
VIDEO DECODER RECONFIGURATIONS AND AVS EXTENSIONS IN THE NEW MPEG
RECONFIGURABLE VIDEO CODING FRAMEWORK

Dandan Ding, Lu Yu

Zhejiang University, China
Institute of Information

and Communication Engineering
{vickyddd, yul}@zju.edu.cn

Christophe Lucarz, Marco Mattavelli

Ecole Polytechnique
Fédérale de Lausanne, Switzerland

Microelectronic Systems Laboratory (GR-LSM)
{christophe.lucarz, marco.mattavelli}@epfl.ch

ABSTRACT
Multimedia devices are now required to support multiple cod-
ing standards. Supporting seamlessly both interoperability
between standards and flexibility for application specific op-
timizations is a great challenge for current video coding tech-
nology. After a brief description of the new MPEG Reconfig-
urable Video Coding (RVC) framework, this paper describes
possible decoder reconfigurations within this framework. The
essential idea behind this framework is to reuse as most as
possible the algorithms or architectures which are common to
several different standards and to reconfigure video decoders
in a flexible way at the coding tool level. A coding tool is
an encapsulated piece of algorithm. Reconfiguration can ad-
dress specific optimization objectives such as improvement
in colour reproduction or higher performance at high bitrate.
These simple examples show that the tool level definition of
the video tool library is flexible enough to support the incre-
mental introduction of new coding algorithms, the usage of
algorithms taken from different video standards (i.e. AVS is
provided in one example), and the possibility of high level re-
configurations. Thus, this paper demonstrates that the RVC
framework offers a great flexibility in selecting coding tools
for decoder reconfigurations to satisfy a wide variety of dif-
ferent applications.

Index Terms— Reconfigurable Video Coding (RVC),
MPEG-4, AVS, reconfiguration, coding tool

1. INTRODUCTION

MPEG has produced several video coding standards such as
MPEG-1, MPEG-2, MPEG-4, and multimedia technologies
such as MPEG-7, MPEG-21 and MPEG-A. Some other non-
MPEG standards like VC-1 (Video Codec 1) and AVS (Audio
Video coding Standard of China) are also under development.
Nowadays, multimedia devices are usually required to sup-
port more than one of those standards. However, the current

This work was supported by the project of Natural Science Foundation
of China under contract no. 90207005 and the working group of Audio Video
coding Standard of China (AVS).

monolithic specification of standards (usually in C/C++) lacks
flexibility and does not allow the combination of coding algo-
rithms from different standards in order to achieve specific
design or performance trade-offs and fill the requirements of
the system. For example, not all coding tools defined in a pro-
file@level of a specific standard are required in some appli-
cation scenarios. For given application, codecs are either not
exploited at their full potential or require unnecessarily com-
plex implementations. For example, MPEG-4 AVC includes
different syntax elements which are unnecessary in specific
applications. However, a conformant decoder has to support
all of them and may results in a non-efficient solution. An-
other example is the case of IPTV applications: existing video
content is mainly coded using MPEG-2 whereas many service
providers prefer MPEG-4 AVC for the higher compression
efficiency. Transcoding between MPEG-4 AVC and MPEG-
2 requires additional resources in the implementation. RVC
offers a mechanism to build flexible decoder reconfiguration
with a set of coding tool from different existing standards.

This paper presents the new specification formalism
adopted in the RVC framework. Based on this formalism,
designers can build data flow models of their algorithm with
a set of self-contained modular elements coming from a
standard library (Video Tool Library (VTL)). Thanks to the
compactness and the intrinsically concurrent language used
to define the models, RVC provides a great flexibility for
the engineers to design video codecs. With a set of coding
tools, the designers can explore rapidly the design space by
interconnecting these different blocks to build new decoding
solutions. Two different examples of decoder reconfiguration
using the RVC framework are presented in this paper. The
first example shows the reconfiguration of MPEG-4 Simple
Profile (SP) decoder using the Inverse Quantization (IQ) and
Inverse Transform (IT) tools taken from AVS standard. The
second example shows the extension, currently not supported
by any MPEG-4 profile, of the standard MPEG-4 SP decoder
to support 4:2:2 and 4:4:4 subsampling pattern configura-
tions.

The paper is organized as follows: section 2 introduces

!"#$%&'!'#(##'($(#')*)&*+(,-))./())&.0111 2342.())&

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

the essential components of the RVC framework. Section 3
briefly introduces the AVS standard and shows how one can
use the concept of RVC framework to build a new decoder
with better performance at high bitrate by using coding tools
from two different standards (MPEG-4 and AVS). Section 4
shows the second reconfiguration example of MPEG-4 SP de-
coder providing higher colour rendering accuracy. Section 5
discusses the advantages of such an approach. Finally, section
6 concludes the paper.

2. THE MPEG RECONFIGURABLE VIDEO CODING
(RVC) FRAMEWORK

The concept and objective of the RVC framework were firstly
presented in [1] under the name Reconfigurable Media Cod-
ing (RMC). RVC is a framework which allows the definition
of a multitude of different codecs, by combining together cod-
ing tools from a standard tool library. The essential elements
of RVC framework are:

• the standard VTL which contains video coding tools,
also named Functional Units (FU). A data flow lan-
guage called CAL [2] is used to describe the algo-
rithmic behaviour of the FUs. These latter are self-
contained and communicate with the external world
only by means of input and output ports from which
FUs receive data tokens (input ports) and generate
output data tokens (output ports).

• a language called Decoder Description Language
(DDL) used to specify a decoder configuration made
up of FUs taken from the VTL and the connections
between those FUs.

• a MPEG-21 Bitstream Syntax Description Language
(BSDL) schema which describes the syntax of the bit-
stream that the reconfigured decoder has to decode.

Based on the essential elements mentioned above, the
components and processes that lead to a new decoder recon-
figuration are:

• a Decoder Description (DD) written in DDL describ-
ing the architecture of the decoder, in terms of FUs and
their connections.

• an Abstract Decoder Model (ADM), a behavioural
model of the decoder composed of the syntax parser
automatically generated from BSDL schema, FUs from
the VTL and their connections.

• the final decoder implementation that is either gener-
ated by substituting any proprietary implementation,
conformant in terms of I/O behaviour, of the standard
FUs, or obtained directly from the ADM by gener-
ating SW and/or HW implementations by means of
appropriate synthesis tools [3, 4].

A brief description of DDL and BSDL which are used to
instantiate the Decoder Description (DD) and the associated
BSDL schema necessary to generate the corresponding syn-

Abstract Decoder Model (CAL)

Parser
Network
of coding

tools

Coded Data Bitstream Schema
(BSDL)

Decoder Schema
(DDL)

Decoded Data

Parser
Generation

Instantiation

Decoding Solution

Parser
Network
of coding

tools

Implementation

Video
Tool

Library

Proprietary
Tool Box

Te
ch

no
lo

gy
 in

de
pe

nd
an

t
N

or
m

at
iv

e
Te

ch
no

lo
gy

 d
ep

en
da

nt

N
on

 N
or

m
at

iv
e

Fig. 1. Components and processes for deriving and Abstract
Decoder Model and a platform dependent implementation in
the RVC framework

tax parser is provided below.

2.1. Decoder Description Language (DDL)

The language used for the description of the decoder is an
XML dialect which describes the interconnection of different
FUs from VTLs. In RVC, the DDL is made available in the
video bitstream and is used at the terminal to instantiate the
decoder. The specific ”system-level” mechanisms applicable
in different application scenarios are under development and
are not described here. An example of a decoder description
in DDL as result of reconfiguration is reported in section 4.

2.2. Bitstream Syntax Description Language (BSDL)

BSDL is also an XML dialect to describe the syntax of binary
bitstreams. In MPEG-21, it is used to provide syntax descrip-
tion at different level of detail (i.e. GOPs, frames, slices. . .)
enabling partial decoding of bitstreams for Digital Item Adap-
tation purposes. In RVC, with special extensions and restric-
tions, it is used to provide all information necessary for the
complete parsing of any compliant bitstream. Thus BSDL
provides a way to create schema for bitstreams and to instanti-
ate new parsers that, obviously, cannot be present in the stan-
dard VTLs, but can be instantiated from the BSDL schema
for a new decoder configuration. With minor extensions and
restrictions to the standard MPEG-21 BSDL, RVC BSDL is
able to fully describe the structure and syntax of a bitstream
and thus is a good specification for the parsing procedure. An
example of BSDL used for extending MPEG-4 SP is reported
in figures 4, 6. A systematic procedure for the automatic syn-
thesis of RVC syntax parsers in the same form of the FUs

!",

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

Fig. 2. The MPEG-4 SP decoder model in the RVC framework

from VTL can be found in [1, 5].

3. DECODER RECONFIGURATION BASED ON
MPEG-4 SP USING INVERSE QUANTIZATION AND

TRANSFORM FROM AVS

3.1. Audio Video coding Standard of China

Audio Video coding Standard of China (AVS) [6] is a new
compression standard developed by AVS Workgroup of
China. AVS Part 2 is addressing high-definition, high-density
storage media and digital video broadcasting applications
and was published as national standard for China in February
2006. Integer transform, intra and inter-picture prediction, in-
loop deblocking filter and context-adaptive two dimensional
variable length coding (CA-2D-VLC) are the key compres-
sion tools of AVS [7].

The Inverse Quantization (IQ) stage in AVS is charac-
terized by a Quantization Parameter (QP) for which the re-
constructed coefficients are obtained through a 1-D lookup
only. In MPEG-4 Simple Profile (SP), two inverse quanti-
zation methods are used and DC coefficients of intra coded
blocks are inverse quantized in a different manner. AVS im-
plies only one quantization type and processes coefficients of
the whole block in the same way.

The 8x8 pre-scaled Integer Inverse Cosine Transform
(IICT) used in AVS provides a unique specification of the
finite precision implementation and yields significant saving
in processing complexity compared to the traditional Dis-
crete Cosine Transform (DCT). IICT features are particularly
interesting for low-end processors. A block diagram of the
pre-scaled IICT is shown in Figure 3. It shows that the in-
verse scaling stage has been moved to the encoder side and
has been combined with forward scaling into a single process
[8].

Although the Inverse Quantization (IQ) and Inverse
Transform (IT) algorithms are completely different between
AVS and MPEG-4, they both use 8x8 blocks and have the
same input and output token requirements. Thanks to the
flexibility of the RVC frameworks, original MPEG-4 SP FUs
can be easily replaced by the new FUs coming from AVS.
This example shows the great reconfiguration potential of
decoders defined within the RVC framework by replacing
seamlessly the existing FUs by new ones which are more
efficient. Obviously it should be noticed that decoder recon-
figurations are not restricted to quantization and/or transform
blocks of AVS and MPEG-4, but are extensible to all the
existing video coding tools. The RVC framework provides
a very interesting framework in which dynamic reconfigura-
tions of decoders is straightforward.

Forward
Integer

Transform

Combined
Forward and

Inverse
Scaling

Inverse
Quantiz

ation

Inverse
Integer

Transform

ENCODER DECODER

Quantiz
ation

Fig. 3. Block diagram of pre-scaled Integer Inverse Cosine
Transform (IICT) in AVS

3.2. Decoder reconfiguration

Concerning the coding tools, IQ and IT (FUs (f) and (g) on Y,
U and V channels on Figure 2 are taken from AVS and the rest
of the FUs comes from MPEG-4 SP. By combining those FUs,
the resulting decoder can be seen as a hybrid configuration of
MPEG-4 and AVS.

The bitstream description (written in BSDL) must be
slightly modified from the MPEG-4 SP in order to be com-
patible with the new reconfigured decoder. The quantiza-
tion precision of MPEG-4 SP decoder ranges on a 5 bits

!""

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

scale. In the reconfigured decoder, the quantization preci-
sion must be extended to 6 bits in order to apply the quan-
tization algorithm of AVS. Thus, the elements of syntax
quant_precision, vop_quant and quant_scale
in the new bitstream description must be extended to 6 bits.
The syntax elements vop_quant and quant_scale are
both defined as VOPQuantType whose length in bits is equal
to quant_precision. Figure 4 shows a fragment of the
BSDL schema corresponding to the newly reconfigured de-
coder. It illustrates the necessary changes in the bitstream
description corresponding to MPEG-4 SP in order that it is
compatible with the new IQ and IT stages of the reconfigured
decoder.

<xsd:schema>
[...]
<xsd:annotation><xsd:appinfo>

<bs2x:variable name="m4v:quant precision" value="6"/>
</xsd:appinfo></xsd:annotation>
[...]
<xsd:element name="vop_quant" type="VOPQuantType"/>
[...]
<xsd:element name="quant_scale" type="VOPQuantType"/>
[...]
<xsd:simpleType name="VOPQuantType">

<xsd:restriction base="bs1:b9">
<xsd:annotation><xsd:appinfo>

<bs2:bitLength value="$m4v:quant precision"/>
</xsd:appinfo></xsd:annotation>

</xsd:restriction>
</xsd:simpleType>
[...]

</xsd:schema>

Fig. 4. Modification of the BSDL schema for the new decoder

3.3. Experimental results after decoder reconfiguration

Apart from showing the elegant reconfigurable features of
RVC, it is necessary to look at the results and notice what are
the advantages and the drawbacks of such a reconfiguration.
This section presents the performance of the reconfigured de-
coder. The quantization precision has been extended to 6 bits
in both the variable length encoder and decoder in order to
make the encoding and decoding processes compliant. A re-
configured bitstream is produced and is provided as an input
to the reconfigured decoder.

The overall decoding performance is evaluated under
the following test conditions: I frames only, progressive se-
quence coding, VOL frame rate equal to 30, a sequence of
200 frames. In the MPEG-4 SP decoder, the quantizer range
is equal to 5 bits, IDCT is used and the values of QP are {1,
2, 3, 5, 7, 11, 16, 21, 26, 31}. In the reconfigured decoder,
the quantizer range is equal to 6 bits, IICT from AVS is used
and the values of QP are {1, 9, 15, 22, 29, 36, 43, 50, 57, 63}.

Figure 5 reports the PSNR versus Bitrate curve. At low
and medium bitrates, the two decoders yield similar perfor-
mance. However, performance of the two decoders differs at
high bitrate. The reconfigured decoder outperforms gradually
the MPEG-4 SP as the bitrate increases.

In this example, coding tools from AVS are used in the
reconfigured decoder which yields both complexity reduction

Foreman_cif

20

25

30

35

40

45

50

55

0 5000 10000 15000 20000 25000

Bitrate (kbps)

PS
N

R

MPEG-4_SP_Decoder

Reconfigured_Decoder

Fig. 5. Quality of the decoding versus Bitrate for the origi-
nal MPEG-4 SP decoder and reconfigured decoder with the
”Foreman cif” sequence

and improvement of performance in specific bitrate ranges.
Obviously, other reconfigurations can be achieved by select-
ing coding tools from different standards, such as intra predic-
tion, half/quarter-pixel precision interpolation, MV prediction
in order to reach specific complexity vs performance trade-
offs.

4. EXTENDING THE CHROMINANCE
SUBSAMPLING PATTERNS OF THE MPEG-4 SP

DECODER

This section presents the second example of decoder recon-
figuration. The MPEG-4 SP decoder supports only 4:2:0
chrominance subsampling patterns. In order to improve
chrominance rendering accuracy, it might be useful in some
applications to use a MPEG-4 SP decoder which is capable
of handling the 4:2:2 or 4:4:4 subsampling patterns. In the
RVC framework, the reconfiguration of such decoders from
the initial 4:2:0 configuration to 4:2:2 or 4:4:4 configurations
is extremely simple.

4.1. Modification of the BSDL schema

The BSDL schema specifies the structure of the bitstream.
Figure 6 shows a fragment of BSDL schema describing en-
coded luminance and chrominance 8x8 blocks.

The element ”yBlock” is the same for the three sub-
sampling configurations whereas elements ”uBlock” and
”vBlock” are different according to the different subsam-
pling patterns configurations. In figure 6, modifications in
the BSDL description of the new extended configurations are
reported as comments to show the simple changes required
by the 4:2:2 and 4:4:4 extensions. In the BSDL schema,
”yBlock” element comprises 4 blocks in all configurations.
For the chrominance components, ”uBlock” and ”vBlock” el-
ements are composed of one block in the 4:2:0 configuration,
of two blocks in the 4:2:2 configuration and of four blocks in
the 4:4:4 configuration .

!"%

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

<xsd:group name="Blocks">
<xsd:sequence>
<!-- 420, 422 and 444 configurations -->
<xsd:element name="yBlock" type="BlockType" bs2:nOccurs="4"/>

<!-- 420 configuration -->
<xsd:element name="uBlock" type="BlockType" bs2:nOccurs="1"/>
<!-- bs2:nOccurs equals to "2" for the 422 config -->
<!-- bs2:nOccurs equals to "4" for the 444 config -->

<!-- 420 configuration -->
<xsd:element name="vBlock" type="BlockType" bs2:nOccurs="1"/>
<!-- bs2:nOccurs equals to "2" for the 422 config -->
<!-- bs2:nOccurs equals to "4" for the 444 config -->
</xsd:sequence>

</xsd:group>

Fig. 6. Modification of the BSDL schema for the new decoder

4.2. Modification of the decoder configuration

Since the bitstream syntax descriptions of the new extensions
are different from the bitsteam syntax description of the orig-
inal MPEG-4 SP, the new decoder configuration must contain
a new parser and new FUs. How to synthesize a new parser
from BSDL has been outlined in [1] and is further detailed in
[5]. The other changes in the network of FUs described in the
Decoder Description (DD) (figure 7) consist in replacing eight
FUs (over the 38 FUs constituting the complete decoder) by
new ones and modifying one parameter in the top level FU of
the motion compensation network.

Concerning the Texture Decoding part, network no.2
on figure 2 (instance no.2 in the DDL description, ”in-
tra FUs 16x16 Y”) remains the same for the three config-
urations. The networks no.3 and 4 on figure 2 (instance no.3
and 4 in the Decoder Description, ”intra FUs 8x8 C”) handle
one block for the U and V components for the 4:2:0 con-
figuration, whereas for the 4:2:2 and 4:4:4 configurations,
such networks must handle two and four chrominance blocks
respectively. Thus, FUs constituting these networks must be
replaced by the appropriate versions which are available in
the standard MPEG VTL. Such FUs are instantiated from
the VTL using the ”class” keyword in DDL. For the 4:2:2
configuration, instances no.3 and 4 are replaced by the net-
work ”intra FUs 16x8 C”, and for the 4:4:4 configuration, by
”intra FUs 16x16 C”. The networks ”intra FUs 16x16 C”,
”intra FUs 16x8 C” and ”intra FUs 8x8 C” are composed
of eight actors. Only three of them make the difference be-
tween the three networks. (see Figure 2). Only ”DC Addr”
(a), ”DC Predict-1” (b) and ”AC Predict-1” (c) FUs must
be replaced in these networks in order to obtain the new
reconfigured decoder.

Concerning the motion compensation part, networks no.5,
6 and 7 (instances no.5, 6, 7 in the Decoder Description) are
built from the ”motion” network. The reconfiguration con-
sists in modifying the ”LAYOUT” parameter among values
1 (one block), 2 (two blocks) and 4 (four blocks). On figure
2, in the ”motion” network, only the actors ”Addr” (d) and
”Buffer” (e) use the ”LAYOUT” parameter.

In order to reconstruct correctly the image, the FU no.8
on figure 2 (instance no.8 in the Decoder Description) must

be replaced by the right FU according to the configura-
tion. The MPEG VTL contains three FUs: ”merger 420”,
”merger 422” and ”merger 444”.

Figure 7 is a fragment of the Decoder Description (in
DDL) of the decoder of figure 2. The parameters given to
each FU are not reported on the figure because of the lack of
place.

5. DISCUSSION

This second example shows that the extensions of MPEG-4
SP decoder to 4:2:2 and 4:4:4 subsampling patterns are simple
and straightforward by carrying out high level operations in
the RVC framework. In data flow models, substitutions of
FUs are easy and very localized in the decoder architecture.
Minor modifications in the Decoder Description (DD) and the
BSDL schema are required to extend the existing MPEG-4 SP
decoder so that it supports the 4:2:2 and 4:4:4 subsampling
patterns.

In general such changes in a classical decoder specifica-
tion based on C/C++ reference SW would have required much
more modifications. The first challenge would have been to
localize in the entire program (approximately 40 000 lines of
code) the lines of codes which must be modified. Such task is
not as simple as with the RVC model in which the graphical
representation of the FUs and their connections gives a rapid
overview of the structure of the algorithm. The use of global
variables may also constitute a big problem when modifying
code in C/C++. In RVC models, global variables do not ex-
ist. It makes the algorithm much easier and safer to modify.
Moreover, dealing with fewer lines of code than the corre-
sponding C/C++ reference software is another advantage of
the RVC models. For example, the MPEG-4 SP decoder is
described in approximately 3000 lines code in CAL instead
of the 40000 lines of code in the C reference software version
[1].

These experiments show the great flexibility of the RVC
framework enabling designers to reconfigure easily video de-
coders by replacing existing FUs of an existing decoder with
new and more efficient coding tools. The usage of the RVC
framework makes designers focus on the coding tool level
definition of decoder algorithms in order to improve reusabil-
ity and exchangeability of FUs. The success of the RVC
framework will make obsolete the traditional MPEG codec-
level definition.

6. CONCLUSION

This paper presents two examples of video decoder recon-
figuration within the RVC framework. The first example
describes a reconfigured decoder by combining FUs from
MPEG-4 Simple Profile and AVS. The result is a perfor-
mance improvement in the medium high bitrate range as well

!"&

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

<Network xmlns="decoder_420"
[...]
<Port kind="Input" name="mpeg"/>
<Port kind="Output" name="video_Y"/>
<Port kind="Output" name="video_U"/>
<Port kind="Output" name="video_V"/>

<Instance id="1">
<Class name="parser"> <QID> <ID id="network"/> </QID>
</Class>
[...]

</Instance>

<Instance id="2">
<Class name="intra_FUs_16x16_Y"> <!-- 420, 422 or 444 config -->
<QID> <ID id="network"/> </QID>
</Class>
[...]

</Instance>

<Instance id="3">
<Class name="intra_FUs_8x8_C"> <!-- 420 configuration -->
<!-- the Class name is "intra_FUs_16x8_C" for 422 config -->
<!-- the Class name is "intra_FUs_16x16_C" for 444 config -->
<QID> <ID id="network"/> </QID>
</Class>
[...]

</Instance>

<Instance id="4">
<Class name="intra_FUs_8x8_C"> <!-- 420 configuration -->
<!-- the Class name is "intra_FUs_16x8_C" for 422 config -->
<!-- the Class name is "intra_FUs_16x16_C" for 444 config -->
<QID> <ID id="network"/> </QID>
</Class>
[...]

</Instance>

<Instance id="5">
<Class name="motion">
<QID> <ID id="network"/> </QID>
</Class>
<Parameter name="LAYOUT">
<!-- 420,422 or 444 configurations-->
<Expr kind="Literal" literal-kind="Integer" value="4"/>
</Parameter>
[...]

</Instance>

<Instance id="6">
<Class name="motion">
<QID> <ID id="network"/> </QID>
</Class>
<Parameter name="LAYOUT">
<!-- 420 configuration -->
<Expr kind="Literal" literal-kind="Integer" value="1"/>
<!-- the value equals to "2" for 422 config, "4" for 444 config-->
</Parameter>
[...]

</Instance>

<Instance id="7">
<Class name="motion">
<QID> <ID id="network"/> </QID>
</Class>
<Parameter name="LAYOUT">
<!-- 420 configuration -->
<Expr kind="Literal" literal-kind="Integer" value="1"/>
<!--value equals to "2" for 422 config, "4" for 444 config-->
</Parameter>
[...]

</Instance>

<Instance id="8">
<Class name="merger_420"> <!-- 420 configuration -->
<!-- The Class name is "merger_422" for the 422 configuration -->
<!-- The Class name is "merger_444" for the 444 configuration -->

<QID> <ID id="FU"/> </QID>
</Class>
</Instance>

<Connection src="" src-port="mpeg" dst="8" dst-port="in8"/>
<Connection src="8" src-port="out" dst="1" dst-port="BITS"/>
<Connection src="1" src-port="BTYPE_Y" dst="2" dst-port="BTYPE"/>
<Connection src="1" src-port="B_Y" dst="2" dst-port="QFS"/>
<Connection src="1" src-port="BTYPE_U" dst="3" dst-port="BTYPE"/>
<Connection src="1" src-port="B_U" dst="3" dst-port="QFS"/>
<Connection src="1" src-port="BTYPE_V" dst="4" dst-port="BTYPE"/>
<Connection src="1" src-port="B_V" dst="4" dst-port="QFS"/>
<Connection src="2" src-port="f" dst="5" dst-port="TEX"/>
<Connection src="3" src-port="f" dst="6" dst-port="TEX"/>
<Connection src="4" src-port="f" dst="7" dst-port="TEX"/>
<Connection src="1" src-port="MV_Y" dst="5" dst-port="MV"/>
<Connection src="1" src-port="BTYPE_Y" dst="5" dst-port="BTYPE"/>
<Connection src="1" src-port="MV_U" dst="6" dst-port="MV"/>
<Connection src="1" src-port="BTYPE_U" dst="6" dst-port="BTYPE"/>
<Connection src="1" src-port="MV_V" dst="7" dst-port="MV"/>
<Connection src="1" src-port="BTYPE_V" dst="7" dst-port="BTYPE"/>
<Connection src="5" src-port="VID" dst="" dst-port="video_Y"/>
<Connection src="6" src-port="VID" dst="" dst-port="video_U"/>
<Connection src="7" src-port="VID" dst="" dst-port="video_V"/>
</Network>

Fig. 7. Fragment of the Decoder Description of the reconfig-
ured decoder

as a complexity reduction in implementation. The second ex-
ample shows the reconfiguration potential of existing MPEG
profiles to support new chrominance subsampling patterns.
It is shown that the RVC framework is flexible enough to
combine the existing coding tools with new FUs or FUs com-
ing from different standards (for example AVS). Compared
with the traditional codec level definition of video coding
standards, the coding tool level specification of decoders
within RVC allows a great flexibility in selecting coding tools
and creating an ad-hoc decoder in order to satisfy different
applications constraints.

7. REFERENCES

[1] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-
Kerr, and Jörn Janneck, “Reconfigurable Media Coding:
A New Specification Model for Multimedia Coders,” in
IEEE Workshop on Signal Processing Systems, 2007, pp.
481–486.

[2] Johan Eker and Jörn Janneck, “CAL Language Report,”
2003, ERL Technical Memo UCB/ERL M03/48.

[3] Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet,
Jean-Francois Nezan, and Olivier Déforges, “Code gen-
eration for the MPEG reconfigurable video coding frame-
work: from CAL actions to C functions,” in IEEE In-
ternational Conference on Multimedia & Expo (ICME),
Hannover, Germany, 2008.

[4] Jörn W. Janneck, Ian D. Miller, Dave B. Parlour,
Marco Mattavelli, Christophe Lucarz, Matthieu Wipliez,
Mickaël Raulet, and Ghislain Roquier, “Translating
Dataflow Programs to Efficient Hardware: an MPEG-4
Simple Profile Decoder Case Study,” in Design, Automa-
tion and Test in Europe (DATE), Munich, Germany, 2008.

[5] David Li, Dandan Ding, Christophe Lucarz, Samuel
Keller, and Marco Mattavelli, “Validation of bitstream
syntax and synthesis of parsers in the MPEG Reconfig-
urable Video Coding Framework,” in IEEE Workshop on
Signal Processing Systems, 2008.

[6] China Audio and Video Standard (AVS), “GB/T
20090.2/-2006: Information technology & Advanced
coding of audio and video Part2: Video,” .

[7] L. Yu, F. Yi, J. Dong, and C. Zhang, “Overview of AVS-
video: tools, performance and complexity,” 2005, vol.
5960 of Presented at the Society of Photo-Optical Instru-
mentation Engineers (SPIE) Conference, pp. 679–690.

[8] Ci-Xun Zhang, Jian Lou, Lu Yu, Jie Dong, and Wai-Kuen
Cham, “The technique of pre-scaled integer transform,”
in Circuits and Systems, 2005. ISCAS 2005. IEEE Inter-
national Symposium on, 2005, pp. 316–319 Vol. 1.

!"$

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 4, 2009 at 03:19 from IEEE Xplore. Restrictions apply.

