
EFFICIENT DATA FLOW VARIABLE LENGTH DECODING IMPLEMENTATION FOR
THE MPEG RECONFIGURABLE VIDEO CODING FRAMEWORK

Jianjun Li, Dandan Ding, Christophe Lucarz, Samuel Keller, Marco Mattavelli
Microelectronic Systems Laboratory (GR-LSM),

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Email: {david.li, dandan.ding, christophe.lucarz, samuel.keller, marco.mattavelli}@epfl.ch

ABSTRACT

In 2004, ISO/IEC SC29 better known as MPEG started a
new standard initiative aiming at facilitating the deployment
of multi-format video codec design and to enable the
possibility of reconfiguring video codecs using a library of
standard components. The new standard under development
is called MPEG Reconfigurable Video Coding (RVC)
framework. Whereas video coding tools are specified in the
RVC library, when a new decoder is reconfigured choosing
in principle any (sub)-set of tools, the corresponding
bitstream syntax, described using MPEG-21 BSDL schema,
and the associated parser need to be respectively derived
and instantiated reconfiguration by reconfiguration.
Therefore, the development of an efficient systematic
procedure able to instantiate efficient bitstream parsing and
particularly variable length decoding is an important
component in RVC. This paper introduces an efficient data
flow based implementation of the variable length decoding
(VLD) process particularly adapted for the instantiation and
synthesis of CAL parsers in the MPEG RVC framework.

Index Terms— Reconfigurable Video Coding Variable
Length Decoding, CAL language, Huffman coding,
Bitstream Syntax Description Language.

1. INTRODUCTION

Nowadays, video decoders need to support multiple codec
standards because more and more video standards are
deployed. Although different, all coding standards use the
same or very similar coding tools and results to share similar
architectures and implementations. Unfortunately, the way
in which the existing coding standards are specified lacks of
flexibility to adapt performances and complexity when new
applications emerge. MPEG RVC standard intends to create
a framework containing existing coding technology for
developing, beside current standard decoders, new
configurations for satisfying specific application constraints.
RVC introduces a novelty since it promotes standardization

at tool-level while maintaining interoperability between
solutions from different implementers.

One challenge posed by the possibility of reconfiguring
decoders is the need of appropriate procedures for the
instantiation and synthesis of bitstream parsers in which
efficient variable length decoding processes are important
tasks. This paper presents a method for generating efficient
components for the MPEG RVC library capable of decoding
Variable Length codes. The components of the library like
all other coding tools are CAL actors generated
automatically given the input VLD table. By using the
described procedure, VLD tables can be automatically and
efficiently generated as FUs of RVC toolbox. By efficiently
it is also meant that the data flow CAL FUs are suitable for
efficient synthesis into SW and HW implementations.

The paper is organized as follows: the RVC framework
is introduced in section 2. The variable length decoding
toolbox is presented in section 3. Section 4 presents how to
translate efficient VLD in CAL. Section 5 briefly introduces
how to automatically generate a parser from a Bitstream
Schema to CAL. Section 6 discusses about the hardware and
software implementation of the parser and VLD tables.
Section 7 concludes the paper.

2. MPEG RECONFIGURABLE VIDEO CODING
OVERVIEW

MPEG has always worked to propose innovations in the
video coding field that are capable of satisfying the
changing landscape and needs of video coding applications.
With this objective, MPEG intends to standardize the
Reconfigurable Video Coding framework allowing a
dynamic development, implementation and adoption of
standardized video coding solutions based on a unified
library of components with features of higher flexibility and
reusability. RVC is a flexible framework for MPEG that
tries to provide a systematic way of constructing video
codecs from a collection of coding tools, it has been firstly
presented in [3]. The goal of the introduction of such new
interoperable model at coding tool level is twofold: to speed
up the adoption and standardization of new technologies by
adding new tools in toolbox and to enable the dynamic

188978-1-4244-2924-0/08/$25.00 ©2008 IEEE SiPS 2008

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

definition of new profiles. The modular data flow based
specification formalism also provides a starting point for
design that is adapted to yield direct synthesis of SW and
HW by using appropriate tools, for direct mapping on SW
and HW platforms.

A decoder specification under RVC is defined with the
standard MPEG toolbox (instantiation and connections of
the different coding tools) and the specification of the video
bitstream syntax expressed in a MPEG-21 BSDL schema
[9]. The toolbox consists of various coding tools which are
also named Functional Units (FU). Each FU is a modular
coding tool (such as IDCT, MC).

The concept of RVC framework can be illustrated by
Fig. 1. The key difference between RVC and traditional
codec standards is their conformance point. The traditional
codec standards define their conformance point at decoder
level whereas RVC defines it in tools level so that RVC
enables much more flexibility and several configurations of
components taken by previous monolithic specifications are
possible.

Another fundamental difference between RVC
specification and the traditional standard codec specification
is the data flow based formalism. In the traditional codec
specifications, C/C++ is the language of the reference SW,
which usually is composed by several thousands of lines and
is getting more and more difficult to understand and to
transform into efficient implementations. In the RVC
framework, data flow actor-oriental language CAL [1]
which is simpler, compact in terms of number of code lines,
and does not include non necessary implementations details
such as a fixed scheduling for C/C++ reference SW for
instance, is used to describe FUs behavior.

3. VARIABLE LENGTH DECODING FOR THE RVC
FRAMEWORK

One problem that needs to be solved when applying RVC is
how to specify the parser that is in charge of decoding the

bitstream of compressed video. In fact whereas all FUs of
the standard MPEG toolbox are available under the form of
CAL actors or as a proprietary implementation for specific
platforms, the parser of a new decoder configuration need to
be synthesized and instantiated automatically because it is a
too burdensome task to let the designer write the parser
actor in CAL. The parser is not considered as a coding tool
because it does not contains any algorithm described by the
standard. The unique task of the parser is to feed the coding
tools with the right coded data contained in the bitstream.
Therefore, a systematic procedure for synthesizing efficient
parsers using appropriate FUs available in the standard
toolbox is required.

3.1. Solutions for Variable Length Decoding

Variable length coding is the most popular entropy
coding module which is used in many video and picture
coding standards, such as JPEG, MPEG-x, and H.26x. One
of the difficulties for RVC to describe variable length
decoding is the large amount of tables. For example, in
MPEG-4 SP [10] there are 8 tables and in MPEG-4 ASP
[10], there are 19 tables. Including those tables directly in
the syntax description (BSDL schema transmitted as header
in the bitstream) would imply inefficiency in the
compactness of the description of a new codec configuration,
but would also requires large memory and bandwidth.
Another difficulty is the parsing process of the undefined
bit-length of syntax. In order to avoid carrying VLD tables
in bitstream description, VLD tables could be separated and
implemented in CAL as FUs of RVC toolbox. The proposed
Huffman decoding method is applied to VLD tables which
further improved efficiency. The bitstream syntax parser is
generated automatically as an independent FU in CAL
language from a XML schema describing the structure of
the bitstream. The transformation process is implemented
using XSLT. The bitstream schema is specified in a XML
dialect called Bitstream Syntax Description Language
(BSDL) [9], a MPEG-21 standard. Negotiation between the
syntax parser and VLD tables are also established in XSLT
for variable decoding process. The systematic solution for
syntax parser is highly efficient and flexible to decode a
reconfigured Bitstream.

3.2. Efficient Huffman Decoding method

In this section, a CAL model for efficient Huffman decoding
is proposed for VLD tables of MPEG-2 and MPEG-4. The
proposed implementation is optimized aiming at searching
time and memory requirement reduction.

Huffman coding has been adopted by MPEG-2 and
MPEG-4 entropy coding. Sets of codewords are defined
based on the probability distributions of “generic” video

Applications
(HDTV, video conferences, video surveillance …)

MPEG-1
MPEG-2

MPEG-4

H.261
H.262

H.263
H.264/AVC

 FU Toolbox
8x8 DCT 4x4 Inter ¼ MC ½ MC ME ……

Fig.1. RVC framework

189

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

material. The direct way to decode variable length syntax is
using a full search method:

1) The variable length decoder receives one bit from
Bitstream.

2) Look through the corresponding table from the
beginning to check whether it is coincide with
certain code.

3) If it is found, output the value from the table.
4) Or else receive another bit and combine it with the

former bits, go back to step 1).

 Fig.2. VLD binary searching tree

Such full search method is simple but not efficient
enough because of duplicate lookup every time one bit is
received. In addition, it requires a 2-D memory for each
table which is not a good choice for hardware
implementation.

The proposed method rearranges the code in the
Huffman tree. The binary Huffman tree searching can find
the optimal route in short time and requires less medium
data. As shown in Fig. 2, the variable length coding
codeword starts with the first incoming bit. The current bit
goes to the left leaf if the coming bit is “0”. Otherwise, it
goes to the right leaf while “1”. Weight of each leaf is
marked with the same value of lookup index for
corresponding VLD tables. That is to say, every time one bit
is consumed at input, one index is generated and one lookup
result is generated as output. If the result is a true decoded
value, it is provided to the output of the CAL FUs and the
search of the variable length coding is completed. On the

other hand, if the result is a false decoded value, a further
searching is continued until a completed codeword is found.

Different video coding standards have different VLD
tables. Even in a single standard, different profiles and
levels have different VLD tables’ scope. The most efficient
solution for the RVC framework would be to build separate
FUs available in the standard toolbox for each VLD table
decoding and then generate dynamically a parser as
composition of a synthesized CAL parser and VLD
decoding FUs.. Each VLD table is considered as an
independent FU of the RVC toolbox. For example, in
MPEG-4 specification Annex B, there are 8 VLD tables that
are used by a simple profile decoder. They are B-6, B-7, B-
8, B-12, B-13, B14, B-16 and B-17. In the MPEG-4
advanced simple profile, to these tables other VLD tables
are needed. It is unnecessary to generate them again, just
access to toolbox and get related FUs. Take MPEG-4 SP for
example, we generate the VLD FUs and name them with the
table name, such as B-6, B-7 and so on, as showed in Fig.5.

Code mbtype cbpc(56)
1
001
010
011
0001
000001
000010
000011
0000 0000 1

3
3
3
3
4
4
4
4
Stuffing

00
01
10
11
00
01
10
11
 --

Table-1. Example of VLC table B-6 for mcbpc

Input
File 1

Input
File 2 Output File

1
001
010
011
0001
000001
000010
000011

3
19
35
51
4
20
36
52

Table name: B6
Start index: 0

10, 12, 18, 58, 26,
76, 34, 16, 42, 50, 1,
80, 144, 208, 140,
204

Table-2 Generated VLD table for B-6

MPEG-4 specification Annex B Table B.6 [10] is listed as
above, which is the VLD table for mcbpc for I-VOPs and S-
VOPs. In this table, the eight values refer to different
chroma coded block pattern (cbp) of block 4 and 5. Table-2
is the generated VLD table by the proposed method. All the
data with underscore in Table-2 are media data, which
means that this is not true decode value and the VLD table

190

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

engine will keep search the next value when the underscore
data is found. The VLD table engine will stop and report
searching failure if “1” is found, which means an error code
is detected. Otherwise, true decoded value from VLD table
is returned and the decoding process for the syntax is
completed.

4. MODELING VARIABLE LENGTH DECODING OF
MPEG-4 SP IN CAL

CAL [1] is a dataflow and actor-oriented language,
specified as a part of the Ptolemy II project at the UC
Berkeley. CAL language has concise syntax structure and is
suitable for specifying complex signal processing systems as
MPEG decoders.

Fig.3. High level view of the CAL model of the
MPEG-4 SP decoder

Fig.3 shows the graphical representation of the CAL
model of the MPEG-4 SP decoder [10]. The Open Dataflow
environment [6] is used to design and simulate CAL models.
The decoder includes several networks of actors. The
incoming bitstream is at first converted into sequential bits
by the “serialize” FU, and then is decoded by the “Parser”.
The “TextureDecoding” and “MotionCompensation” networks
of actors contain all the coding tools necessary for decoding
the video.

Figure 4 illustrates the inside of the “parser” FU
present in figure 3. It shows how VLD FUs are connected to
the parser for decoding Variable Length codes. For the sake
of clarity, figure 4 represents only the connection of one
VLD FU to the parser. This VLD FU serves at decoding the
DCT coefficients (table B-16 in Annex B of the MPEG-4
standard [10]). The FU “parser” is generated automatically
by the XSLT process (see section 5). The VLD FU is
generated using the process described in section 3. The
“BlockExpand” FU is part of the MPEG toolbox. It outputs
the AC coefficients.

Fig.4. Connections of the parser to a VLD Functional Unit

When the parser meets a Variable Length code, it
consumes only one bit from the bitstream port. It sends it to
the VLD FU. If there is no entry in the table which
corresponds to the input bit, the VLD FU sends back to the
parser a token noticing that no matching has been found.
Thus, the parser consumes an additional bit and sends it to
the VLD FU. This latter will check if the first bit and the
newly received bit match an entry in the table. If no, it
continues sending token to the parser, saying that there is no
matching and the parser must send an additional bit. If yes,
the VLD FU sends a token to the parser saying that a
matching has been found and the parser can parse the next
element of the bitstream. The result of the parsing is then
outputted by the VLD FU to the “BlockExpand” FU.

The source code of the VLD FU for decoding the
“mbcpc” variable code is shown in Fig.5. The only part of
the FU which is automatically generated is a list of numbers,
representing the VLD table. The rest of the code is always
the same for all the VLD FUs. The extra code is needed to
handle the optimized list of number representing the VLD
table.

import all caltrop.lib.BitOps;

actor VLD_mcbpc_intra(int VLD_DATA_SZ, int VLD_ADDR_SZ)
 string bits ==> int(size=2) finish, int(size=VLD_DATA_SIZE) data:

 int START_INDEX = 0;
 int(size=VLD_ADDR_SZ) vld_index;
 int(size=VLD_DATA_SZ) vld_codeword := 1;

// ********** automatically generated part ********
list(type:int(size=VLD_DATA_SZ), size=16)
vld_table = [10, 12, 18, 58, 26, 76, 34, 16, 42, 50, 1, 80, 144,
208, 140, 204];
// **

procedure start_vld_engine(int index)
begin

 vld_index := index;
 vld_codeword := 2;

end

function vld_success() --> bool: bitand(vld_codeword,3) = 0 end
function vld_continue() --> bool: bitand(vld_codeword,3) = 2 end
function vld_failure() --> bool: bitand(vld_codeword,1) = 1 end
function vld_result() --> int(size=VLD_DATA_SZ):

rshift(vld_codeword,2) end

 start_VLD: action ==>
do

 start_vld_engine(START_INDEX);

191

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

end
 read_in_bits: action bits:[b] ==>

do
 vld_codeword := vld_table[vld_index + if b="1" then 1 else 0
end];
 vld_index := rshift(vld_codeword,2);

end

 continue_VLD: action ==> finish:[f]
guard

 vld_continue()
var

 int(size=2) f := 0
end

 fail_VLD: action ==>
guard

 vld_failure()
do

 println("VLD FAILURE");
end

 finish_VLD: action ==> finish:[f], data:[d]
guard

 vld_success()
var

 int(size=2) f := 2,
 int(size=VLD_DATA_SZ) d := vld_result()

end

schedule fsm start_VLD:
 start_VLD (start_VLD) --> read_in_bits;
 read_in_bits (read_in_bits) --> process;
 process (continue_VLD) --> read_in_bits;
 process (fail_VLD) --> start_VLD;
 process (finish_VLD) --> start_VLD;

endschedule

endactor

Fig.5. CAL source code of a VLD Functional Unit

This section showed how the Variable Length Decoding
process has been modeled in CAL. The next section shows
how the parser handles the communications with the VLD
FUs to decode these variable length codes.

5. FROM BITSTREAM SCHEMA TO PARSER

Video coding is used under the various multimedia
applications such as video conferencing, digital storage
media, television broadcasting, and internet streaming. Due
to the heterogeneity of modern networks and terminals,
current multimedia technology has to deal with different
user’s requirements. As such, the use of scalable video
coding, which derives useful video from subsets of a
bitstream, is a must. RVC is compatible with SVC very well
and it can implement SVC in function unit level. At this
moment, the solution is that the MPEG-21 multimedia
framework enables transparent and augmented use of
multimedia resources across a wide range of networks and
devices used by different communities [4].

The BSDL parser is a primordial Functional Unit in the
RVC framework because it feeds the coding tool chain with
the information contained in the bitstream to be decoded. As
RVC is a framework for rapid development of decoding
solution, the structure of the bitstream can be modified in
order to explore the design space. To avoid the designer to
write it by hand (which would be very time-consuming and

error prone), a method has been developed to generate
directly a parser from the bitstream syntax [3]. Figure 6
shows the components of this transformation process. Each
component is implemented in a separate XSLT stylesheet.

Fig.6. XSLT transformation process: from BSDL to CAL

 Pre-processing is the first operation conducted by the
top level stylesheet. The pre-processing collects the
individual schemata into a single intermediate tree, taking
care to correctly manage the namespace of each component
Schema and also performs a number of other tasks,
including assigning names to anonymous types and
structures. Finite State Machine (FSM) design is the major
component of the parser actor. The FSM schedules the
reading of bits from the input Bitstream into the fields in the
various output structures, along with all other components
of the actor. The FSM is specified as a set of transitions,
where each transition has an initial state, a final state, and an
action. BSDL specifies that the order of options within a
choice establishes their priority: the first option has priority
over the second, and so on. These priorities are recorded in
the actor as priorities between the test actions. Guard
expressions are built from the control-flow constructs in the
BSDL Schema. The Behaviour of each action is to complete
such tasks as storing data in the appropriate location in the
output structure. Finally, the CAL component declares
templates for each of the constructs in the language, such as
an FSM schedule, a function call, or an assignment. These
templates are called by other components of the stylesheet
when building the actor. Collecting all of the CAL syntax
into a single stylesheet also means that an alternative
stylesheet could be provided in place of the CAL sheet.

Figure 7 illustrates a part of the parser automatically
generated from the bitstream schema. It shows the actions
and the finite state machine generated for handling the
communication between itself and external VLD FUs. When
the parser meets a variable length code, the actions shown in
figure 8 are generated. First, the parser reads one bit from
the bitstream input port (DCT_Coeff.read action). The next
step consists in sending the bit to the corresponding VLD
table; it is done in action DCT_Coeff.output. Then, the parser
waits for a token coming from the VLD FU. This token

192

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

(finish) indicates if a matching has been found in the table
or not. If yes, the value of finish is true and the action
DCT_Coeff.finish is fired and the number of bits to read for
the next element is set. If not, the value of finish is false and
the DCT_Coeff.notFinished is fired and one more bit must be
read (M4V_VLC_LENGTH = 1). The finite state machine
summarizes the transitions.

DCT_Coeff.read: action ==>
guard
 readDone()
end

DCT_Coeff.output: action ==> B16: [current]
do
 current := read_result_in_progress ;
end

DCT_Coeff.finish: action B16_f: [finish] ==>
guard
 finish
do
 setRead(M4V_NEXT_ELEMENT_LENGTH);
end

DCT_Coeff.notFinished: action B16_f: [finish] ==>
guard
 not finish
do
 setRead(M4V_VLC_LENGTH);
end

[…]

// Finite State Machine
Previous_state (previous_action) --> DCT_Coeff_exists;
DCT_Coeff_exists (DCT_Coeff.read) --> DCT_Coeff_output;
DCT_Coeff_output (DCT_Coeff.output) --> DCT_Coeff_result;
DCT_Coeff_result (DCT_Coeff.notFinished) --> DCT_Coeff_exists;
DCT_Coeff_result (DCT_Coeff.finish) --> Next_state;

Fig.7. Source code of the automatically generated parser for
the negotiation between the parser and the VLD FU

This section showed how the variable length decoding
process is handled by the generated parser to decode
variable length codes.

6. HW AND SW IMPLEMENTATION

The important reason for which CAL has been adopted as
language specifying the reference software of the RVC
toolbox is that CAL is suitable for direct synthesis of
“efficient” software and hardware by means of CAL2SW
and CAL2HW tools [7,8]. Furthermore, the very interesting
aspect of this framework is that CAL models are used as
inputs both for the hardware and software code generators.
Thus software and hardware implementations can be
derived from a unique CAL model. The designer develops
an unique model and can generate seamlessly hardware and
software implementation of CAL actors.

As the code of the VLD actors and parser are very
simple, the generation of efficient code is straightforward. In

[8], it has been shown that the hardware implementation of
the MPEG-4 SP decoder modeled in CAL is more efficient
than the one designed by hand in VHDL. Furthermore, in
terms of coding effort, it took twice less time for a designer
to write the CAL model than the VHDL model.

7. CONLUSION

Reconfigurable video coding framework is introduced in
this paper. An efficient VLD toolbox can be generated by
the proposed design. It is successfully implemented in CAL
and validated by simulations. This paper shows that it is
possible to dynamically generate a RVC parser using a
BSDL description of the Bitstream and assembling RVC
decoding FUs from the standard RVC toolbox.

8. REFERENCES

[1] J. Eker and J.W. Janneck, “CAL Language Report,” Tech.
Memo UCB/ERL M03/48, UC Berkeley, 2003.

[2] Jer-Min Hsiao ,Chun-Jen Tsai “Analysis of an SOC
architecture for MPEG reconfigurable video coding”, ISCAS 2007,
May 2007.

[3] C. Lucarz et al., “Reconfigurable media coding: a new
specification model for multimedia coders,” Proceedings of the
IEEE Workshop on Signal Processing Systems, 2007. Pages: 481 -
486.

[4] W. De Neve, F. De Keukelaere, K. De Wolf, R. Van de Walle,
“Applying MPEG-21 BSDL to the JVT H.264/AVC specification
in MPEG-21 Session Mobility scenarios,” 5th International
Workshop on Image Analysis for Multimedia, April 2004.

[5] J. Thomas-Kerr, et al., "An efficient approach to generic
multimedia adaptation," presented at Multimedia, 14th ACM Intl.
conf. on, 2006.

[6] The Open DataFlow environment on Sourceforge
http://opendf.sourceforge.net/

[7] Matthieu Wipliez, Ghislain Roquier, Mickaël Raulet, Jean-
Francois Nezan, and Olivier Déforges, “Code generation for the
MPEG reconfigurable video coding framework: from CAL actions
to C functions,” in IEEE International Conference on Multimedia
& Expo (ICME), Hannover, Germany, 2008 (to appear).

[8] Jörn W. Janneck, Ian D. Miller, Dave B. Parlour, Marco
Mattavelli, Christophe Lucarz, Matthieu Wipliez, Mickaël Raulet,
and Ghislain Roquier, “Translating Dataflow Programs to Efficient
Hardware: an MPEG-4 Simple Profile Decoder Case Study,” in
Design, Automation and Test in Europe (DATE), Munich,
Germany, 2008.

[9] ISO/IEC 23001-5, Bitstream Syntax Description Language.

[10] ISO/IEC14496, Coding of audio-visual objects (MPEG-4).

193

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:39 from IEEE Xplore. Restrictions apply.

