
VALIDATION OF BITSTREAM SYNTAX AND SYNTHESIS OF PARSERS IN THE MPEG
RECONFIGURABLE VIDEO CODING FRAMEWORK

Mickaël Raulet, Jonathan Piat

Institut d’Electronique et de
Télécommunications de Rennes (IETR)

UMR CNRS 6164 (France)
Email: mraulet@insa-rennes.fr

Christophe Lucarz, Marco Mattavelli

Microelectronic Systems Laboratory (GR-LSM)
Ecole Polytechnique Fédérale

de Lausanne (Switzerland)
{christophe.lucarz,marco.mattavelli}@epfl.ch

ABSTRACT

Video coding technology has evolved in the past years into a

variety of different and complex algorithms. So far the spec-

ification of such standard algorithms has been done case by

case providing monolithic textual and reference SW specifi-

cations, but without any attention on commonalities and the

possibility of incremental improvements or modifications of

such monolithic standards. The MPEG Reconfigurable Video

Coding (RVC) framework is a new ISO standard, currently

under development aiming at providing video codec specifi-

cations at the level of library functions instead of monolithic

algorithms. The possibility to select a subset of standard cod-

ing algorithms to specify a decoder that satisfies application

specific constraints is very attractive. However, such possibil-

ity to reconfigure codecs requires systematic procedures and

tools capable of describing the new bitstream syntaxes of such

new codecs. Moreover, it is also necessary to generate the as-

sociated parsers which are capable to parse the new bitstreams

because they are not available “a priori” in the RVC library.

This paper further explains the problem and describes the

technologies used to describe new bitstream syntaxes within

RVC. In addition, the paper describes the methodology and

the tools for the validation of bitstream syntaxes descriptions

as well as an example of systematic procedures for the direct

synthesis of parsers in the same data flow formalism in which

the RVC library component are implemented.

1. INTRODUCTION

Video coding has changed a lot since its infancy in the early

nineties. The first original MPEG video coding standard

was released in 1993, and since then MPEG-2, MPEG-4

and AVC (Advanced Video Coding) have been produced and

SVC (Scalable Video Coding) has been recently standardized.

Each successive codec released by MPEG has been substan-

tially more complex than the last, typically yielding twice

the compression performance of its predecessor. Because of

this growing complexity, the textual specification of recent

standards (since MPEG-4) has lost its normative role, being

replaced by the reference software implementation as the

true normative specification. However, while this normative

specification (typically in generic C or C++) is very precise,

it presents a number of limitations. Large portions of com-

pression technology (i.e. coding tools) are common across all

MPEG standards, yet there is no direct way to recognize or

exploit this commonality. Additionally, the sequential C/C++

descriptions do not expose the potential parallelism that is

intrinsic to the algorithms constituting the codecs. They have

also become excessively large (in terms of code size), mak-

ing it extremely time consuming to transform the sequential

reference software into a VHDL implementation or to map

it onto a multicore platform. In other words, the complex

sequential C/C++ specifications no longer constitute a good

starting point for the implementation processes of standard

video codecs on current and future platforms. The challenge

taken by the Reconfigurable Video Coding (RVC) framework

currently under development by MPEG is to provide a high

level specification model for direct and efficient software and

hardware synthesis.

The essential elements of the RVC framework are the fol-

lowing:

• A library of video coding tools, also called Functional

Units (FUs) covering all MPEG standards (the “MPEG

Toolbox”). This library is specified and provided using

CAL as specification language for each library compo-

nent (i.e. video coding tool) [1, 2] CAL [1] is a lan-

guage used to define the behavior of dataflow compo-

nents called actors, which is a modular component that

encapsulates its own state such that an actor can nei-

ther read nor modify the state of any other actor. The

only interaction between actors is via messages (known

in CAL as tokens) which are passed from an output of

one actor to an input of another. The behavior of an ac-

tor is defined in terms of a set of actions, transactional

program fragments, at most one of which may be active

at any point in time inside an actor. The operations an

action can perform are to consume (read) input tokens,

modify internal state, produce output tokens, and inter-

293978-1-4244-2924-0/08/$25.00 ©2008 IEEE SiPS 2008

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

Abstract Decoder Model (CAL)

Parser
Network
of coding

tools

Coded Data Bitstream Schema
(BSDL)

Decoder Schema
(DDL)

Decoded Data

Parser
Generation

Instantiation

Decoding Solution

Parser
Network
of coding

tools

Implementation

Video
Tool

Library

Proprietary
Tool Box

Te
ch

no
lo

gy
 in

de
pe

nd
an

t
N

or
m

at
iv

e
Te

ch
no

lo
gy

 d
ep

en
da

nt

N
on

 N
or

m
at

iv
e

Fig. 1. The Reconfigurable Video Coding framework

act with the underlying platform on which the actor is

running.

• A language that provides the description of video codec

representations called Decoder Description Language

(DDL). This is an XML dialect that describes an in-

terconnected network and parameterization of standard

library components, which together represent a com-

plete decoder. DDL can also be used recursively; that

is, an actor may be defined as a composition of other

actors, with the interconnections specified by DDL.

In this case, the DDL itself declares input and output

ports. DDL provides a facility for declaring parame-

ters, and passing parameters to actors in the network.

This is useful for declaring values that are constant

for a particular instantiation of an actor, but may vary

between different instantiations. An “abstract model”

is constituted by the instantiation of a codec config-

uration using the Decoder Description Language and

the MPEG Toolbox. Figure 1 depicts the process of

instantiating an “abstract decoder model” in RVC.

• Tools capable to verify and validate the behavior of the

“abstract model” and tools capable to generate auto-

matically software and hardware descriptions of the ab-

stract model.

An important problem faced by RVC is how to describe

and specify a new bitstream syntax and how to generate the

associated parser in CAL. In fact all components of any codec

reconfiguration can be found in the RVC toolbox except the

parser. Without systematic procedures and support tools for

the validation of new bitstream syntaxes and the possibly au-

tomatic generation of parsers, RVC framework would lack the

appropriate elements for a successful usage and deployment.

The paper is organized as follows: section 2 describes the

essential elements of BSDL (a MPEG-21 standard language

used to specify a new bitstream syntax). Section 3 describes

a procedure for the validation of BSDL schemas. Section 4

reports how it is possible to automatically generate a parser in

a form compatible with the RVC ADM from a BSDL schema

by using a XSLT transformation. Section 5 concludes the pa-

per.

2. BSDL A LANGUAGE TO DEFINE BITSTREAM
SYNTAX

MPEG-B part 5 is an ISO/IEC international standard that

specifies BSDL [3] (Bitstream Syntax Description Lan-

guage), an XML Schema describing the generic bitstream

syntax, which can then be used to extract an XML imple-

mentation from a binary bitstream. For instance, in the case

of a MPEG-4 AVC video codec [4], a BS Schema describes

the structure common to all possible conformant MPEG-4

AVC video bitstreams, whereas a BS description describes

a single MPEG-4 AVC encoded bitstream as a XML docu-

ment. Figure 2(a) shows the BSDL Schema associated with

the BSDL Description in Figure 2(b). BSDL uses XML to

describe the structure of video coded data. An encoded video

bitstream can be described as a sequence of binary symbols

of arbitrary length – some symbols contain a single bit, while

others contain many bytes. For these binary symbols, the

BSDL Description indicates values in a human – and ma-

chine – readable format – for example, using hexadecimal

values (as for startCode in Figure 2(a)), integers, or strings.

It also organizes the symbols into a hierarchical structure that

reflects the data hierarchic/semantic interpretation.

In other words, the BSDL Description level of granularity

can be fully customized to the application requirements [5].

BSDL was originally conceived and designed to enable adap-

tation of scalable multimedia content in a format-independent

manner [6]. In the RVC framework, BSDL is used to fully

describe the entire bitstream – each elementary bit has its cor-

responding value in a Variable Length Decoding (VLD) ta-

ble. As a result, the corresponding BS schema must specify

all components of the syntax at a finer granularity level than

the ones developed and used for adaptation of scalable con-

tent. In this context BSDL does not replace the original data,

but instead provides additional information (or metadata) to

support an application for parsing and processing the binary

content. Finally, BSDL does not mandate the names of the

elements in the BSDL Description; the application assigns

names that provide meaningful semantics for the description

at hand. Figure 2(a) is an example BSDL Description for

video in MPEG-4 AVC format.

In the RVC framework, BSDL is preferred over Flavor [7]

294

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

because:

• it is stable and already defined by an international stan-

dard;

• the XML-based syntax integrates well with the XML

syntax used to describe the configuration of the RVC

decoder; constituted by the instantiation of FUs from

the toolbox and by their connettivity;

• the RVC bitstream parser may be easily derived by

transforming the BSDL schema using standard tools

(e.g. XSLT).

<NALUnit>
<startCode>00000001</startCode>
<forbidden0bit>0</forbidden0bit>
<nalReference>3</nalReference>
<nalUnitType>20</nalUnitType>
<payload>5 100</payload>

</NALUnit>
<NALUnit>
<startCode>00000001</startCode>
<!-- and so on... -->
</NALUnit>

(a) BS description fragment of an MPEG-4 AVC bitstream

<element name="NALUnit"
bs2:ifNext="00000001">

<xsd:sequence>
<xsd:element name="startCode" type="avc:hex4" fixed="00000001"/>
<xsd:element name="nalUnit" type="avc:NALUnitType"/>
<xsd:element ref="payload"/>

</xsd:sequence>
<!-- Type of NALUnitType -->
<xsd:complexType name="NALUnitType">

<xsd:sequence>
<xsd:element name="forbidden_zero_bit" type="bs1:b1" fixed="0"/>
<xsd:element name="nal_ref_idc" type="bs1:b2"/>
<xsd:element name="nal_unit_type" type="bs1:b5"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="payload" type="bs1:byteRange"/>

<!-- and so on... -->

(b) BS schema fragment of MPEG-4 AVC codec

Fig. 2. BSDL description and schema

The RVC framework aims at supporting the development

of new MPEG standard and new decoding solutions. The flex-

ibility offered by the standard video coding library to explore

rapidly the design space is primordial. Defining coding tools

and their interconnections becomes a relatively easy task if

compared to the SW rewriting efforts need to modify (usually

very large) monolithic specifications. However, testing new

decoding solutions, new algorithms for new coding tools, or

new tools configurations, the bitstream syntax may change

from a solution to another. The consequence is that a new

parser need to be rewritten for each new bitstream syntax. The

parser FU is the most complex actor in the MPEG-4 SP de-

coder [4] described in [8] and its behavior need to be validated

versus all possible conformat bistreams. This is equivalent to

validate it using the BSDL schema for the syntax at hand.

Moreover, it is certainly not a good idea to have to write it

by hand when a systematic solution for deriving such parsing

procedure from the BSDL schema itself could be developed.

Such procedure based on transforming the BSDL schema by

a XSLT transformation is describes in the second part of the

paper. So being able to validate a parsing procedure (written

by hand or automatically generated) using some instances of

a given syntax is an important step for the RVC framework.

3. VALIDATION OF A BSDL SCHEMA BISTREAM
SYNTAX DESCRIPTION

3.1. Procedure of validation

The generic character of BSDL, and hence its merit, lies in

the media format-independent nature of the different soft-

ware modules that are responsible for the creation of the BS

Descriptions (BSDs) and for the generation of the adapted

bitstreams. The BSD generator and bitstream generator are

named BintoBSD Parser and BSDtoBin Parser, respectively.

Figure 3 summarizes the overall method for validating a BS

schema. Explanatory notes for this figure are provided below:

1. a bitstream syntax schema (BS Schema) contains a de-

scription of the low-level syntax in RVC of a particular

media format;

2. a BSD is created by a format-independent BintoBSD

Parser, taking as input a particular bitstream and a cor-

responding BS Schema;

3. a BSD is transformed to meet the constraints of a usage

environment;

4. a format-independent BSDtoBin Parser creates the

original bitstream, using the transformed BSD and the

BS Schema

There are two possibilities to compare the efficiency of

the schema:

1. the original bitstream is compared to the one produced

by the identity operation “bintoBSD-BSDtobin”; this

bitstream should give the same decoded sequence as

the original one;

2. the BSD description generated after the first “binto-

BSD” operation could be compared to the identity op-

eration “BSDtobin-bintoBSD”. You should exactly ob-

tain the same BS Descriptions.

A BS Schema contains a minimal amount of information

such that BSDtoBin can convert each element value in a BSD

to a bit-level representation. Such functionality can already

be provided by an XML Schema using BSDL-1 datatypes, as

BSDL-2 is specific for BintoBSD and not relevant for BSD-

toBin. Thus, BSDtoBin may still be used for generating a

bitstream to support BSDL-2.

295

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

Video
Coding
Bistream

No
differences

No
differences

<schema>
 ...
</schema>

BSDL schema

Multimedia data
Metadata

Binary
to BSDL

Binary
to BSDL

Compare
Metadata

Decode
Bitstreams

<xml>
 ...
</xml>

<xml>

</xml>
BSDL to
binary

Fig. 3. BS Schema validation

3.2. User-defined data types

This subsection specifies an optional implementation mecha-

nism for user-defined data types, that a conformant BSDtoBin

or BintoBSD parser does not have to implement. But if an

ECMAScript implementation of bs1:codec data types is pro-

vided, the parser shall conform to this clause. Data types ref-

erenced by bs1:codec in a BS Schema may be implemented

using ECMAScript and the implementation is embedded in

the BS Schema via the bs1:script component. This allows ar-

bitrary parsing algorithms to be specified by a BS Schema

for use by BintoBSD and BSDtoBin parsers, enabling the

processing of data structures that cannot be specified using

other BSDL syntax elements. The bs1:script component de-

fines the local name of the datatype, which inherits the tar-

get namespace of the schema document. The bs1:codec at-

tribute can then reference this implementation via the URI of

the datatype, which is obtained by adding the appending the

local name as fragment identifier to the namespace.

ECMAScript datatypes may be used to allow a BSDL

Parser to process Variable Length Codes, such as Huff-

man codes or Arithmetic-coded values (Figure 5). An EC-

MAScript implementation may be referenced by bs1:codec

in the following ways:

• the value of bs1:codec is a URL that resolves to a BS

Schema, with a fragment identifier corresponding to the

value of an id attribute on a bs1:script element;

• the value of bs1:codec is a URL that resolves to an EC-

MAScript file, with a fragment identifier corresponding

to the name of a class within that file;

• the value of bs1:codec is a URL that resolves to an EC-

MAScript file, with no fragment identifier.

In each case, a BSDtoBin parser shall search the bs1:script

element, class or file (respectively) for a function (or method)

with the signature BSDtoBin(value). The BSDtoBin parser

shall call this function to parse the element to which bs1:codec

is attached. The BSDtoBin parser shall pass as value the text

content of the element if the content is simple, or the element

and its descendents, otherwise.

A BintoBSD parser shall search the bs1:script element,

class or file (respectively) for a function (or method) with the

signature BintoBSD(). The parser shall call this function to

generate the element to which bs1:codec is attached, the Bin-

toBSD() function should return either a string containing the

lexical value of the element, or a DOM Element representing

the element.

read(bits) This function shall be provided by a BintoBSD

parser and may be called by the BintoBSD() function of

a bs1:script component. When this function is called, a

BintoBSD shall read from the bitstream the number of

bits specified by the integer value of the bits parameter,

and return the unsigned integer value of the bits read.

write(value,bits) This function shall be provided by a BSD-

toBin parser and may be called by the BSDtoBin(value)

function of a bs1:script component.

xpath(exp,type) This function shall be provided by a Binto-

BSD parser and may be called by the BintoBSD() func-

tion of a bs1:script component. When this function is

called, a BintoBSD shall execute the XPath expression

declared by the string value of the exp parameter, and

return the value of the result of the expression. The

expression shall be evaluated in the context of the par-

tially instantiated BSD.

<xsd:complexType name="expGolomb">
<xsd:simpleContent>

<xsd:extension base="xsd:unsignedInt">
<xsd:attribute ref="bs1:codec" default="expGolomb.js"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

(a) Javascript call outside BintoBSD tool

<xsd:complexType name="expGolomb">
<xsd:simpleContent>

<xsd:extension base="xsd:unsignedInt">
<xsd:attribute ref="bs1:codec"

default="urn:mpeg:example:myLibrary#expGolomb"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

(b) Java Class call inside BintoBSD tool

Fig. 4. Implementation of expgolomb function

In the case you use ECMAscript implementation in your

schema, you will have to validate your script in the two ways:

bintoBSD and BSDtobin.

The following implementation of Expglomb does not

need but only one ECMAscript file containing 2 parts:

• the ECMAscript function called by bintoBSD (Fig-

ure 5(a));

296

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

• the reverse ECMAscript function called by BSDtobin

(Figure 5(b)).

function BintoBSD() {
var nBits = 0;
var ret = 0;

while ((ret = read(1)) == 0) nBits++; //read 0’s
if (ret == -1) throw "userType Error";
ret = read(nBits); //read the rest
if (ret == -1) throw "userType Error";
return ((1 << nBits) - 1 + ret) + ""; //toString

};

(a) ECMAscript implementation of expgolomb for bintoBSD tool

function BSDtoBin(value) {
var nBits = 0;
var tmp = value + 1;

while ((tmp >>= 1) > 0) nBits++; //count how many zeros to write
tmp = 1;
var i = 0;
for (i = 0; i < nBits; i++) {

tmp <<= 1;
}
write(0, nBits); //write leading zeros
write(1, 1); //write a one
write(value + 1 - tmp, nBits); //write rest of code
return(2 * nBits + 1);

}

(b) ECMAscript implementation of expgolomb for BSDtobin tool

Fig. 5. ECMAscript implementation of expgolomb function

4. SYNTHESIS OF A PARSER IN CAL FROM A
BSDL SCHEMA DESCRIPTION

Writing a complete parser by hand is a burdensome, time con-

suming and error prone task. It is certainly not a smart solu-

tion. Once the bitstream is validated (section 3), a systematic

methodology generates automatically a parser in CAL from

the bitstream schema (in BSDL). This idea has been first pre-

sented in [8]. The generated code is now compatible with

hardware and software code generators. It was not the case

in the last version. Furthermore, variable length decoding is

supported and additional BSDL constructs. Figure 7 illus-

trates the different steps of the transformation process and an

example of the result of the generation. The advantage of gen-

erating the parser in CAL is that the entire decoder model is

thus described in the same formalism. Direct synthesis of the

CAL decoder model to SW or HW implementations can be

performed [9, 10] from this complete model. The reader can

also refer to [8] for a more detailed background and further

details on the parser generation process.

Figure 8 shows an example of bitstream schema from

which a parser has been generated. The resulting CAL code,

generated by the tool, is shown figure 6. This CAL code

executes the bitstream parsing.

Each time a syntax element is met by the parser, the pro-

cess generates a xxxx.read” action. If this element of syntax

mcbpc.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B1_LENGTH);
end

ac_pred_flag.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B2_LENGTH);
end

cbpy.read: action ⇒
guard
readDone()
do
current := read_result_in_progress ;
setRead(M4V_B3_LENGTH);
end

dct_dc_size.read: action ⇒
guard
readDone()
end

dct_dc_size.output: action ⇒ size: [current]
do
current := read_result_in_progress ;
setRead(M4V_B4_LENGTH);
end

dct_dc_diff.read: action ⇒
guard
readDone()
end

dct_dc_diff.output: action ⇒ diff: [current]
do
current := read_result_in_progress ;
setRead(M4V_VLC_LENGTH);
end

DCT_coeff.read: action ⇒
guard
readDone()
end

DCT_coeff.output: action ⇒ coeff: [current]
do
current := read_result_in_progress ;
end

DCT_coeff.finish: action coeff_f: [f] ⇒
guard
f = 2
do
setRead(M4V_B3_LENGTH);
end

DCT_coeff.notFinished: action coeff_f: [f] ⇒
guard
f = 0 or f = 1
do
setRead(M4V_VLC_LENGTH);
end

// Finite State machine

mcbpc_exists (mcbpc.read) --> ac_pred_flag_exists;
ac_pred_flag_exists (ac_pred_flag.read)--> cbpy_exists;
cbpy_exists (cbpy.read) --> dct_dc_size_exists;
dct_dc_size_exists (dct_dc_size.read)--> dct_dc_size_output;
dct_dc_size_output (dct_dc_size.output)-->dct_dc_diff_exists;
dct_dc_diff_exists (dct_dc_diff.read)--> dct_dc_diff_output;
dct_dc_diff_output (dct_dc_diff.output)-->DCT_coeff_exists;
DCT_coeff_exists (DCT_coeff.read)--> DCT_coeff_output;
DCT_coeff_output (DCT_coeff.output)--> DCT_coeff_result;
DCT_coeff_result (DCT_coeff.notFinished)--> DCT_coeff_exists;
DCT_coeff_result (DCT_coeff.finish)--> next_elements;

Fig. 6. Source code of the parser generated

297

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

Fig. 7. The XSLT transformation process

<xsd:complexType name="MB">
<xsd:sequence>
<xsd:element name="mcbpc" type="b3"/>
<xsd:element name="ac_pred_flag" type= "b1"/>
<xsd:element name="cbpy" type= "b2"/>

<xsd:complexType name="block">
<xsd:sequence>

<xsd:element name="dct_dc_size" type="b3" rvc:port="size"/>
<xsd:element name="dct_dc_diff" type="b4" rvc:port="diff" />
<xsd:element name="DCT_coeff" type="vlc" rvc:port="coeff" />

</xsd:sequence>
</xsd:complexType>

Fig. 8. Example of BSDL description

must be presented at the output by the parser, a xxxx.output”

action is created. When the parser meets a variable length

code, it creates a series of actions which are necessary to com-

municate with the VLD FUs: xxxx.read” to read the bit from

the input port, xxxx.output” to send the bit the the VLD ta-

ble, and xxxx.finished” / xxxx.notfinished” to decide if the

variable length code is finished of if the parser must send an

additional bit. To get more information about the implemen-

tation of variable length decoding process in RVC, the reader

can refer to the paper [11].

5. CONCLUSION

This paper describes a systematic methodology for the val-

idation of a BSDL schema describing the syntax of a binary

bitstream. The validation of a BSDL schema is a fundamental

step in the RVC framework. The validated schema is the in-

put of a tool that generates automatically a CAL parser. This

latter completes the model used to specify, design, and imple-

ment decoders in the RVC framework.

6. REFERENCES

[1] J. Eker and J. Janneck, “CAL Language Report,” ERL

Technical Memo UCB/ERL M03/48, 2003.

[2] J. W. Janneck, The CAL actor lan-

guage: Synthesizing models to FPGA.

http://chess.eecs.berkeley.edu/pubs/181.html.

[3] International Standard ISO/IEC FDIS 23001-5, MPEG
systems technologies - Part 5: Bitstream Syntax De-
scription Language (BSDL).

[4] ISO/IEC14496 Coding of audio-visual objects. 2004.

[5] J. Thomas-Kerr, J. Janneck, M. Mattavelli, I. Burnett,

and C. Ritz, “Reconfigurable Media Coding: Self-

Describing Multimedia Bistreams,” in IEEE Workshop
on Signal processing Systems SiPS 2007, (Shanghai,

China), April 17-19, 2007 2007.

[6] J. Thomas-Kerr and I. Burnett and C. Ritz and S. Dev-

illers and D. De Schijver and R. Van de Walle, “Is That a

Fish in Your Ear? A Universal Metalanguage for Multi-

media,” IEEE Multimedia, vol. 14(2), pp. 72–77, 2007.

[7] A. Eleftheriadis, “Flavor: A Language for Media Rep-

resentation,” ACM Int’l Conf. on Multimedia, pp. 1–9,

1997.

[8] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Jan-

neck, “Reconfigurable Media Coding: A New Specifica-

tion Model for Multimedia Coders,” in IEEE Workshop
on Signal Processing Systems, pp. 481–486, 2007.

[9] J. W. Janneck, I. D. Miller, D. B. Parlour, M. Mattavelli,

C. Lucarz, M. Wipliez, M. Raulet, and G. Roquier,

“Translating Dataflow Programs to Efficient Hardware:

an MPEG-4 Simple Profile Decoder Case Study,” in De-
sign, Automation and Test in Europe (DATE), (Munich,

Germany), 2008.

[10] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and

O. Déforges, “Code generation for the MPEG reconfig-

urable video coding framework: from CAL actions to C

functions,” in IEEE International Conference on Multi-
media & Expo (ICME), (Hannover, Germany), 2008.

[11] J. Li, D. Ding, C. Lucarz, S. Keller, and M. Mattavelli,

“Efficient Data Flow Variable Length Decoding Imple-

mentation For The Mpeg Reconfigurable Video Coding

Framework,” in IEEE Workshop on Signal Processing
Systems, (Washington DC, US), 2008.

298

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 04:52 from IEEE Xplore. Restrictions apply.

