transform with
pared with direct computation, our CSE algorithm reducesymmetric transform matrix, which leads to TCFFTHSs=
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LTATf = Q(c- PA'"f'), whereF’ = TIF andA’ =  reduce computational complexity.

ITA. In [6], the complexity of partial DFT was reduced by In CFFT, the elements oX are over characteristic-2 fields.
using ICFFTasF” = L 'A™'f = Q(c- PA ' f), where  For these fields] and—1 are identical and hence additions
F” is also a permutation of. Note thatL = L™ = L. are the same as subtractions. It also has a special progerty:

For CFFT, the number of multiplications is determined bytwo rows of M both havel’s on the same columns, their sum
the number of non-one elementsdmvhile the number of ad-  will cancel out on those columns. The additional property im
ditions is determined by the two matrix-vector multiplicets  plies that we can take advantagedifferential saving. If the
in which both matrices are binary. For example, in DCFFTdifference (or sum) of two rowsg, andr; contains fewer el-
the matrices ared@ and P. Due to the size 0fAQ, direct ements than one of the two rows, say we can obtaimg by
computation of the matrix-vector product will result in hig adding the difference (sum) tq, thereby reducing the num-
additive complexity. Next, we will propose an algorithmttha ber of additions. However, these two rows must be computed
significantly reduces the additive complexity of CFFT. in a strict order. We calt;, the row which will be computed
first, the parent row ang, the child row. We use a new el-
ement to represent the result of the parent row. After we re-
place the child row with the difference row, we append the
new elementto it. Let the numbers of non-zero elements for
an ordered pair of rows-,, ), in whichr,, is the parent row
In this section, we first model the minimization of the addi-andr. is the child row, bes, ands., respectively, and let the
tive complexity of CFFT as a matrix transformation, and thernumber of non-zero elements for their differenceshe The
provide a simple heuristic description of our CSE algorithm differential saving for the ordered pair is givenfy— s, — 1.

The optimization problem can be modeled as a linear tran$ince we are only concerned about positive savings, we use
formY = M X, whereY andX aren- andn’-dimensional [s. — sq — 1T o max{0, s, — sq — 1} in our algorithms.
column vectors an@ is ann x n’ matrix containing only Note that such an operation introduces no extra computa-
1,—1, and0. X represents the variable input while in-  tion step to the final result except for imposing a strict orde
dicates the set of constants. Clearly, such a transform rdetween the rows oM. After such a transform, the linear
quires only additions and subtractions. It was shown that teransform become¥” = M’X’, whereX’ = (X7, y'")T
minimize the number of additions and subtractions is an NPandY’ includes all the parent rows.
complete problem [8].

We now propose a CSE algorithm with polynomial com-—"7jorithm 1: Common Subexpression Elimination
plexity that significantly reduces the additive complexafy
CFFT. A|th0ugh our CSE a|gorithm does not guarantee to 1. Identify the pairs of rows with the greatest differential

3. CSE ALGORITHM

3.1. Problem Analysis

minimize the additive complexity, it may in some cases, es- saving, select one pair out of them randomly, replace
pecially when the size of the problem is small. Our algorithm the child row with the difference between the two
exploits two kinds of savings: differential saving and necu rows, and append the element representing the parent
rence saving, as defined below. row to it. Repeat until there is no differential saving.

One can of course reduce the additive complexity by first
identifying recurring patterns, which are combinations ofi-
zero positions, and then calculating them only once. Such
a pattern can be defined as a vector. We refer to the num-
ber of occurrences of a pattern M as pattern frequency,
and definerecurrence saving of each pattern as its pattern
frequency minusl. After identifying a pattern, instead of
simply eliminating it, we replace the pattern with a new el-
ement which stands for the result of the identified pattern.
This process can be described in matrix decomposition form; 5 randomized Greedy Algorithm
M = MRMj_l ..MMy, WhereMi = [I | Gl]T and
G, is the identified pattern vector. Thus the transform can b®©ur CSE algorithm, shown in Algorithifd 1, has two steps:
computed in a sequential fashion: first assjp = X, then  Steps 1 and 2 are referred to as the differential saving and re
computeX,;; = M,;X,;fori =0,1,--- ,5 —1,andfinally  currence saving steps respectively. In both steps, we @se th
computeY = MrX;. greedy strategy which choose the transform with the greates
Since multi-bit patterns can be expressed recursively asaving. If there are multiple choices, we randomly choose
two-bit patterns whose elements are previously identifaged p one among them. Note that our choice is merely locally opti-
terns, our CSE algorithm looks for only two-bit patterns andmal, and does not guarantee the optimal solution. Our goal
keeps track of all previously identified patterns in a matnix is to reduce the number of additions as much as possible.

2. ldentify the two-bit patterns with the greatest
recurrence saving, select one out of them randomly,
replace all occurrences of the selected pattern with a
new element. Go to Step 1 until there is no recurrence
saving.




Since differential saving reduces the number of non-zero etial saving step once the recurrence saving step has started
ements without introducing new patterns which still requir essentially decoupling the two steps. This not only reduces
additions, differential saving is given higher priorityathhre-  the runtime by reducing the number of the differential sgvin
currence saving in our algorithm. Since our algorithm is asteps, but also enables us to further accelerate both syeps b
randomized algorithm, the result of each run may vary. Howspace-time trade-off, which will be discussed below.

ever, simulation results show that the variance betwederdif Now that the differential saving step is stand-alone, it is

ent runs is quite small even for large problems. necessary to avoid repeated exhaustive search. Therelgre on
n rows in M, so all possible differential saving can be putin

3.3. Cycle Detection ann x n arrayD, whereD;; stands for the differential saving

_ _ o of the ordered pair of rowg-;, r;). Such an array can be built
Let (rp, 7c) be an ordered pair of rows in whial is the par- it an initial exhaustive search. After it is constructed,
ent row andrcl is the child row. If the pair is selected, it im- most2(n — 1) elements of the array need to be updated after
poses a restriction that the resultigfmust be computed be- gach differential saving step. Whenever one pair of rows is
fore that ofr.. _AII the selected pairs form_a directgd graph, getected to be cycle-introducing, its differential savini
where the vertices are the row numbers in the pairs and the, set to-1 and hence it is excluded from later consideration.
edges are from the parent rows to the child rows in all pairsyh s the number of possible pairs will decrease continypusl
The restrictions imposed by all selected pairs constituée t 5,4 the search will be increasingly faster.
rgquirement that the graPh r.nust. be cycleless. Ou_r differe.n- A similar idea can be used to reduce the runtime of the
tial saving step must. ma|nta|r_1 this gra_lph and use It to aVO"f’ecurrence saving step. Since elimination of one pattelin wi
selecting ordered pairs that will resultin a cycle inthepira )y change a small portion of the pattern frequencies, o ex

Qhur CSE alg;)nthm ulse?j the r_ecurs:cve pro:j:eduorle in Aledite searches, we store the pattern frequencies andeupdat
gorithm[2 to perform cycle detection. If an ordered pair iSgom after each elimination step.

cycle-introducing, it will not be considered in the randoen s
lection of the differential saving step. If all ordered adtre
cycle-introducing, the differential saving step will fihis

Algorithm 3 : CSE with Runtime Reduction

1. Initialize the differential saving arrakp.

Algorithm 2 : CycleDetect(,., r.)

2. Find the cycleless pairs of rows with the greatest
differential saving inD, randomly choose one,
eliminate it, and updat®. Repeat until there is no
positive element irD.

input : A pair of rows(rpc, rec)
output: If it leads to a cycle, return true; otherwise,
return false

foreach established pair (rp;, rc;) do
if rp; = rec then

if 7pc = 1¢; then 4. Find the patterns with the greatest numbeRin
| ‘return true s )
randomly choose one, eliminate it, and updite

end Repeat until all elements iR are zero
else ifCycleDetect (rpe,re) = truethen P )

| return true

3. Initialize the recurrence saving arr&y

end
end Because not all patterns exist and the number of possible
end patterns will decrease progressively, it will save mucltcspa
return false we keep track of only the possible patterns. But it will inxel

full searches to update the frequencies and to remove psitter
which disappear after each elimination. The complexity of
such full searches will increase rapidly when the sideis
large. We keep all pattern frequencies in a two-dimensional
When the size ofM is large, the computational complex- array R, where R;; is the recurrence saving of the two-bit
ity of Algorithm [ could be prohibitive. We propose several pattern which has non-zero bits on positierend: + j + 1.
improvements to further reduce the runtime of our CSE algoSuppose after the differential saving steps are over,lafid
rithm. hasn columns. Initially,R is an(n—1) x (n—1) array, where

In Algorithm[, we restart the differential saving step af- R;; is the recurrence saving of the two-bit pattern which has
ter each recurrence saving step. But the possibility that nenon-zero bits on positionisandi + j + 1 for0 < i <n —2
differential savings emerge after we eliminate a pattem foand0 < j < n — i — 2. Hence frequency update can be done
recurrence saving is quite small. In order to reduce the conwithout search and it is not necessary to remove frequencies
plexity of our CSE algorithm, we do not revisit the differen- When a new pattern is identified, it forms a new possible pat-

3.4. Complexity Reduction Improvements



tern by combination with every previously identified patier 1011100

So a new pattern frequency is appended to every roRof . of0 1 0 0 0 1 0f " that(rs, 7o) is Cy-
and a new row with only one pattern frequency will be ap- 0010001 ’

pended to the bottom dR. 01 110 00

is shown in AlgorithmB. Note our results show that theand K becomes empty, and we enter the recurrence saving

mance loss. The speed advantage of Algorithm 3 over Al- 000000
gorithm[d enable us to run Algorithid 3 many more times, 0 000
enhancing the possibility of obtaining a better result thgn 0 00 . So the only choice 2, 3), which
gorithm[d within the same amount of time. 0 8 0
0
3.5. Modified Differential Saving Update Scheme corresponds td, + X3. HenceGy is (0,0,1,1,0,0,0,0)7
During the differential saving step, our CSE algorithm only (1) (1) 8 8 (1) (1) 8 (1)
keeps one copy of each row. Actually one row can have muland M i is 00100010l and the recur-

tiple different decompositions, based on differentialisgs
with different rows. To exploit the best differential sagifor
each row, a modified differential saving update scheme is d
veloped.

Say the pai(r,, r.) is selected for differential saving elim-
ination. After elimination, the child row, is updated to-..
For an arbitrary row;, the differential saving ofr., r;) can
be higher thar{r., ;). In the modified update scheme, such
cases are better handled by not modifying the differengial s
ing D.; and keeping a copy of.. Since for different-; we
may need different copies of, an arrayK whose element ) _
K,; keeps a copy of; corresponding td; ; is necessary. 3.6. Computational and Storage Complexity

If (r¢,m;) has bigger saving thab.;, we simply update \we can show that the time complexity of Algorittith 3 for an
D.; as before ands;; becomes a empty row since no copy , x »’ matrix M is 1n3n'2 + O(n3n’) + O(n*n’?) and its

is necessary. If the new saving is equallg, itis randomly  storage complexity ign2n’2+0(n?n’)+0(nn'2). Thus, our

01 0 0 0 0 0 1
rence saving array becomes all zerodf p needs5 addi-
%ons. The identified patterk, + X3 also needs one addi-
tion. SOY = M X can be calculated biyadditions, whereas
a straightforward implementation & = M X requiresl2
additions. It is easy to verify that the minimum number of
additions needed 8. Hence, our CSE algorithm minimizes
the number of additions in this case. Note that if we only use
recurrence savings, the result will Bedditions.

chosen which copy to use. _ CSE algorithm has polynomial complexity. Due to limited
Now we provide an example of Algorithith 3. Suppose wespace, the details of the analysis is omitted.
10111 Note that the complexity of our CSE algorithm depends
have M — L1 L ond the differential saving ©n only M. Once a CFFT is determined, it can be used for
11011 any input vector. Hence our CSE algorithm is just precompu-
01 110 tation and its complexity does not affect that of the CFFT.
-1 3 1 0
arayD is initialized as| ' % | | andKis 4. APPLICATION IN CFFT AND RS DECODING
, 0 2 0 -~ 4.1. Various CFFT
empty. Choosingro, r1), we have
101 110 Before we apply our CSE algorithm to various CFFTs, we an-
M = 01 00 01 where the new column reo- alyze their properties. We can show that DCFFT and TCFFT
110 1 1 0} P~ have the same additive complexity under direct computation
011100 We can also show that TCFFT and ICFFT are equivalent up
resents the result of the first row, and the differential savio permutation andlways have the same additive complexity.
-1 -1 1 0 Due to the limited space, the proofs are omitted.
ing array is updated a| _11 _01 _21 8 , andK 5 be-

4.2. Full CFFT
o 0 0 -1

comes(1,1,1,1,1,1) to keep the previous copy of. Since  With Algorithm[3, we can easily construct CFFT algorithms
(ro,r1) Is selected,r1,rg) is cycle-introducing and hence with reduced additive complexity for lengths up to 1023. The
its saving is simply set te-1. Choosing(r1,72), M’ be-  results are given in Tablé 1. Note that for direct computatio



of CFFT, the sum of the additive complexity & andQ is  m? AND gates [9], while an adder requires XOR gates.
less thanAQ combined for all lengths, and the smaller num-Assuming that XOR and AND gates have the same complex-
bers are provided in Tablg 1. The multiplicative complexityity, the complexity of a multiplier igm times that of an adder

is the same for all approaches. Compared with direct comaver GF(2™). In software implementation, the complexity
putation, the CSE algorithm reduces the additive complexitcan be measured by the number of word-level operations [10].
by more thar80% for all variations of CFFT. Compared to Using the shift and add method as in [10], a multiplication
the additive complexity of DCFFT in [4], the best results ofrequiresm — 1 shift andm XOR word-level operations, re-
DCFFT known to us, the CSE algorithm reduces the additivespectively while an addition needs only one XOR word-level
complexity by12% for lengths of255 and511. The additive  operation. Henceforth we assume that the complexity of a fi-
complexity of DCFFT of lengti023 is not provided in [4]. nite field multiplication oveGF(2™) is 2m — 1 times as that

of an addition. Note that this assumption is in favor of mul-
tiplications, which puts CFFT algorithms in a disadvantage

Table 1. Complexity of Full CFFT since they have reduced multiplicative complexity.

Additions .
K Mult. DCFFT TCAC-FFT | Direct redtj/\(/:ee ;pepgu::Ee?iE agclj%t(i)g:ngfezgniFIt:tri]gn-arlct::zlr:nT Ite?x-
CSE | [4] CSE | Comp. : P P

ities of the(255, 32), (511, 64), and(1023, 128) partial FFTs

are compared in Tabld 2. Among these three lengths, only
the result for(255, 32) is available in [6]. Since TCFFT and
ICFFT have the same complexity, the CSE algorithm leads to
20% saving on the additive complexity of tHe55, 32) cy-
clotomic partial FFT, compared with that in [6]. For all tere
4.3. Partial CFFT partial FFTs, TCFFT minimizes the total number of addition
operations.

255 | 586 | 6900 | 7919 7815 37279
511 | 1014 | 23424 | 26643 27299 141710
1023 | 2827 | 88002| N/A 105180 | 536093

When decodingn, k) RS codes, partial FFT is used to eval-
uate the first syndromes, where= L"T*’“J. We label such ) )
a partial FFT agn,2t). In an (n,2t) partial FFT, we are 4-4- Transform-Domain RS Decoding

only concerned about the fir8t elements off”. Hence we  Replacing the prime-factor FFT with CFFT with reduced com-

can eliminate unnecessary rows A in DCFFT andQ in - pjexity proposed above, we propose a new transform-domain
TCFFT/ICFFT, respectively. If there are all-zero columms i qecoder as follows:

the reduced matrices, we can eliminate these columns and the )
corresponding elements ef and in turn eliminate unneces- 1. Compute the syndromes by partial CFFT.

T —1 H H
sary rows ofP, PA™, or PA™". Sinceq is more sparse 5 jse the BMA to obtain the error-locator polynomial.
than AQ, it is likely to have more all-zero columns after row
elimination, which leads to fewer non-one elementg and 3. Compute the remaining syndromes by recursive exten-
thus fewer multiplications. Thus partial TCFFT and ICFFT sion using the error-locator polynomial.

tend to have lower multiplicative complexity.
We also choose the appropriate permutationg'@nd f
to find more all-zero columns i@ and minimize the number
of multiplications, which is identical to the permutatioh o
the basis suggested in [6]. Note that multiple permutations
may give the same multiplicative complexity, and we simply ~ Since our decoder differs from that in [3] only in Steps 1
choose one randomly in each optimization. and 4, we compare the complexity of these two steps in Ta-
Instead of further reducing multiplications in partial TC- ble[3. We choose partial TCFFT for syndrome evaluation
FFT and ICFFT, DCFFT can eliminate unnecessary additions For Step 4, the saving of CFFT over prime-factor FFT
by erasing the last — 2¢ rows in A. Due to the tremendous for (255,223) and(511,447) RS codes i25% and68%, re-
number of additions in CFFT, itis favorable to use partiatDC spectively. The advantage of CFFT upon multiplicative com-
FFT for less additions. It also makes it easier and fastarrio r plexity is obvious, but due to its large additive complexity
our CSE algorithm sinceA@ is reduced to a much smaller CFFT has roughly the same total number of addition opera-
size. tions as prime-factor FFT length 1023. Another advantage of
Partial DCFFT has lower additive complexity, while par- CFFT is its complexity increases proportionally while tbét
tial TCFFT and ICFFT have lower multiplicative complex- prime-factor FFT varies considerably, depending on the fac
ity. To determine which method is better, we use the totatorization of2™ — 1. That is why the saving of CFFT for the
number of finite field additions as the metric to compare theif511, 447) RS code is larger than the other two codes.
complexities. In hardware implementation, a multiplieeov For Step 1, CFFT reduces the number of multiplications
GF(2™) generated by trinomials requires® — 1 XOR and  at the expense of more additions. Compared with full FFT,

4. Compute the error vector by inverse DFT of all syn-
dromes by full CFFT. Finally, the corrected codeword
is obtained by adding the received vector and the error
vector.



Table 2. Complexity of Partial CFFT
(n, 21) DCFFT w/ CSE TCFFT w/ CSE ICFFT [6]

’ Mult. | Add. || Total | Mult. | Add. || Total | Mult. | Add. || Total
(255, 32) 586 | 2960 || 11750| 149 | 4012 || 6247 | 149 | 5046 | 7281
(511,64) | 1014 | 8298 || 25536| 345 | 16509 | 22374 N/A | N/A || N/A

(1023,128) | 2827 | 25124 | 78837 | 824 | 60741| 76397 | N/A | N/A || N/A

Table 3. Complexity of Transform-Domain RS Decoding
(n, k) CFFT Prime-Factor [3]

’ Mult. | Add. Total | Mult. | Add. Total
Syndrome 149 | 4012 6247 852 | 1804 || 14584
(255,223) | Inverse Transform 586 | 6900 15690 | 1135 | 3887 || 20912

Total 735 | 10912 || 21937 | 1987 | 5691 || 35496
Syndrome 345 | 16509 || 22374 | 5265 | 7309 || 96814
(511,447) | Inverse Transform 1014 | 23424 || 41203 | 6516 | 17506 | 128278

Total 1359 | 39933 || 63036 | 11781 | 24815 | 225092
Syndrome 824 | 60741 || 76397 | 6785 | 15775| 144690
(1023,895) | Inverse Transforn] 2827 | 88002 || 141715| 5915 | 30547 || 142932
Total 3651 | 148743 218112| 12700| 46322 | 287622

CFFT achieves greater savings for syndrome evaluation. Fof4] P. V. Trifonov and S. V. Fedorenko, “A method for fast
the (255, 223), (511,447), and(1023,895) RS codes, the re- computation fo the Fourier transform over a finite field,”
duction of complexity in terms of the total number of additio Probl. Inf. Transm,, vol. 39, no. 3, pp. 231-238, 2003.
operations i$7%, 77%, and47%, respectively.

We observe that CFFT always has lower multiplicative [5]
complexity than prime-factor FFT, both in full and partial
FFT. Though prime-factor FFT requires fewer additions, the
advantage of CFFT on the total complexity is significant. For [6] E. Costa, S. V. Fedorenko, and P. V. Trifonov, “On com-
the three listed RS codes, the total saving in the compdeiti puting the syndrome polynomial in Reed-Solomon de-
of Steps 1 and 4 i88%, 72%, and24%, respectively. coder” Euro. Trans. Telecomms,, vol. 15, no. 4, pp.

337-342,2004.

S. V. Fedorenko, “A method of computation of the dis-
crete Fourier transform over a finite fieldProbl. Inf.
Transm,, vol. 42, no. 2, pp. 139-151, 2006.
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