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ABSTRACT Although the complexity of errors-only and generalized

While random network coding has proved to be a powerdeCOdi”g of Gabidulin codes was analyzed [4], there are no
ful tool for disseminating information in networks, it is hardware architectures for these decoders reported yes Th

highly susceptible to errors caused by various sources. Ri-rémains unknown whether these decoding algorithms are
cently, constant-dimension codes (CDCs), especiallydtat feasible and suitable for hardware implementations. The fe
Kschischang (KK) codes, have been proposed for error conibility of the generalized Gabidulin decoding algorithm i
trol in random network coding. It has been shown that kkhardware implementations determines whether random net-

codes can be constructed from Gabidulin codes, an importalfork coding, along with error control, can be readily apglie
class of rank metric codes used in storage and cryptograpt§.certain applications. _

Although rank metric decoders have been proposed for both !N this paper, we propose decoder architectures for
Gabidulin and KK codes, it is not clear whether such decoder§aPpidulin and KK codes. We first propose a high-throughput
are feasible and suitable for hardware implementations. Ifardware architecture for errors-only Gabidulin decogling
this paper, we proposeovel decoder architectures for both then extend it to decode KK codes. To evaluate the per-
codes. The synthesis results of our decoder architectares fformance of our decoder architectures, we implement our
Gabidulin and KK codes over small fields and with limited décoder architecture for a8, 4) Gabidulin code ovefys,

error-correcting capabilities not only are affordablet &iso whose code length is the longest given the field. We also im-
achieve high throughput. plement our decoder architecture for the corresponding KK

code of thg8, 4) Gabidulin code ovelFys, which can be used

in network coding with various packet lengths by Cartesian
product. The synthesis results of our decoder architesture
Fhow that decoder architectures for Gabidulin and KK codes
over small fields and with limited error-correcting capéigis

Inot only are affordable, but also achieve high throughput. O
3ecoder architectures aneve to the best of our knowledge.

1. INTRODUCTION

While random network coding has proved to be a powerfu
tool for disseminating information in networks, it is highl
susceptible to errors caused by various sources such as no
malicious or malfunctioning nodes, or insufficient min-fdjt
Thus, error control for random network coding is criticatlan
has received growing attention recently. Nearly optimal 2. PRELIMINARIES
Reed-Solomon-like constant-dimension codes (CDCs) based

on the subspace metric, called Kétter—Kschischang (KK¥-1- Rank metricand Gabidulin Codes

codes, were proposed in [1] for noncoherent error controthe rank weight of a vector ovét,. is defined as thenax-
in network coding. Later it was shown [2] that KK codes jma) number of its coordinates that are linearly independent

correspond to “liftings” [2] of Gabidulin codes [3]. As Reed over the base field,. Rank metric is the weight of vector
Solomon codes achieve the Singleton bound of Hammingitference [3].

distance, Gabidulin codes are a class of maximum rank dis- A Gabidulin code [3] is a lineafn, k) code oveiF . de-
tance (MRD) codes, which achieve the Singleton bound ofineq by a parity-check matrix
rank distance. Due to the connection between Gabidulin and

KK codes, the decoding of KK codes can be viewed as a gen- hg)] h[lo] e hﬂl
eralized Gabidulin decoding, which involves errors, erasu L pl L Bl
.. 0 1 n—1
and deviations. H = ]
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[F, and[i] denotes;’. SinceF,~ is anm-dimensional vector proved [2] that the subspace distance {L}((X), (Y)) =

space ovelf,, we always have: < m. The minimum rank 2rank[16 T;jw] — u— 0 wherey = n — |U| and (X) and

distance of a Gabidulin codeds= n—k+1 and all Gabidulin (Y') are subspaces spanned by rowXo&ndY’, respectively.
codes are MRD codes. o _ ~ Now the decoding problem to minimize the subspace distance
The decoding process of Gabidulin codes includes fivgacomes a problem to minimize the rank distance.

major steps: syndrome computation, key equation solver |pa generalized rank decoding finds an error wére
based on a modified Berlekamp—Massey algorithm (BMA) [S]Mgmi](l rank[f‘ ¢]. We can expand as a summa-
finding the root space, finding the error locators by Gabidslli +; ecr ¢ 0k~

9 pace, 9 ) y tion of products of ccﬁumn and row vectors such that
algorithm [3], and finding error locations. Note that all pol 27—1 L.E. Each termL.E. is called either arasure. if
nomials involved in the decoding process have only non-zerijjizsoknéwr]] or aJIeviationJif ]JEJ- is KNOWN. OF arerror. if n’ei-
terms with degr.ee@'], and such polynomials are calléig- ther L; nor E; is known. In this general decoding problem,
earized polynomials. - The greatest value of of non-zero hasy columns fromL and E hasé rows fromE. Sim-

termriofda imﬁarlzefd pglyg_c(;rr}!alcljs de:‘jme_d as_qﬂde_grlit_e. 1iIar to Hamming weight decoding, given a Gabidulin code
€ data flow of a Gabidulin decoder is given in Figuire of minimum distancel, the corresponding KK code is able

As in Reed-Solomon decoding, we can compute syndromes ., oot errors, ;, erasures, and deviations as long as if
for Gabidulin codes a5 = (5o, 51,...,5¢-2) = Hr o ) 15

for any re(fﬁ'ged \ﬁth' Then the syndrome polynomial (r, L, E), the general Gabidulin decoding algorithm
S(x) = 3 j— Sjx+ can be used to solve the key equation;, 5 Fig. 1] can be used to decode the KK code. The data
o(z) ® S(z) = w(z) mod x4~ Y, whereo(z) is the error  flow of a KK decoder is given in Figuf@ 2. Like interpolation
span polynomial and denotes theymbolic product of two in errors-and-erasures RS decoding, the general GabidieHin
linearized polynomialsz(z) ®b(z) = a(b(z)). Aftersolving  coding usesninpoly(3) to compute aminimum linearized

the key equation by the BMA, up to= |(d — 1)/2] error  polynomial, which satisfies two conditions: the elementgof

valuesE;’s can be obtained by computinga baBis E1,...  are its roots and itg-degree is minimal.
for the root space of () using the methods in [6, 7]. Then

we can find the error locatots;'s corresponding td;’s by

solving a system of equations 3. ARCHITECTURE FOR GABIDULIN DECODING
-1 0] In this section, we propose a novel decoder architecture for
Si=> X/ E;, 1=0,1,...,d-2 (1) Gabidulin codes. We describe the key features of our decoder
J=0 architecture below. In most practical applications, data a

stored and transmitted in binary formats. Henceforth is thi

where 7 is the number of errors. After solvin§l(1) using
paper we assumg= 2.

Gabidulin’s algorithm, the error locations;’s are revealed
from X’s by solving
3.1. FiniteField Arithmetic

n—1
Xj =Y Ljxhi, j=0,1,...,t—1. (2) VLSl architectures for finite field arithmetic have been well
=0 studied (see for example, [8, 9]). Finite field elements can
be represented by vectors using different bases: polynomia
2.2. KK Codes

basis, normal basis, and dual basis [8]. Under normal ba-

By lifting construction [2], KK codes can be constructediro  SiS, squaring is simply cyclic shifting to more significaitsb
MRD codes. Lifting can also be seen as a generalizatioWhiCh makes it very attractive in rank metric decoders since
of the standard approach to random network coding , whicRll polynomials involved are linearized polynomials. Itsva
transmits matrices in the for’X = [I | x|, whereX € pointed out in [4] that _using normal basis can facilitate the
]ngM, z € F**™ andm = M — n. Hence by adding the COmputation of symbolic product. It was also suggested that
constraint thate is the row expansion of codewords from a SOIving [2) can be trivial using normal basis. _
Gabidulin codeC overF,, error control is enabled in net-  There are additional savings due to normal basis. In
work coding. Gabidulin’s algorithm [3] to solve[{1), the major complex-
Let the received matrix b& = [A | y], whereA e ity isfor Aij = Aiyj — (Aimyj/Aimr)! A
FN*" andy € FN*™. In [2], the matrixY is first turned  and Qi; = Qi—15 — (Qi71,j+_1/1_41-71,1;1)[’”141;1,1;1,
into a reduced row-echelon (RRE) form. Liét denote the which requires divisions and finding square roots. Actu-
column positions of leading entries in each rowrdtE(Y)  ally, wheng = 2, they can be computed in an inversion-
andi/ = {0,1,...,n — 1} \ U°. Let I, denote the columns less formA; ; = A;_;; — AEZi],jAEZ}],Z—,l and Q;; =
of I,, in 4¢. Then the RRE form is expanded ind6 = Qi1 — QE:]JHAE:i],i_I’ which requires only finding

(T4 2 JRRE(Y) = [I"+0£15 ~lwhered = N—[u|. ltwas  square roots. Similar to squaring, finding square root in nor
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Fig. 2. Data flow of a KK decoder

mal basis is just cyclic shifting in a reverse direction. $hu Output: A(z)
using normal basis also reduces the complexity of Gabitulin

algorithm. If a normal basis @, is used a®,’s andn = m, 1. Initialize as follows:A() (z) = B (z) = 2, TV =
H becomes a cyclic matrix and syndrome computation be- 1, andL = 0.

comes part of a cyclic convolution ¢fg, k1, . .., h,—1) and 2. Forr=0,1,...,2t -1,

r, for wr_]ich fast algorithms are available, and are favorable (a) Compute the discrepandy, — Z]L:o AY)Sﬁj-
whenm is large. (b) If A, = 0, then go to ().

There are serial and parallel architectures for normal ba-
sis finite field multipliers. To achieve high throughput inrou
decoder, we consider only parallel architectures. The com-
plexity of a normal basisCy, is defined as the number of
termsa;b; in computing a bit ok = ab, wherea;'s andb;’s
are the bits ofi andb, respectively. In this paper, we focus on
the fieldF,s generated by® + 27 + 2° + z3 4 1, on which
Cv is minimized to 21 [8]. Most normal basis multipliers are
based on the Massey—Omura (MO) architecture. According To further increase the throughput, more regular archi-
to [9], a parallel MO multiplier needs:?> = 64 AND gates tectures are necessary for shorter CPD. Following the ap-
and at mosin(Cy + m — 2)/2 = 108 XOR gates. Using proaches in [11], we develop two architectures based on
the common subexpression elimination algorithm from [10]Algorithm[I.
we reduce the number of XOR gates to 88 while maintain the In Algorithm [, the critical path is in step 2(a). Note
same critical path delay (CPD) as that of one AND gate anthat A, is therth coefficient of the discrepancy polynomial
five XOR gates. A (z) = A0 (z) @ S(z). By using®)(z) = B") (z) ®

Since squaring is almost free, an efficient method to ges(x), A1 (x) can be computed as
the inverse offisto findg—! = 2" ~2 = 32434 ... based on
multipliers. Division is simply the combination of inveesi A" (z) = AT (2) ® S(x)
and multiplication. = (CHYHAD () — Az @ BT (2)) @ S(x)

= (CHHAM (2) — Azl @ 00 (2)

(c) Modify the connection polynomial\ "1 (z) =
COYIAD (2) — A2l @ BO) (),

(d) If 2L > r, go to (e). Otherwise, =r + 1 — L,
I+ = A,, andB") (z) = A" (z). Goto (a).

(e) Setr"+1) — (D)1 and B+ () = 21U @
B ().

3.2. BMA Architectures
. . ) L which has the same CPD as step 2(c). This reformulation
The modified BMA for rank metric codes in [5] is similar to |a44s to a more regular architecture in AlgoritA 2, which

the BMA for Reed-Solomon codes except that polynomialg 4na10g0us to theiBM architecture in [11]. Compared to

multiplications are replaced by symbolic products. Algorithm[, its control flow is also simpler.
The BMA in [5] requires finite field divisions, which are

more time-consuming than other arithmetic operations. Wélgorithm 2. riBMA

first propose an inversionless variant in Algorithin 1, which Input: SyndromesS
more suitable for hardware implementation. Output: A(x)
Algorithm 1. iBMA 1. Initialize as follows: A9 (z) = B (z) = 2, T =

Input: SyndromesS 1, AO(z) = 0O (z) = Y2 1 Szl ke = 0,



2. Forr =0,1,...,2t — 1,
(a) Modify the connection polynomialk "tV (z) =
rMAO (z) — AL BO) (2);
(b) Compute the discrepancy polynomial{™+1) (z) =
rMOA® (z) — AL e (r) (2);
(c) Setk =k +1;
d) AT £ 0andk > 0, setk = —F, I‘(T“)

Note that this applies to both Gabidulin and KK decoders.
For KK decoders, another condition to declare decoding fail
ure is when the total number of erasures and deviations ex-
ceedt.

4. ARCHITECTURE FOR KK CODES

A(T BO)(z) = A®(z), and® T)( ) (@), 4.1. Left-RRE Form
(e) SetA r+1)( ) S 2A(T+1) @(TH (z) = We first define a left-RRE form for matrices. Given a matrix
S 2 9(r) i Y =[A|y],A € FY"*N y € F)'*™, the matrixY is in
1+1

left-RRE form as long ad is in RRE form. Compared with
the RRE form, it puts no constraints on the right part even
when A is not full-rank. Obviously the left-RRE form of a
matrix may be not unique.

Given the similarities between steps 2(a) and 2(d);) Now we prove that it is enough to use left-RRE forms
and A(z) can be combined together into one polynomialinstead of RRE forms in decoding KK codes. GivEn=
A(z), which is more regular. Similarlyi3(z) and©(z) can [A | y] and RRE(A) = RA, the productRY is in left-
be combined into one polynomiél(x). In Algorithmld we  peE form. 1t followsY” — [Tus O |RY — [I+LIM "' | has

have the RiIBMA architecture, which is closely related to the th 38, Wt?] Is i H 2,
RiBM architecture in [11]. e same row space ith a similar approach as in [

Appendix C], we can proveank[ ¥ | = rank[(; T n—p.
Hence the subspace distance is givendgy(X),(Y)) =
2rank[¥] — rank X — rankY = 2rank[L TE’,“”] — =

0. Thus the subspace decoding problem |s equivalent to the
generalized Gabidulin decoding problem wii, L, E).

By using the left-RRE forms instead of RRE forms, we
reduce the complexity of reduction slightly. More impottan
the reduction for left-RRE forms is completely determingd b
the left part ofY', which greatly simplifies hardware imple-
mentation.

() SetT+1) — (r(r))[IJ, Br)(z) = 21U g
B™(z), and0 1) (z) = 211l @ O+ (z).

Algorithm 3. RiBMA
Input: SyndromesS
Output: A(z)

1. Initialize as follows A (z) = 0 (z) = 32" 1 5,1,
r®=1A0 =6 =1, andk = 0.
2. Forr =0,1,...,2t — 1,
(a) Modify the combined polynomialA("+1 () =
rMA® (z) — A6 (x);
(b) Setk =k +1;

© If Al £ 0 andk > 0, setk = —k, T+ =
Al and®™) (z) = AW (z);

(d) SetNT“)( ) = S PAID L 6 () =

4.2. KK CodesLifted from Cartesian Gabidulin Codes

The left-RRE form also considerably simplifies the decoding

si_1 A (r) i+l of KK codes that are lifted from Cartesian Gabidulin codes.
>i=o CH +1f17 } In network practice, the packet length is very long amd
(e) §et1“ (r+1) = (F(T))“] andOU Y (z) = 2zl @  is much larger than. In such cases, the decoding complexity
0 (x). of KK codes is prohibitive due to the huge field sizeRaf..
3. Seth(z) = Zz . Az(?ﬁ-tt)x A low-complexity approach in [2] suggested that instead of

using a single long Gabidulin code, the Cartesian product of
many short Gabidulin codes with the same distance can be
used to construct KK codes for long packets.

Since the reduction in our left-RRE approach is purely

A complete decoder declares decoding failure when no valigetermined byA, decodingA |y, |y, | --- | y;_1] can be
codeword is found within the decoding radius of the receivedlivided into small decoding problems whose inputs akel
word. To the best of our knowledge, decoding failures ofyo), [A | y1],-.-,[A | ¥,_4]. In this way, a small decoder
Gabidulin and KK codes were not discussed in previougor F,~» can decode packets with lengths(as- 1)n.

works. Similar to Reed—Solomon decoding algorithms, a For KK codes that are lifted from Cartesian Gabidulin
rank decoder can return decoding failure when the roots afodes, we can perform decoding in a serial manner with only
the error span polynomial(z) are not unique. That is, the one decoder, or in a semiparallel way with more decoders,
root space of\(x) has dimensions less than thelegree of or even in a fully parallel fashion. It is a tradeoff between
A(z). cost/area/power and throughput.

3.3. Decoding Failure



4.3. Gaussian Elimination 4.4. Latency Analysis

We first show that finding the root space and minimum lin\We analyze the worst-case decoding latencies of our decoder
earized polynomials can be done by Gaussian elimination. architectures, in terms of clock cycles, in Table 1.

According to [2], the complexity between the probabilis-
tic algorithm in [7] and Berlekamp’s deterministic meth&dl

is small forg = 2. So the deterministic method is preferred Table 1. Worst-Case Decoding Latency

. L . . Gabidulin KK

since it is much easier tp !mplement. . RRE - T 1/2 0

Berlekamp’s deterministic method first evaluates the poly;—syndrome n n
nomialr(z) on a basis of the fieldag, o1, . .., @m-1) such v (2) - 2(d — 1) + mu
thatv; = r(a;),7 = 0,1,...,m — 1. Then it expand®;’s op(z) - 2(d—1) +md
in the base field as columns of anx m matrix V and finds Spu () - 2(d—1)
linearly independent roots such thatV’z = 0. Using the SBMA) 2 th
representation based ¢ng, a1, . .., a,,_1), the rootsz are Fg(l) - S 1_)1+m6
also the roots of the given polynomial. Findirgis to ob- o0 (@) N 2d—1) + me
tain the linear dependent combinations of the column¥ pf o(z) - 2(d-1)
which can be done by Gaussian elimination. root space m(m+1)/2 m(m+1)/2

Minimum linearized polynomials can be computed by e;"; 'OC;tgr 2t t mt 27 + m7

H H H H ror wi A T
solving systems oflinear equations. Given rq@fsf. ..., fx—1, Total (n =m) | n(n+3)/2+ (m+5)t | n(n+3)+ (4m + 30)¢

the polynomialz!* + S2%" 1 4,21 satisfies

0] 1] [k—1] %] As in [12], the latency of Gaussian elimination for the
9 B+ By B o 0 left-RRE form is at most:(n + 1)/2 cycles. Additionally
(0] (1] (k—1] (K] A
i B 1 @A it takes at most: cycles more to extrack out of the left-
: : . : : : ' RRE form. Similarly, the latency of finding the root space is
[0] 1] E=1| | g [k] at mostm(m + 1)/2. For minimum linearized polynomials,
kal 5k71 T k—1 k-l k—1

Gaussian elimination always works on non-singular madrice

Note that we assume that the coefficient of the highest degré¥ Size at most — 1. Hence it needs at mogt— 1 cycles for
term is one. Thus it can be solved by Gaussian elimination. €limination. For each coefficient, it takescycles to perform
Furthermore, Gabidulin’s algorithm is essentially a smar@ division. The backward pivoting scheme also neéds1
way of Gaussian elimination, which takes advantage of th&Yycles. Hence it needd — 1) + my, 2(d — 1) + mé, and
properties of the matrix. So Gaussian elimination appears i2(d—1)+mefor Ay (z), op(z), andoy (z), respectively. The
most steps of the decoding process, including reduction fdgtency of Gabidulin's algorithm can be computed similarly
the RRE form, finding minimum linearized polynomials, find-The 2t syndromes can be computed By sets of multiply-
ing the root space, and Gabidulin’s algorithm. The reductio and-accumulators in cycles. Note that the computations of
and finding the root space are Gaussian eliminations on mé{z), Au(z), andop(z) can be done co_ncurrently. For our
trices overF,,, while linearized interpolation and Gabidulin's (8;4) codes, the longest latency of them is no more thah-
algorithm operate on matrices OV&j. 1) + mp+md. The Iater_my of RIBMA i2¢ fo_r 2t iterations.
For high-throughputimplementations, we adopt the pivot] he latency of a symbolic produetz) © b(x) is determined
ing architecture from [12]. It was developed for non-siregul bY theg-degree ofa(x). When computingSpy (), we are
matrices oveF,. It always keeps the pivot element on the top-concerned about only the terms gtlegree less thaid — 1
left location of the matrix, by cyclically shifting the rovesd ~ Pecause only those are meaningful for the key equation. For
columns. To apply it to singular matrices, which appear incompUt'”QSFD(x)’_ the result ofop () @ 5(?7) in Spu (z)
the reduction for the RRE form and finding the root space, w&an be reused, so it needs only one symbolic product.
adapt the architecture to detect singularity. Our architec
is also flexible about matrix sizes, which are determined by 5. IMPLEMENTATION RESULTS
the varying numbers of errors, erasures, and deviatioms- El
inations oveif',~ require divisions. By cross-multiplications, We implement our decoder architecture in Verilog fofant)
we can avoid divisions in Gaussian elimination; Divisions a Gabidulin code, which can correct up to two errors. We also
used only when the row is reduced to have only one non-zerimnplement our decoder architecture for the correspondifg K
element. In Gabidulin’s algorithm, the matrix is first reddc code, which can correeterrors,;; erasures, and deviations
to a triangular form. Then it performs a backward eliminatio as long a®¢ + 1 + § < 5. Our designs are synthesized us-
after getting each coefficient. Hence we introduce a backng Cadence RTL Compiler 7.1 and MOSIS SCMOS TSMC
ward pivoting scheme, where the pivot element is always a0.18:m standard cell library [13]. The synthesis results are
the bottom-right corner. given in TabldR. The total area in Talple 2 includes both cell



area and estimated net area, and the total power in TableThe large field size implies a higher complexity for finitediel
includes both leakage and estimated dynamic power. All estrithmetic. It remains to be seen whether the decoder archi-
timation are made by the synthesis tool. In our calculatiortectures continue to be affordable for longer codes ovgelar

of throughput, we consider all input bits. Each received vedields, and this will be the subject of our future work.

tor of the (8,4) Gabidulin code has 64 bits and that of the

(8,4) KK code has 128 bits. The gate count of our generalized

decoder is close to that of the55, 239) Reed—Solomon de-

coder in [14], which is 115,500. Although their code lengths 1]
are quite different, both codes are the longest in each clasé
of codes. So, for Gabidulin and KK codes over small fields,

which have limited error-correcting capabilities, theard-

ware implementations are feasible. The area and power o{ ]

decoder architectures in Talple 2 are affordable exceptdfor a
plications with very stringent area and power requirements

Table 2. Synthesis results of decoders {@&; 4) Gabidulin
and KK codes ovelf,s

Gabidulin KK
Gates 22014 96636
Cell 0.551 2.421
Area (mm?) Net 0.231 1.110
Total 0.782 3.531
CPD (us) 5.125 5.144
Leakage| 0.001 0.005
Power mW) | Dynamic| 126.816 | 483.446
Total 126.817 | 483.451
Latency (cycles) 70 212
Throughput Mbit/s) 178 117

For practical network applications, the packet size isdarg

[3]

[4]

[5]

[6]
[7]

For example, for a packet size of 512 bytes, we can use a

KK code that is based on Cartesian product of 511 Iength—8[8

Gabidulin codes. For higher throughput, more decoders can
be used to decode in parallel. We list the gate counts and

throughput of serial and factor-7 parallel schemes in Table

Table 3. Performance of KK decoders for 512-byte packets

Serial | 7-Parallel
Gates 96636 | 676452
Area (nm?) 3.531 24.717
Power mW) 483.451| 3384.157
Latency (cycles) 108332 | 15476
Throughput Mbit /s) 59 412
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