In Proceedings of the IEEE Workshop Signal Processing Systems,

Beirut, Lebanon, October 2011.

VECTORIZATION AND MAPPING OF SOFTWARE DEFINED RADIO
APPLICATIONS ON HETEROGENEOUS MULTI-PROCESSOR PLATFORMS

George F. Zaki*, William Plishker', Shuvra S. Bhattacharyya', Charles Clancy?, John Kuykendall®

'Department of Electrical and Computer Eng., University of Maryland — {gzaki, plishker, ssb} @umd.edu
?Bradley Department of Electrical and Computer Eng., Virginia Tech, Virginia, USA — tcc@vt.edu
3Laboratory for Telecommunications Sciences, College Park, Maryland, USA — jbk @ltsnet.net

ABSTRACT

A variety of multiprocessor architectures have proliferated
even for off-the-shelf computing platforms. To improve per-
formance and productivity for common heterogeneous sys-
tems, we have developed a workflow to generate efficient so-
lutions. By starting with a formal description of an applica-
tion and the mapping problem we are able to generate a range
of designs that efficiently trade-of latency and throughput. In
this approach, efficient utilization of SIMD cores is achieved
by applying extensive block processing in conjunction with
efficient mapping and scheduling. We demonstrate our ap-
proach through an integration into the GNU Radio environ-
ment for software defined radio system design.

Index Terms— Design Methodology, Software Defined
Radio, Graphic Processor Unit, Multiprocessor Scheduling.

1. INTRODUCTION

As frequency gains for individual cores level off, compute
intensive application domains are increasingly turning to
multiprocessor computing to continue achieving performance
gains. A variety of multiprocessor architectures have prolifer-
ated including graphics processors (GPUs), multicore general
purpose processors (GPPs), tile architectures, and multi-
processor digital signal processors. Even for off-the-shelf
computing platforms, a heterogeneous mix of multiprocessor
devices is likely, including at least one GPU and a multi-
processor GPP. Fully utilizing such a multiprocessor setup
requires the identification of appropriate parallelism in the
application domain and the implementation of such paral-
lelism efficiently on the targeted platform. Software defined
radio (SDR) is well positioned to make use of these trends.
While performance gains were traditionally derived from
uniprocessor performance improvements, ample application
parallelism exists to target multiprocessor devices.

However, achieving efficient multiprocessor mappings
of SDR applications on heterogeneous platforms poses sig-
nificant challenges. When deriving mappings onto hetero-
geneous multiprocessors, designers must in general balance
computational loads, efficiently use the given processor types,

and account for communication costs. In SDR, this problem
is further complicated by multirate application descriptions,
and the need to satisfy constraints on throughput.

When targeting a GPU or other SIMD platform, vector-
ization must also be considered. More vectorization tends to
lead to higher utilization of the platform (and therefore higher
throughput), but often at the expense of increased latency and
buffer memory requirements. Also an accelerator typically
requires significant latency to move data to or from the host
processor, so sufficient data must be burst to the accelera-
tor to amortize such overheads. Ideally, application designers
would be simply presented with a Pareto curve of latency ver-
sus vectorization trade-offs so that an appropriate design point
can be selected. However, vectorization generally influences
the efficiency of a given mapping. Thus, to fully unlock the
potential of heterogeneous multiprocessor platforms for SDR,
an automated way of arriving at quality solutions is desirable.

For a design flow to generate such solutions, we begin
with a formal description of an SDR application, which we
extract from a GNU Radio [1] specification. This formal
description in dataflow is an ideal starting point for dealing
with multirate scheduling. We then use the application graph
and schedule along with a vectorization value to construct
a problem formulation that may be solved efficiently by a
Mixed Linear Programming (MLP) engine that reduces the fi-
nal mapping latency. By changing the vectorization level, we
are able to generate a Pareto curve of vectorization and map-
ping results. We integrate this approach into the new work-
flow shown in Figure 1. To demonstrate the effectiveness of
this approach, we take a mapping result determined by our
approach and implement it in GNU Radio, and evaluate the
performance compared to baseline results.

2. BACKGROUND

Dataflow graphs are widely used in the modeling of signal
processing applications. A dataflow graph G consists of set
of vertexes V' and a set of edges E. The vertices or actors
represent computational functions, and edges represent FIFO
buffers that can hold data values, which are encapsulated as

Memory, latency
constraints

Data Flow Graph

Platform

Description

Actors Profiles

Library of actors
implementation

Data Flow scheduler]

Application
Graph

Multiprocessor Scheduler]

Mapping & ordering
schedule

GNU Radio Engine]

Final
Implementation

Fig. 1. Implemented Framework.

tokens. Depending on the application and the required level
of model-based decomposition, actors may represent simple
arithmetic operations, such as multipliers or more complex
operations as turbo decoders.

A directed edge e(v1, v2) in a dataflow graph is an ordered
pair of a source actor v; = src(e) and sink actor vy = snk(e),
where v7 € V and v € V. When a vertex v executes
or fires, it consumes zero or more tokens from each input
edge and produces zero or more tokens on each output edge.
Synchronous Data Flow (SDF) [2] is a specialized form of
dataflow where for every edge e € E, a fixed number of to-
kens is produced onto e every time src(e) is invoked, and
similarly, a fixed number of tokens is consumed from e ev-
ery time snk(e) is invoked. These fixed numbers are repre-
sented, respectively, by prd(e) and cns(e). Homogeneous
Synchronous Data Flow (HSDF) is a restricted form of SDF
where prd(e) = cns(e) = 1 for every edge e.

Given an SDF graph G, a schedule for the graph is a se-
quence of actor invocations. A valid schedule guarantees that
every actor is fired at least once, there is no deadlock due to
token underflow on any edge, and there is no net change in
the number of tokens on any edge in the graph (i.e., the total
number of tokens produced on each edge during the schedule
is equal to the total number consumed from the edge). If a
valid schedule exists for G, then we say that G is consistent.
For each actor v in a consistent SDF graph, there is a unique
repetition count q(v), which gives the number of times that
v must be executed in a minimal valid schedule (i.e., a valid
schedule that involves a minimum number of actor firings).
This minimal schedule executes a unit of execution that we
refer to as one iteration of the given SDF graph. Further-
more, associated with any valid schedule .S, there is a unique
positive integer B, called the blocking factor of S, such that
S invokes each actor v exactly B x ¢(v) times [2]. This op-

eration is also known as vectorization of S.

In general, a consistent SDF graph can have many differ-
ent valid schedules, and these schedules can differ widely in
the associated trade-offs in terms of metrics such as latency,
throughput, code size, and buffer memory requirements [3].
Figure 2 shows a typical SDF graph to model the mp-sched
benchmark, which we describe later in Sec. 6. The repetition
counts for this example are: (SRC, 1), (A11,1), (A21,1),
(A12,2),(A22,2),(SNK,6).

3. RELATED WORK AND CONTRIBUTIONS

Many models of computation have been suggested to describe
software radio systems. In [4], the advantages and draw-
backs of various models are investigated. In [5], a hierarchi-
cal dataflow programming approach is suggested to specify
SDR graphs, and the Satisfiabily Modulo Theory is used to
formulate the scheduling problem in order to increase system
throughput subject to platform memory constraints. In [6], the
authors present a multicore scheduler that maps SDF graphs
to a tile based architecture. The mapping process is stream-
lined to avoid the derivation of equivalent HSDF graphs.

Various heuristics and mixed linear programming models
have been suggested for scheduling task graphs on homo-
geneous and heterogeneous processors (e.g., see [7]). In
these works, the problem formulations are developed to ad-
dress different objective functions and target platforms for
implementing the input application graphs. Vectorization
for single-processor implementation of SDF graphs has been
studied previously (e.g., see [8]). In [9] automatic “SIMDiza-
tion” (conversion to a form that utilizes SIMD acceleration
on the target processor) of streaming programs from a general
purpose programing approach is proposed. A combination
of SIMDization techniques with homogenous multiprocessor
scheduling is also discussed.

In contrast with prior work, we begin with applications
described in a domain specific environment (i.e., GNU Ra-
dio), and allow designers to use their existing optimized li-
braries alongside GPU accelerated library elements. We tar-
get platforms that consist of multiple GPP and GPU com-
ponents, and systematically integrate SDF vectorization and
inter-actor (task-level) parallel scheduling to optimize appli-
cation throughput and latency on the targeted class of hetero-
geneous multiprocessor platforms. In the current GNU Radio
engine, a strictly runtime multiprocessor scheduler is used to
run applications through dynamic scheduling. However, for a
wide range of SDR systems, offline profiling and analysis is
possible, and more efficient scheduling solutions can be com-
puted statically. To exploit such static scheduling opportuni-
ties, we provide an MLP formulation for the targeted multi-
processor scheduling problem. Our approach is restricted to
acyclic SDF graphs, which can be used to represent a broad
class of practical SDR applications and subsystems.

The primary contribution of this paper is a novel work-

flow for scheduling SDF graphs while taking into account
actor execution times, efficient vectorization, and heteroge-
neous multiprocessor execution. This scheduling workflow is
targeted carefully towards heterogeneous platforms that con-
sist of GPPs and GPUs and applications described in a domain
specific optimized language.

4. ARCHITECTURE AWARE SCHEDULING

4.1. From Application Model To Block Processing DAGs

A major set of primitive signal processing blocks in GNU Ra-
dio can be characterized as Synchronous Blocks: where the
ratios between the consumption and production rates of edges
are fixed. These blocks can be easily mapped to SDF actors.

For platforms that consist of both GPPs and GPUs, differ-
ent levels of parallelism can generally be exploited in order
to improve throughput. First, a fine grain level of data paral-
lelism can be applied by utilizing the SIMD cores available
in GPUs and vector operation accelerators in GPPs (if avail-
able). This level can be exploited using vectorization. A more
coarse grain form of task parallelism is applied by mapping
parallel tasks of the application graph onto the available set
multiple processors. Both forms of parallelism may generally
be exploited more effectively when B > 1, where B is the
blocking factor. Under such a scheduling approach, the la-
tency for a single graph iteration may increase. However, the
latency for a block of B successive graph iterations may be re-
duced significantly, which leads to an increase in throughput
(in terms of executed graph iterations per unit time). Such a
trade-off is favorable in many throughput-critical systems or
in applications where the increased latency does not exceed
the given latency constraint. In our workflow, we set the level
of global vectorization before the mapping step to properly in-
form the multiprocessor scheduler of the vectorized running
time of the actors in the application for each processor type.
By doing so, we efficiently utilize the SIMD cores by simul-
taneously firing multiple graph iterations. Therefore the ba-
sic multiprocessor scheduler objective is set to minimize the
overall latency Lp of B graph iterations, which provides an
optimized graph execution throughput of N/L g graph itera-
tions per unit time. Here B is a parameter than can be changed
flexibly in our framework to help explore the scheduling de-
sign space.

By applying actor-level vectorization (also referred to as
block processing) [8] , we can process the maximum possi-
ble number of tokens per actor execution. For an SDF graph,
this objective can be achieved by using a flat schedule of the
input graph [8] . A flat schedule can be generated by deriv-
ing a topological sort, and invoking every actor v a number of
times equal to B x ¢(v). While flat schedules have the po-
tential to improve processor utilization and throughput, such
schedules generally suffer from high memory usage. How-
ever, in this paper, our objective is to increase the utilization

of SIMD cores and furthermore, the available memory on a
typical GPU is not a constraint for the class of SDR applica-
tions that we are targeting. Given an acyclic SDF application
graph G, our scheduling approach first generates a directed
acyclic graph (DAG), which we call a block processing DAG
(BPDAG) T'. T is isomorphic to G, meaning that the sets of
vertices and edges are in one-to-one correspondence with one
another. Each vertex ¢ in 7" represents a vectorized version of
a specific vertex v in G with some vectorization factor k (i.c.,
t represents k successive invocations of v). We refer to each
vertex in a BPDAG as a task.

The BPDAG is sent to the core of our multiprocessor
scheduling engine to perform task mapping (assignment of
tasks to cores) and ordering (ordering of tasks assigned to the
same core). Figure 2 shows an example of transforming the
mp-sched SDF example to its corresponding BPDAG for a
blocking factor of 10. This blocking factor generates the vec-
torization factor as defined in section 2 and is used to derive
each task in the BPDAG.

Original SDF Graph

Corresponding BPDAG

Fig. 2. Example of an SDF graph for the mp-sched bench-
mark and its corresponding BPDAG.

4.2. Architecture Model

In typical SDR platforms, the processing is executed by mul-
tiple heterogeneous processors that are suitable for different
actor operations. Actors that perform control functions re-
quire complex pipelines and branch prediction units. GPPs
(e.g., Intel quad cores) are usually suitable for these actors.
Another relevant type of processor is the Single Instruction
Multiple Thread (SIMT) type (e.g., NVIDIA GPUs). These
processors have less sophisticated cores that are able to pro-
cess individual functions on different data sets (e.g., symbol
mapping and coding). Many physical layer actors require this
kind of data parallelism, and GPUs often exhibit good perfor-
mance for such actors. The target platform that we consider
consists of a multi-core GPP, possibly with one or more SIMD
accelerators (e.g., SSE extensions in Intel cores) accompanied
with one or more GPUs. All of the processors are assumed
to be connected with an all-to-all communication medium.
If two dependent actors are allocated on the same processor,
data movement will take place using shared memory at zero
cost; otherwise, communication occurs across a contention-
based communication medium (e.g., PCI bus).

4.3. Multiprocessor Scheduling Problem Formulation

The input to the multiprocessor scheduler consists of the fol-
lowing items.

a — Architecture description: The platform is described
by a set P of processors and a set 3 of communication buses.

b — Application description: The application model (in-
put BPDAG) consists of a set T" of tasks, and edges E.

¢ — Dependency descriptions: Dataflow dependencies
are defined by the src and snk functions described in sec 2.

d — Task and edge profiles: The task and edge execution
times are obtained by simulating the tasks (edges) on differ-
ent processors (communication media). These profiles are de-
scribed by two functions: RTP(t € T,p € P) — R defines
the execution time of task ¢ on processor p, and REB(e &€
E,b €) — R defines the execution time of edge e on bus b.
Here, R is the set of positive real numbers.

e — Dependency analysis: Task ?; is said to be dependent
on task to if there is a path that starts at ¢; and ends at ¢to. If
no such path exists between ¢; and t2, then they are called
parallel tasks. A similar concept can be applied to edges.

The input summarized in items a-e above is sent to the
multiprocessor scheduler in order to perform the operations
of mapping and ordering.

5. MULTIPROCESSOR MLP SCHEDULER

The problem description in sec 4.3 can be solved using avail-
able heuristics and optimal schedulers. As offline analysis is
suggested to schedule static applications , a mixed linear pro-
gramming (MLP) heterogeneous multiprocessor scheduler is
proposed in order to find efficient solutions. The MLP sched-
uler consists of a set of equalities and inequalities that de-
scribe the application and architecture graphs, solution vari-
ables, constraints and objective.

5.1. Basic Variables

The basic MLP variables in our formulation are as follows.

e Mapping variables: ¥t € T andVp € P, XT|t,p| = 1if
task ¢ is assigned to processor p, and XT'[t,p] = O other-
wise. Similarly, Ve € E and b € 3, XFEle,b] = 1 if edge e
is assigned to bus b, and XE[e, b] = 0 otherwise.

e Ordering variables: ¥ parallel tasks ¢; and ¢ that are as-
signed to the same processor, YT'[t1, t5] = 1if t; is sched-
uled to run before to, and YT'[t1,t2] = 0if ¢1 is scheduled
to run after 5. A similar formulation is applied for parallel
edges.

o Actual running time: ¥t € T, RT'[t] is the actual (platform-
dependent) execution time of the task ¢ depending on its
mapping. Similarly, Ve € E, RE|[e] is the actual token
transfer time for the edge e.

o Start time: ¥t € T, ST|t] is the start time for execution of
task ¢. Ve € E, SE]e] is start time of data transfer across

edge e. These variables will be controlled by the dependen-
cies expressed in the BPDAG and the ordering variables.

In this formulation, the basic variables (defined above) are
used to derive a number of other variables. These derivations
are carried out so that we can use linear equations to “detect”
pairs of tasks that are assigned to the same processor. First we
define the variables ZTP[t;,to, p],wheret; € T,to € T,p €
P,and ty # to. ZTPlt1, 12, p] equals one if ¢ and ¢ are both
assigned to p, and equals zero otherwise. Clearly, this variable
depends on X T'[t, p] and XT'[t2, p]. This dependency can be
linearized according to the following constraints:

i ZTP[t17t27p] Z XT[tlap] + XT[t27p] -1
o ZTPt1,ta,p] < XT[t1,p]
o ZTPlt1,t2,p] < XT[t,p]

Next, we define another set of variables ZT[t1, 2], where
t1 € Tty € T, t1 # to. ZT[t1,12] equals one if the two
tasks ¢t and ¢, are collocated. These variables can be easily
derived by the following inequality:

ZT[ty,ta] > > ZTP[t1,ta,p).
peP

The derived variables ZT will be used in two cases. First,
for collocated parallel tasks, these variables help to adjust the
start times of tasks based on their ordering. Second, if a pair
of tasks is connected by an edge, then these variables serve
to make the corresponding edge transfer time equal to zero,
which is appropriate since the communication occurs through
processor shared memory.

5.2. Constraints

We use the following inequalities to formulate our targeted
heterogeneous scheduling problem:

o Assignment: Every task (edge) is assigned to only one pro-
cessor (communication medium):

VteT, Y XT[t,p]=1andVe€ E, Y XEe,b] =1
peP beps

o Task running time: ¥t € T',p € P
RT[t] > XT|t,p| x RTP[t,]
e Edge running time: Ve € E,b € 3
REle] > XE|e,b] x REB|e,b] — K x ZT[src(e), snk(e)]

where K is a very large number. The second term in this
inequality models the “edge zeroing process” (i.e., the pro-
cess of setting an edge’s token transfer time to zero) if the
source and the sink tasks of the edge are assigned to the
same processor.

o Starting times for dependent tasks: Ve € E

SE[e] > ST[src(e)] + RT[snk(e)]

ST[snk(e)] > SE[e] + RE(e)

These two equations guarantee the proper execution order
of dependent tasks by also taking into consideration rele-
vant edge execution times.

e Starting times for parallel tasks: Orderings for parallel
tasks can be achieved using an adaptation of an equality
from [10]: V parallel tasks t; € T, and to € T, t1 # 1o :

ST[t1] > ST[te]+RT[ta]—K(1—YT[t1,ta])—K X ZTt1, to]

STte] > ST[t1]+ RT[t1)— K X YT[t1,to] — K X ZT[t1, t2]

Note that the last term effectively disables these inequalities
if the two tasks are not collocated

Finally, the objective function minimized is the total graph
latency (makespan) M, which can be specified by:

Vte T,M > ST[t] + RT|t]
6. EVALUATION

We have implemented the proposed workflow, multiproces-
sor scheduler, and GNU Radio integration. In this section
we present experiments based on these implementations. We
have implemented the scheduling framework in the GNU Ra-
dio package, and we have experimented with the framework
using the mp-sched benchmark that we introduced in Sec-
tion 2. This benchmark describes a flow graph that consists of
a rectangular grid of FIR filters. The dimensions of this grid
are parameterized by the number of stages (ST AGES) and
number of pipelines (PIPES). The total number of FIR fil-
ters is thus equal to STAGES x PIPES'. The SDF graph in
Figure 2 shows an example of a 2x2 grid. In this evaluation,
the number of filter taps equals 60. This benchmark repre-
sents a non-trivial problem for the multiprocessor scheduler
as all actors in different pipes can be executed in parallel. In
practical GNU Radio system design, user input eliminates a
significant part of the solution space by restricting the alloca-
tion of some actors to specific processors.

U [sre] PrR21 | mR22 | FPR1a | FR15 | snk
GPU | FIR_11 | FIR_12 | FIRN\ | FIR_23 | FIR_24 | FIR_25 | J
PCI Bus m eld | e23 >| e2s

Fig. 3. Gantt chart for 2x5 mp-sched graph on 1 GPP and 1
GPU.

Table 1. Solver results for different mp-sched graphs.

Graph Size Plat. Desc. Lat | Solver
PIPES | STAGES | GPPs GPUs | mseq hours
2 5 1 1 0.6 | 001
4 4 2 2 0.54] 049
6 6 3 3 098] 3.94
8 8 4 4 2.18| 19.6

6.1. Test Setup and Workflow

The first stage of the workflow consists of the SDF scheduler,
which reads the application SDF graph; calculates the repe-
tition count ¢(v) for every actor v; reads the global blocking
factor B; and generates the corresponding BPDAG. Depen-
dency analysis will be performed to set the required values
associated with task dependencies. These operations are im-
plemented using the DIF package [11]. In the second multi-
processor scheduler stage, the scheduler input is generated by
setting the run-time of every actor and edge. This run-time
will depend on the number of generated tokens per task invo-
cation. The profiles of every actor for a given processor type
are stored as tables that are indexed by the number of pro-
duced tokens. In this way, the tables are consistent with GNU
Radio synchronous block descriptions. In this evaluation, this
step is repeated for different blocking factors (B values). The
MLP formulation is implemented using the GNU MathProg
language [12]. This implementation consists of two parts: the
problem description and data section. The MLP problem is
solved using the IBM ILOG CPLEX optimizer.

6.2. Empirical and Solver Results

To evaluate our approach empirically, we selected a solution
to implement within GNU Radio. Implementation details,
based on a new GPU-oriented library for GNU Radio called
GRGPU, can be found in [13]. Figure 3 shows the mapping
and ordering solution for a 2x5 mp-sched graph running on
a typical modern platform that consists of 1 GPP (Intel Xeon
CPU 3GHz), 1 GPU (a NVidia GTX 260), and a PCI bus for
a blocking factor B = 2048. According to the model, this is
a 55% performance improvement over an all-GPP implemen-
tation and a 19% improvement over an all-GPU implementa-
tion. To validate the model result, we implemented this de-
sign within GNU Radio using profiling for latency per token
and ensuring accuracy within 6 decimal places to the existing
solution. With GRGPU, our solution provided a 39% perfor-
mance improvement over our empirical results for an all-GPP
solution, and and a 21% improvement over an all-GPU solu-
tion. For this level of vectorization (B = 2048), using both a
GPU and GPP in the implementation provides the best results,
as the model indicates.

Figure 4 shows a graph of latency per iteration for dif-
ferent vectorization levels. From the characteristic curves of
the GPP and GPU implementations of the FIR actor, the GPU

is selectively used when I/O latency bound, but more heavily
used when sufficient vectorization makes the problem com-
pute bound for the GPU. Table 1 shows the solver running
time and the latency (Lat) for different mp-sched graphs on
various platforms. For the reported solver time, the solu-
tion gap ranges from 17% for the 4x4 graph to 67% for the
8x8 graph. By the solution gap, we mean the difference be-
tween the generally non-realizable results obtained from the
real-valued solutions produced by the solver, and the prac-
tical results obtained from the corresponding integer valued
solutions (derived by rounding the solver solutions). In these
experiments, the MLP solver was executed on an Intel Core 2
Duo processor at 3 GHz.

~#-Latency per iteration =&—Qverall Latency of B iterations.

0.5 7 (primary axis) (secondary axis) 10
0.45 \ 9
0.4 8
% 0.35 \ 7%
2 0 N\, A Lk
g - -\ 3
g 0.25 \.\ / 5 =;
S 02 4 E
£ 0.15 \.\k.\ 3
0.1 / - 2
005 1
0 T T T 0

1K 2K 4K 8K 16K 32K 64K

Blocking Factor (B)

Fig. 4. Design space for a 2x5 mp-sched graph on 1 GPP and
1 GPU for different blocking factors.

7. CONCLUSION AND FUTURE WORK

Recent developments in SDR platforms involve heteroge-
neous multiprocessors, which target actors that require either
complex architectures or data parallelism. In this paper,
we have presented a workflow that takes advantage of for-
mal models to describe the application, architecture and
constraints, and produces efficient solutions for such plat-
forms. In this approach, efficient utilization of SIMD cores
is achieved by applying extensive block processing in con-
junction with efficient mapping and scheduling. We have
integrated this approach into the GNU Radio environment
for SDR system design. Useful directions for future work
include new graph transformation techniques for handling
cyclic graphs, and handling of dynamic dataflow behaviors in
addition to SDF graphs.

8. REFERENCES

[1] E. Blossom, “GNU radio: tools for exploring the radio
frequency spectrum,” Linux Journal, June 2004.

[2] E. A. Lee and D. G. Messerschmitt, “Synchronous
dataflow,” Proceedings of the IEEE, vol. 75, no. 9, pp.
1235-1245, September 1987.

[3] S.S.Bhattacharyya, P. K. Murthy,and E. A. Lee, “Syn-
thesis of embedded software from synchronous dataflow
specifications,” Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, vol. 21,
no. 2, pp. 151-166, June 1999.

[4] H.Berg, C. Brunelli, and U. Lucking, “Analyzing mod-
els of computation for software defined radio appli-
cations,” in Proc. IEEE International Symposium on
System-on-Chip, 2008, pp. 1-4.

[5] Y. Lin, M. Kudlur, S. Mahlke, and T. Mudge, “Hier-
archical coarse-grained stream compilation for software
defined radio,” in Proceedings of the International Con-
ference on Compilers, Architecture, and Synthesis for
Embedded Systems, October 2007, pp. 115-124.

[6] S.Stuijk, T.Basten, M. C. W. Geilen, and H. Corporaal,
“Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” in Proceed-

ings of the annual Design Automation Conference, June
2007, pp. 777-782.

[7] R. Niemann and P. Marwedel, “Hardware/software par-
titioning using integer programming,” in Proceedings
of the European Design and Test Conference, 1996, pp.
473-479.

[8] S.Ritz, M. Pankert, and H. Meyr, “High level software
synthesis for signal processing systems,” in Proceedings
of the International Conference on Application Specific
Array Processors, August 1992.

[9] A. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rab-
bah, T. Mudge, and S. Mahlke, “Macross: Macro-
simdization of streaming applications,” in Proceedings
of the Fifteenth International Conference on Architec-
tural Support for Programming Languages and Opreat-
ing Systems, March 2010.

[10] D. Applegate and W. Cook, “A computational study of
the job-shop scheduling problem,” ORSA Journal On
Computing,vol. 3,no. 2, pp. 149-156, Spring 1991.

[11] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software
synthesis from the dataflow interchange format,” in
Proceedings of the International Workshop on Software
and Compilers for Embedded Systems, Dallas, Texas,
September 2005, pp. 37-49.

[12] A.Makhorin, “Modeling language gnu mathprog, lan-
guage reference,” December 2008.

[13] W. Plishker, G. F. Zaki, S. S. Bhattacharyya, C. Clancy,
and J. Kuykendall, “Applying graphics processor accel-
eration in a software defined radio prototyping environ-
ments,” in Proceedings of the International Symposium
on Rapid System Prototyping, May 2011.

