
ar
X

iv
:0

71
0.

18
79

v1
 [

cs
.IT

]
10

 O
ct

 2
00

7

REDUCED-COMPLEXITY CYCLOTOMIC FFT AND ITS APPLICATION
TO REED-SOLOMON DECODING

Ning Chen and Zhiyuan Yan

Department of Electrical and Computer Engineering, LehighUniversity, PA 18015, USA
E-mail: {nic6, yan}@lehigh.edu

ABSTRACT

Cyclotomic fast Fourier transform (CFFT) was recently pro-
posed and shown to be efficient for lengths up to 511. In this
paper, we propose a novel algorithm to reduce the additive
complexity of CFFT. When used in transform-domain Reed-
Solomon decoders, our improved CFFT reduces the complex-
ity of the transform portion by up to72%.

Index Terms— Discrete Fourier transforms, Galois fields,
Reed-Solomon codes, Complexity theory, Optimization

1. INTRODUCTION

Due to the widespread applications of Reed-Solomon (RS)
codes in various digital communication and storage systems,
efficient decoding of RS codes has been an important research
topic. All syndrome-based decoding methods for RS codes
involve discrete Fourier transform (DFT) over finite fields [1]:
partial DFT is used in syndrome evaluation, and transform-
domain decoders use inverse DFT to recover transmitted code-
words. Thus, efficient FFT algorithms can be used to re-
duce the complexity of RS decoders. Using the prime-factor
FFT algorithm in [2], Truonget al. proposed an inverse-free
transform-domain RS decoder whose complexity is substan-
tially lower than time-domain decoders [3].

Cyclotomic FFT (CFFT) was recently proposed [4,5] and
shown to be efficient for lengths up to 511 [4]. Furthermore, it
was shown that inverse cyclotomic FFT (ICFFT) was efficient
for syndrome evaluation of length-255 RS codes [6]. Trans-
pose cyclotomic FFT (TCFFT) was also proposed for syn-
drome evaluation [5]. To avoid confusion, we call the original
form of CFFT in [4] direct cyclotomic FFT (DCFFT).

Though cyclotomic FFT is attractive for its low multi-
plicative complexity, its additive complexity is very highif
implemented directly. In [4], a heuristic algorithm based on
decoding in the binary erasure channel [7] was used to reduce
the additive complexity.

Realizing that it is actually an NP-complete problem to
minimize the additive complexity of CFFT, we propose a novel
common subexpression elimination (CSE) algorithm that sig-
nificantly reduces the additive complexity of CFFT. Com-
pared with direct computation, our CSE algorithm reduces

the additive complexity of full DCFFT, TCFFT, and ICFFT
by more than80%, and the additive complexity of our im-
proved DCFFT is12% smaller than that in [4], the best re-
sults of DCFFT known to us. For partial CFFT, our improved
TCFFT achieve20% saving on additive complexity over that
in [6]. Using full and partial CFFTs instead of prime-factor
FFT algorithm in [3], we reduce the complexity of the DFT
and IDFT portions of the transform-domain decoder in [3] by
up to72% for RS codes of lengths up to 1023.

The rest of the paper is organized as follows. In Section
2, we briefly review various cyclotomic FFT algorithms. Sec-
tion 3 presents our CSE algorithm. Reduced-complexity full
and partial CFFTs are discussed in Sections 4.1–4.3. Finally,
we apply the improved CFFT to transform-domain RS de-
coders in Section 4.4.

2. CYCLOTOMIC FFT

For a primitive elementα ∈ GF(2m), the transform from
a polynomialf(x) =

∑n−1

i=0
fix

i ∈ GF(2m)[x] to F =
(f(α0), f(α1), . . . , f(αn−1))T is referred to as a DFT off =
(f0, f1, . . . , fn−1)

T . Representing the original polynomial
f(x) as a sum of linearized polynomials by cyclotomic de-
composition [4, 5], cyclotomic FFTF = ALf ′ = ALΠf ,
whereA is ann×n binary matrix,f ′ = (f ′T

0 ,f ′T
1 , · · · ,f ′T

l−1)
is a permutation of the input vectorf , Π is a permutation
matrix, andL = diag(L0,L1, · · · ,Ll−1) is a block diagonal
matrix with square matricesLi’s on the diagonal. Mapped
to normal basis,Li becomes a quadratic generalized Vander-
monde matrix. Thus, the product ofLi andf ′

i can be com-
puted as a cyclic convolution over finite fields, for which fast
algorithms are available. These fast algorithms can be writ-
ten in matrix form asLif

′

i = Qi(ci · P if
′

i), whereQi and
P i are both binary matrices,ci is a constant vector, and·
stands for pointwise multiplications. Hence DCFFT is given
byF = AQ(c ·Pf ′), whereQ = diag(Q0,Q1, · · · ,Ql−1)
is a block diagonal matrix withQi’s on the diagonal,P =
diag(P 0, · · · ,P l−1) is a block diagonal matrix withP i’s on
the diagonal, andc = (cT0 , c

T
1 , · · · , c

T
l−1

)T .
Fedorenko [5] constructed an equivalent transform with

symmetric transform matrix, which leads to TCFFT asF ′ =

http://arxiv.org/abs/0710.1879v1

LTA′Tf ′ = Q(c · PA′Tf ′), whereF ′ = ΠF andA′ =
ΠA. In [6], the complexity of partial DFT was reduced by
using ICFFT asF ′′ = L−1A−1f = Q(c · PA−1f), where
F ′′ is also a permutation ofF . Note thatL = LT = L−1.

For CFFT, the number of multiplications is determined by
the number of non-one elements inc while the number of ad-
ditions is determined by the two matrix-vector multiplications
in which both matrices are binary. For example, in DCFFT,
the matrices areAQ andP . Due to the size ofAQ, direct
computation of the matrix-vector product will result in high
additive complexity. Next, we will propose an algorithm that
significantly reduces the additive complexity of CFFT.

3. CSE ALGORITHM

3.1. Problem Analysis

In this section, we first model the minimization of the addi-
tive complexity of CFFT as a matrix transformation, and then
provide a simple heuristic description of our CSE algorithm.

The optimization problem can be modeled as a linear trans-
formY = MX, whereY andX aren- andn′-dimensional
column vectors andM is ann × n′ matrix containing only
1,−1, and0. X represents the variable input whileM in-
dicates the set of constants. Clearly, such a transform re-
quires only additions and subtractions. It was shown that to
minimize the number of additions and subtractions is an NP-
complete problem [8].

We now propose a CSE algorithm with polynomial com-
plexity that significantly reduces the additive complexityof
CFFT. Although our CSE algorithm does not guarantee to
minimize the additive complexity, it may in some cases, es-
pecially when the size of the problem is small. Our algorithm
exploits two kinds of savings: differential saving and recur-
rence saving, as defined below.

One can of course reduce the additive complexity by first
identifying recurring patterns, which are combinations ofnon-
zero positions, and then calculating them only once. Such
a pattern can be defined as a vector. We refer to the num-
ber of occurrences of a pattern inM as pattern frequency,
and definerecurrence saving of each pattern as its pattern
frequency minus1. After identifying a pattern, instead of
simply eliminating it, we replace the pattern with a new el-
ement which stands for the result of the identified pattern.
This process can be described in matrix decomposition form:
M = MRM j−1 . . .M 1M0, whereM i = [I | Gi]

T and
Gi is the identified pattern vector. Thus the transform can be
computed in a sequential fashion: first assignX0 = X, then
computeXi+1 = M iXi for i = 0, 1, · · · , j − 1, and finally
computeY = MRXj .

Since multi-bit patterns can be expressed recursively as
two-bit patterns whose elements are previously identified pat-
terns, our CSE algorithm looks for only two-bit patterns and
keeps track of all previously identified patterns in a matrixto

reduce computational complexity.
In CFFT, the elements ofX are over characteristic-2 fields.

For these fields,1 and−1 are identical and hence additions
are the same as subtractions. It also has a special property:if
two rows ofM both have1’s on the same columns, their sum
will cancel out on those columns. The additional property im-
plies that we can take advantage ofdifferential saving. If the
difference (or sum) of two rowsr0 andr1 contains fewer el-
ements than one of the two rows, sayr0, we can obtainr0 by
adding the difference (sum) tor1, thereby reducing the num-
ber of additions. However, these two rows must be computed
in a strict order. We callr1, the row which will be computed
first, the parent row andr0 the child row. We use a new el-
ement to represent the result of the parent row. After we re-
place the child row with the difference row, we append the
new element to it. Let the numbers of non-zero elements for
an ordered pair of rows(rp, rc), in whichrp is the parent row
andrc is the child row, besp andsc, respectively, and let the
number of non-zero elements for their difference besd. The
differential saving for the ordered pair is given bysc−sd−1.
Since we are only concerned about positive savings, we use

[sc − sd − 1]+
def
= max{0, sc − sd − 1} in our algorithms.

Note that such an operation introduces no extra computa-
tion step to the final result except for imposing a strict order
between the rows ofM . After such a transform, the linear
transform becomesY = M ′X ′, whereX ′ = (XT ,Y ′T)T

andY ′ includes all the parent rows.

Algorithm 1 : Common Subexpression Elimination

1. Identify the pairs of rows with the greatest differential
saving, select one pair out of them randomly, replace
the child row with the difference between the two
rows, and append the element representing the parent
row to it. Repeat until there is no differential saving.

2. Identify the two-bit patterns with the greatest
recurrence saving, select one out of them randomly,
replace all occurrences of the selected pattern with a
new element. Go to Step 1 until there is no recurrence
saving.

3.2. Randomized Greedy Algorithm

Our CSE algorithm, shown in Algorithm 1, has two steps:
Steps 1 and 2 are referred to as the differential saving and re-
currence saving steps respectively. In both steps, we use the
greedy strategy which choose the transform with the greatest
saving. If there are multiple choices, we randomly choose
one among them. Note that our choice is merely locally opti-
mal, and does not guarantee the optimal solution. Our goal
is to reduce the number of additions as much as possible.

Since differential saving reduces the number of non-zero el-
ements without introducing new patterns which still require
additions, differential saving is given higher priority than re-
currence saving in our algorithm. Since our algorithm is a
randomized algorithm, the result of each run may vary. How-
ever, simulation results show that the variance between differ-
ent runs is quite small even for large problems.

3.3. Cycle Detection

Let (rp, rc) be an ordered pair of rows in whichrp is the par-
ent row andrc is the child row. If the pair is selected, it im-
poses a restriction that the result ofrp must be computed be-
fore that ofrc. All the selected pairs form a directed graph,
where the vertices are the row numbers in the pairs and the
edges are from the parent rows to the child rows in all pairs.
The restrictions imposed by all selected pairs constitute the
requirement that the graph must be cycleless. Our differen-
tial saving step must maintain this graph and use it to avoid
selecting ordered pairs that will result in a cycle in the graph.

Our CSE algorithm uses the recursive procedure in Al-
gorithm 2 to perform cycle detection. If an ordered pair is
cycle-introducing, it will not be considered in the random se-
lection of the differential saving step. If all ordered pairs are
cycle-introducing, the differential saving step will finish.

Algorithm 2 : CycleDetect(rpc, rcc)

input : A pair of rows(rpc, rcc)
output: If it leads to a cycle, return true; otherwise,

return false

foreachestablished pair (rpi, rci) do
if rpi = rcc then

if rpc = rci then
return true

end
else ifCycleDetect(rpc, rci) = true then

return true
end

end
end
return false

3.4. Complexity Reduction Improvements

When the size ofM is large, the computational complex-
ity of Algorithm 1 could be prohibitive. We propose several
improvements to further reduce the runtime of our CSE algo-
rithm.

In Algorithm 1, we restart the differential saving step af-
ter each recurrence saving step. But the possibility that new
differential savings emerge after we eliminate a pattern for
recurrence saving is quite small. In order to reduce the com-
plexity of our CSE algorithm, we do not revisit the differen-

tial saving step once the recurrence saving step has started,
essentially decoupling the two steps. This not only reduces
the runtime by reducing the number of the differential saving
steps, but also enables us to further accelerate both steps by
space-time trade-off, which will be discussed below.

Now that the differential saving step is stand-alone, it is
necessary to avoid repeated exhaustive search. There are only
n rows inM , so all possible differential saving can be put in
ann×n arrayD, whereDij stands for the differential saving
of the ordered pair of rows(ri, rj). Such an array can be built
with an initial exhaustive search. After it is constructed,at
most2(n− 1) elements of the array need to be updated after
each differential saving step. Whenever one pair of rows is
detected to be cycle-introducing, its differential savingwill
be set to−1 and hence it is excluded from later consideration.
Thus the number of possible pairs will decrease continuously,
and the search will be increasingly faster.

A similar idea can be used to reduce the runtime of the
recurrence saving step. Since elimination of one pattern will
only change a small portion of the pattern frequencies, to ex-
pedite searches, we store the pattern frequencies and update
them after each elimination step.

Algorithm 3 : CSE with Runtime Reduction

1. Initialize the differential saving arrayD.

2. Find the cycleless pairs of rows with the greatest
differential saving inD, randomly choose one,
eliminate it, and updateD. Repeat until there is no
positive element inD.

3. Initialize the recurrence saving arrayR.

4. Find the patterns with the greatest number inR,
randomly choose one, eliminate it, and updateR.
Repeat until all elements inR are zero.

Because not all patterns exist and the number of possible
patterns will decrease progressively, it will save much space if
we keep track of only the possible patterns. But it will involve
full searches to update the frequencies and to remove patterns
which disappear after each elimination. The complexity of
such full searches will increase rapidly when the sizeM is
large. We keep all pattern frequencies in a two-dimensional
arrayR, whereRij is the recurrence saving of the two-bit
pattern which has non-zero bits on positionsi andi + j + 1.
Suppose after the differential saving steps are over, andM ′

hasn̄ columns. Initially,R is an(n̄−1)×(n̄−1) array, where
Rij is the recurrence saving of the two-bit pattern which has
non-zero bits on positionsi andi + j + 1 for 0 ≤ i ≤ n̄− 2
and0 ≤ j ≤ n̄− i− 2. Hence frequency update can be done
without search and it is not necessary to remove frequencies.
When a new pattern is identified, it forms a new possible pat-

tern by combination with every previously identified patterns.
So a new pattern frequency is appended to every row ofR,
and a new row with only one pattern frequency will be ap-
pended to the bottom ofR.

Our CSE algorithm incorporating the above improvements
is shown in Algorithm 3. Note our results show that the
decoupling of the two steps result in only negligible perfor-
mance loss. The speed advantage of Algorithm 3 over Al-
gorithm 1 enable us to run Algorithm 3 many more times,
enhancing the possibility of obtaining a better result thanAl-
gorithm 1 within the same amount of time.

3.5. Modified Differential Saving Update Scheme

During the differential saving step, our CSE algorithm only
keeps one copy of each row. Actually one row can have mul-
tiple different decompositions, based on differential savings
with different rows. To exploit the best differential saving for
each row, a modified differential saving update scheme is de-
veloped.

Say the pair(rp, rc) is selected for differential saving elim-
ination. After elimination, the child rowrc is updated tor′c.
For an arbitrary rowri, the differential saving of(rc, ri) can
be higher than(r′c, ri). In the modified update scheme, such
cases are better handled by not modifying the differential sav-
ing Dci and keeping a copy ofrc. Since for differentri we
may need different copies ofrc, an arrayK whose element
Kij keeps a copy ofrj corresponding toDij is necessary.

If (r′c, ri) has bigger saving thanDci, we simply update
Dci as before andKij becomes a empty row since no copy
is necessary. If the new saving is equal toDci, it is randomly
chosen which copy to use.

Now we provide an example of Algorithm 3. Suppose we

haveM =

1 0 1 1 1
1 1 1 1 1
1 1 0 1 1
0 1 1 1 0

, and the differential saving

arrayD is initialized as

−1 3 1 0
2 −1 2 0
1 3 −1 0
0 2 0 −1

, andK is

empty. Choosing(r0, r1), we have

M ′ =

1 0 1 1 1 0
0 1 0 0 0 1
1 1 0 1 1 0
0 1 1 1 0 0

, where the new column rep-

resents the result of the first row, and the differential sav-

ing array is updated as

−1 −1 1 0
−1 −1 2 0
1 0 −1 0
0 0 0 −1

, andK12 be-

comes(1, 1, 1, 1, 1, 1) to keep the previous copy ofr1. Since
(r0, r1) is selected,(r1, r0) is cycle-introducing and hence
its saving is simply set to−1. Choosing(r1, r2), M

′ be-

comes

1 0 1 1 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 0

. Note that(r2, r0) is cy-

cle introducing so there is no positive differential savingleft
andK becomes empty, and we enter the recurrence saving
step. The recurrence saving arrayR for M ′ is initialized as

0 0 0 0 0 0
0 0 0 0 0
1 0 0 0
0 0 0
0 0
0

. So the only choice is(2, 3), which

corresponds toX2 +X3. HenceG0 is (0, 0, 1, 1, 0, 0, 0, 0)T

andMR is

1 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1

, and the recur-

rence saving array becomes all zeros.MR needs5 addi-
tions. The identified patternX2 + X3 also needs one addi-
tion. SoY = MX can be calculated by6 additions, whereas
a straightforward implementation ofY = MX requires12
additions. It is easy to verify that the minimum number of
additions needed is6. Hence, our CSE algorithm minimizes
the number of additions in this case. Note that if we only use
recurrence savings, the result will be7 additions.

3.6. Computational and Storage Complexity

We can show that the time complexity of Algorithm 3 for an
n × n′ matrixM is 1

4
n3n′2 + O(n3n′) + O(n2n′2) and its

storage complexity is1
8
n2n′2+O(n2n′)+O(nn′2). Thus, our

CSE algorithm has polynomial complexity. Due to limited
space, the details of the analysis is omitted.

Note that the complexity of our CSE algorithm depends
on onlyM . Once a CFFT is determined, it can be used for
any input vector. Hence our CSE algorithm is just precompu-
tation and its complexity does not affect that of the CFFT.

4. APPLICATION IN CFFT AND RS DECODING

4.1. Various CFFT

Before we apply our CSE algorithm to various CFFTs, we an-
alyze their properties. We can show that DCFFT and TCFFT
have the same additive complexity under direct computation.
We can also show that TCFFT and ICFFT are equivalent up
to permutation andalways have the same additive complexity.
Due to the limited space, the proofs are omitted.

4.2. Full CFFT

With Algorithm 3, we can easily construct CFFT algorithms
with reduced additive complexity for lengths up to 1023. The
results are given in Table 1. Note that for direct computation

of CFFT, the sum of the additive complexity ofA andQ is
less thanAQ combined for all lengths, and the smaller num-
bers are provided in Table 1. The multiplicative complexity
is the same for all approaches. Compared with direct com-
putation, the CSE algorithm reduces the additive complexity
by more than80% for all variations of CFFT. Compared to
the additive complexity of DCFFT in [4], the best results of
DCFFT known to us, the CSE algorithm reduces the additive
complexity by12% for lengths of255 and511. The additive
complexity of DCFFT of length1023 is not provided in [4].

Table 1. Complexity of Full CFFT

n Mult.
Additions

DCFFT TC/IC-FFT Direct
CSE [4] CSE Comp.

255 586 6900 7919 7815 37279
511 1014 23424 26643 27299 141710
1023 2827 88002 N/A 105180 536093

4.3. Partial CFFT

When decoding(n, k) RS codes, partial FFT is used to eval-
uate the first2t syndromes, wheret = ⌊n−k

2
⌋. We label such

a partial FFT as(n, 2t). In an (n, 2t) partial FFT, we are
only concerned about the first2t elements ofF . Hence we
can eliminate unnecessary rows ofAQ in DCFFT andQ in
TCFFT/ICFFT, respectively. If there are all-zero columns in
the reduced matrices, we can eliminate these columns and the
corresponding elements ofc, and in turn eliminate unneces-
sary rows ofP , PA′T , or PA−1. SinceQ is more sparse
thanAQ, it is likely to have more all-zero columns after row
elimination, which leads to fewer non-one elements inc and
thus fewer multiplications. Thus partial TCFFT and ICFFT
tend to have lower multiplicative complexity.

We also choose the appropriate permutations ofF andf
to find more all-zero columns inQ and minimize the number
of multiplications, which is identical to the permutation of
the basis suggested in [6]. Note that multiple permutations
may give the same multiplicative complexity, and we simply
choose one randomly in each optimization.

Instead of further reducing multiplications in partial TC-
FFT and ICFFT, DCFFT can eliminate unnecessary additions
by erasing the lastn− 2t rows inA. Due to the tremendous
number of additions in CFFT, it is favorable to use partial DC-
FFT for less additions. It also makes it easier and faster to run
our CSE algorithm sinceAQ is reduced to a much smaller
size.

Partial DCFFT has lower additive complexity, while par-
tial TCFFT and ICFFT have lower multiplicative complex-
ity. To determine which method is better, we use the total
number of finite field additions as the metric to compare their
complexities. In hardware implementation, a multiplier over
GF(2m) generated by trinomials requiresm2 − 1 XOR and

m2 AND gates [9], while an adder requiresm XOR gates.
Assuming that XOR and AND gates have the same complex-
ity, the complexity of a multiplier is2m times that of an adder
overGF(2m). In software implementation, the complexity
can be measured by the number of word-level operations [10].
Using the shift and add method as in [10], a multiplication
requiresm − 1 shift andm XOR word-level operations, re-
spectively while an addition needs only one XOR word-level
operation. Henceforth we assume that the complexity of a fi-
nite field multiplication overGF(2m) is 2m− 1 times as that
of an addition. Note that this assumption is in favor of mul-
tiplications, which puts CFFT algorithms in a disadvantage
since they have reduced multiplicative complexity.

We apply the CSE algorithm to DCFFT and TCFFT to
reduce the number of additions. The computational complex-
ities of the(255, 32), (511, 64), and(1023, 128) partial FFTs
are compared in Table 2. Among these three lengths, only
the result for(255, 32) is available in [6]. Since TCFFT and
ICFFT have the same complexity, the CSE algorithm leads to
20% saving on the additive complexity of the(255, 32) cy-
clotomic partial FFT, compared with that in [6]. For all three
partial FFTs, TCFFT minimizes the total number of addition
operations.

4.4. Transform-Domain RS Decoding

Replacing the prime-factor FFT with CFFT with reduced com-
plexity proposed above, we propose a new transform-domain
decoder as follows:

1. Compute the syndromes by partial CFFT.

2. Use the BMA to obtain the error-locator polynomial.

3. Compute the remaining syndromes by recursive exten-
sion using the error-locator polynomial.

4. Compute the error vector by inverse DFT of all syn-
dromes by full CFFT. Finally, the corrected codeword
is obtained by adding the received vector and the error
vector.

Since our decoder differs from that in [3] only in Steps 1
and 4, we compare the complexity of these two steps in Ta-
ble 3. We choose partial TCFFT for syndrome evaluation

For Step 4, the saving of CFFT over prime-factor FFT
for (255, 223) and(511, 447) RS codes is25% and68%, re-
spectively. The advantage of CFFT upon multiplicative com-
plexity is obvious, but due to its large additive complexity
CFFT has roughly the same total number of addition opera-
tions as prime-factor FFT length 1023. Another advantage of
CFFT is its complexity increases proportionally while thatof
prime-factor FFT varies considerably, depending on the fac-
torization of2m − 1. That is why the saving of CFFT for the
(511, 447) RS code is larger than the other two codes.

For Step 1, CFFT reduces the number of multiplications
at the expense of more additions. Compared with full FFT,

Table 2. Complexity of Partial CFFT

(n, 2t)
DCFFT w/ CSE TCFFT w/ CSE ICFFT [6]

Mult. Add. Total Mult. Add. Total Mult. Add. Total
(255, 32) 586 2960 11750 149 4012 6247 149 5046 7281
(511, 64) 1014 8298 25536 345 16509 22374 N/A N/A N/A
(1023, 128) 2827 25124 78837 824 60741 76397 N/A N/A N/A

Table 3. Complexity of Transform-Domain RS Decoding

(n, k)
CFFT Prime-Factor [3]

Mult. Add. Total Mult. Add. Total

(255, 223)
Syndrome 149 4012 6247 852 1804 14584

Inverse Transform 586 6900 15690 1135 3887 20912
Total 735 10912 21937 1987 5691 35496

(511, 447)
Syndrome 345 16509 22374 5265 7309 96814

Inverse Transform 1014 23424 41203 6516 17506 128278
Total 1359 39933 63036 11781 24815 225092

(1023, 895)
Syndrome 824 60741 76397 6785 15775 144690

Inverse Transform 2827 88002 141715 5915 30547 142932
Total 3651 148743 218112 12700 46322 287622

CFFT achieves greater savings for syndrome evaluation. For
the(255, 223), (511, 447), and(1023, 895) RS codes, the re-
duction of complexity in terms of the total number of addition
operations is57%, 77%, and47%, respectively.

We observe that CFFT always has lower multiplicative
complexity than prime-factor FFT, both in full and partial
FFT. Though prime-factor FFT requires fewer additions, the
advantage of CFFT on the total complexity is significant. For
the three listed RS codes, the total saving in the complexities
of Steps 1 and 4 is38%, 72%, and24%, respectively.

Acknowledgment

The authors would like to thank Professor Peter Trifonov for
providing his results of CFFT

5. REFERENCES

[1] R. E. Blahut, “Transform techniques for error control
codes,”IBM J. Res. Dev., vol. 23, pp. 299–315, 1979.

[2] T. K. Truong, P. D. Chen, L. J. Wang, I. S. Reed, and
Y. Chang, “Fast, prime factor, discrete Fourier transform
algorithms overGF(2m) for 8 ≤ m ≤ 10,” Inf. Sci.,
vol. 176, no. 1, pp. 1–26, Jan. 2006.

[3] T. K. Truong, P. D. Chen, L. J. Wang, and T. C. Cheng,
“Fast transform for decoding both errors and erasures of
Reed-Solomon codes overGF(2m) for 8 ≤ m ≤ 10,”
IEEE Trans. Commun., vol. 54, no. 2, pp. 181–186, Feb.
2006.

[4] P. V. Trifonov and S. V. Fedorenko, “A method for fast
computation fo the Fourier transform over a finite field,”
Probl. Inf. Transm., vol. 39, no. 3, pp. 231–238, 2003.

[5] S. V. Fedorenko, “A method of computation of the dis-
crete Fourier transform over a finite field,”Probl. Inf.
Transm., vol. 42, no. 2, pp. 139–151, 2006.

[6] E. Costa, S. V. Fedorenko, and P. V. Trifonov, “On com-
puting the syndrome polynomial in Reed-Solomon de-
coder,” Euro. Trans. Telecomms., vol. 15, no. 4, pp.
337–342, 2004.

[7] P. V. Trifonov, Adaptive Coding in Multi-Carrier Sys-
tems, Ph.D. thesis, Saint-Petersburg State Polytechnic
University, 2005.

[8] P. Cappello and K. Steiglitz, “Some complexity issues in
digital signal processing,”IEEE Trans. Acoust., Speech,
Signal Process., vol. 32, no. 5, pp. 1037–1041, Oct.
1984.

[9] B. Sunar and C. K. Koc, “Mastrovito multiplier for all
trinomials,” IEEE Trans. Commun., vol. 48, no. 5, pp.
522–527, May 1999.

[10] A. Mahboob and N. Ikram, “Lookup table based multi-
plication technique forGF(2m) with cryptographic sig-
nificance,” IEE Proc.-Commun., vol. 152, no. 6, pp.
965–974, Dec. 2005.

	 Introduction
	 Cyclotomic FFT
	 CSE Algorithm
	 Problem Analysis
	 Randomized Greedy Algorithm
	 Cycle Detection
	 Complexity Reduction Improvements
	 Modified Differential Saving Update Scheme
	 Computational and Storage Complexity

	 Application in CFFT and RS Decoding
	 Various CFFT
	 Full CFFT
	 Partial CFFT
	 Transform-Domain RS Decoding

	 References

