
IPPro: FPGA based Image Processing Processor
Fahad Manzoor Siddiqui, Matthew Russell, Burak Bardak, Roger Woods, Karen Rafferty

School of Electrical Engineering, Electronics and Computer Science
Queens University, Belfast

(f.siddiqui, mrussell16, b.bardak, r.woods)@qub.ac.uk
k.rafferty@ee.qub.ac.uk

Abstract—the paper presents IPPro which is a high
performance, scalable soft-core processor targeted for image
processing applications. It has been based on the Xilinx DSP48E1
architecture using the ZYNQ Field Programmable Gate Array
and is a scalar 16-bit RISC processor that operates at 526MHz,
giving 526MIPS of performance. Each IPPro core uses 1 DSP48,
1 Block RAM and 330 Kintex-7 slice-registers, thus making the
processor as compact as possible whilst maintaining flexibility
and programmability. A key aspect of the approach is in
reducing the application design time and implementation effort
by using multiple IPPro processors in a SIMD mode. For
different applications, this allows us to exploit different levels of
parallelism and mapping for the specified processing architecture
with the supported instruction set. In this context, a Traffic Sign
Recognition (TSR) algorithm has been prototyped on a Zedboard
with the colour and morphology operations accelerated using
multiple IPPros. Simulation and experimental results
demonstrate that the processing platform is able to achieve a
speedup of 15 to 33 times for colour filtering and morphology
operations respectively, with a reduced design effort and time.

Keywords—FPGA, processor architecture, embedded systems,
heterogeneous computation, image processing, traffic sign
detection.

I. INTRODUCTION
Embedded Vision (EV), Video Analytic (VA) and Smart
Camera applications are being widely used; the Embedded
Vision Alliance estimates a market worth $25b by 2018 [1].
Typically, video streams are captured from multiple cameras
and then sent to a centralized processing server, requiring high
transmission bandwidth and memory. Alternatively, a
distributed approach can be used where data-intensive front-
end pre-processing is carried out inside the camera module as
illustrated in Fig. 1; this gives a reduction in data bandwidth
requirements from MB/s to kB/s.
Typically, customized application specific hardware
accelerators based on Field Programmable Gate Arrays
(FPGA) are ideal platforms for real-time image processing
applications. They offer high levels of parallelism and
improved performance over DSP and CPU-based platforms,
and provide much lower power consumption than GPUs [2].
The challenge is to build a front-end FPGA solution that
gives high performance but which can be easily programmed.
This needs careful design as FPGAs have considerable
processing resources but limited memory.
There are number of FPGA-based image processors in the
open literature. These include: a vector processing approach
[3] which uses fixed, pipelined functional units (FUs) that can

be inter-connected; the soft vector processor VESPA
architecture [4] which employs vector chaining, control flow
execution support and banked register file to reduce execution
time. However, both approaches are limited to a clock rate less
than 200MHz. VENICE [5] is a processor–based solution that
provides support for operations on unaligned vectors and
FlexGrip [6] is a FPGA-based multicore architecture that
allows mapping of pre-compiled CUDA kernels which is
scalable, programmable and flexible. However, both solutions
operate only at 100MHz.

Backend
Processing

KB/s
MB/s

Location # 1
Face

Recognition

Fig. 1 Distributed computing approach to Video Analytics

The key is to build a much faster soft-core, processor which
can meet the performance requirements of image processing.
This can be achieved by carefully crafting a multicore Single
Instruction Multiple Data (SIMD) or a Multiple Instruction
Multiple Data (MIMD) processor architecture which
efficiently utilizes FPGA resources, e.g. DSP blocks,
embedded memory. Chu et.al [7] has created such
programmable, heterogeneous parallel soft-core processor
architecture, but it was focused towards telecommunication
applications. Similarly, iDEA [8] is a 9-stage, pipelined
DSP48E1 based soft-core processor which supports basic
arithmetic and logical instructions by utilizing limited FPGA
resources. The design runs at 407MHz which is 1.93 times
faster than Xilinx MicroBlaze and significantly faster than
previous work.
Whilst these solutions offer flexibility and scalability, they are
difficult to extend/adapt to multicore architectures due to
limited connectivity or use deeply pipelined 9-stage
architecture [8] and can further be improved. We propose the
IPPro soft-core processor which operates at 526MHz but with
a much smaller pipeline and extendable to multicore
architectures. It has been specifically targeted for image
processing applications and in this paper, we demonstrate its
performance for a Traffic Sign Recognition (TSR) algorithm
implemented on a Xilinx Zynq Zedboard.
The paper is organised as follows. Section 2 describes the
IPPro processor architecture outlining the key design

U.S. Government work not protected by U.S. copyright

decisions. The system architecture is described in section III
and is followed by a TSR implementation using Zedboard in
section IV. Finally conclusions and future work are outlined.

II. IPPRO ARCHITECTURE
Numerous hard and soft FPGA implementations exist in the
research and industrial domains [3-8] to simplify the hardware
design flow. High Level Synthesis (HLS) tool approaches such
as Xilinx’s Vivado and Altera’s OpenCL, allow the creation of
efficient hardware realizations. However, a gap exists between
efficient FPGA realization (resource utilization and
performance) and programmability (reduced design time). The
aim of a major research programme at Queen’s University
Belfast is to fill this gap by the creation of a completely
programmable platform consisting of FPGA-based
programmable hardware and a software tool-chain to makes it
easier to use and reconfigure the underlying hardware with
less design effort without compromising performance. Central
to this philosophy is the creation of a flexible, programmable
and reconfigurable platform which is presented here.
To achieve performance and take advantage of FPGA
parallelism, multicore heterogeneous processors supporting
SIMD and MIMD execution models capable of exploiting
Data Level Parallelism (DLP) and Instruction Level
Parallelism (ILP) are required. The challenges for the
complete approach include:

1) A suitable high-level representation such as the CAL

Data Flow Graph (DFG) representation [9] which allows
expression of DLP.

2) Capability to apply decomposition, mapping, resource
binding and scheduling onto a hardware platform in an
efficient manner using tools such as ORCC [9].

3) High performance FPGA-based hardware in the form of a
processor that offers high performance and software
programmability. It has a flexible memory hierarchy,
performance and data communication model which is able
to adopt to different high level DFG models.

This section describes the IPPro soft-core processor which is a
16-bit signed fixed-point scalar processor based on RISC

load/store architecture but customizable to 8/16/32 bits. It is
hand-coded using Xilinx primitives and designed to be
scalable and flexible enough to easily extend for multi-core
operation (see section III). A key consideration is to create an
architecture which has been optimized for image processing
algorithms but also achieves high performance. The complete
datapath is illustrated in Fig. 2. It uses distributed memory to
build the lowest level of memory hierarchy available to
multicore architecture, supported by addressing modes to
make it flexible. This helps to match the IPPro memory with
the algorithmic characteristics and execution flow. Whilst
linear operations are common, it is important to support a non-
linear data dependent execution which includes conditional
execution and branches. This requires careful consideration as
how the execution flow is decomposed and mapped to the
underlying FPGA architecture. The following design decisions
were made to optimize FPGA performance and image
processing needs:

1) High processing capability (350-450MIPS) is required to

handle the large data (30-40MB/s) needed for real-time
video streaming. This is achieved by explicit mapping of
operations and logic to resource primitives.

2) Efficient memory utilization by distributing memory to
hide data transfer overheads between main and local
memory to keep IPPro busy in processing data. Dedicated
kernel memory accelerates the linear filter operations. But
also reduces the code size by avoiding excessive
load/store instructions and maximize memory reusability.

3) Optimized instructions/addressing modes and reduced
branch penalty by reducing number of pipeline stages as
unpredicted branches degrade performance: special
instruction sets to allow the acceleration of image
processing operations; addressing modes to give
flexibility to the programmer and; conditional execution
in the form of a customizable and flexible branch
controller (BC) to support mask-based conditional
execution out-of-box without need of significant
architectural changes.

Fig. 2. IPPro Processor Datapath

A. Memories
The IPPro contains small, fast and efficient memory to locally
store data and keep Arithmetic and Logic Unit (ALU) busy in
processing data. This helps to hide data transfer overheads
between the main and local memories. The following
memories are listed below with their respective memory sizes:

Instruction Memory (IM)/Instruction Register (IR)
Register File (RF)
Data Memory (DM)
Kernel Memory (KM)

34 bits
32x16 bits
32x16 bits
32x16 bits

Sizes were chosen to allow an effective balance between
image processing requirements and efficient utilization of
FPGA resources. Memories are implemented using FPGA
distributed memory resources except the IM which is based on
BRAM. The design choice was made to allocate a size of 32
registers to facilitate area operations. The RF is a quad-port
RAM with 1 synchronous write and 3 asynchronous reads
used to store data locally and allows 3 operands operations e.g.
multiply-add (MULADD) to be accommodated as they are
efficient and commonly used in image processing applications.
To accelerate area operations, a dedicated KM is included into
IPPro datapath near ALU. It allows programmer to store
frequently used constants e.g. filter coefficients, permitting
memory reuse and reduced program code size by avoiding
unnecessary load/store instructions. The DM is designed to
store data/pixels before/after processing and can be used to
store temporary results. Considering the mentioned memory
distribution, IPPro supports following four addressing modes:

1. Register File – Register File
2. Register File – Data Memory
3. Register File – Kernel Memory
4. Register File – Immediate

(R-R)
(R-D)
(R-K)
(R-I)

TABLE. I
IMAGE PRE-PROCESSING OPERATIONS

Area
Operation 3-D Conv. [A B C; D E F; X Y Z]

e.g. Gaussian, Sobel, Erosion, Dilation

Point
Operations

Threshold O = (A > threshold)? 1 : 0
Contrast O = (A – 0.5) * contrast + 0.5
RGB to
Grey

O = ((R<<2)+((G <<2)+G)+ B)>>3

Geometric
Operations

Reflect

Translate

B. Instruction set

Most pre-processing applications require point and area
operations which comprise arithmetic and logical operations as
shown in Table. I. As, the IPPro supports basic arithmetic and
logical operations, a series of IPPro instructions are needed to
implement them, as incorporation of special instruction
impacts clock rate and affect performance. Table. I have been
used to drive the instruction set listed in Table II and lists all
53 supported instructions, along with their respective
addressing modes. BZF, BEQF, BGTF and BSF are Branch
instructions that require IPPro flags which are discussed later.

C. Datapath
The complete IPPro datapath is shown in Fig. 2. It has a load-
store 5-stage balanced pipelined architecture giving a fixed
latency of 5 clock cycles. It exploits the features of the Xilinx
DSP48E1 to implement all of the supported instructions and
provides a balance between hardware resource utilization,
performance, throughput, latency and branch penalty. A
balanced pipeline simplifies the development of compiler tool-
chain compared to variable pipeline architecture. The deep
pipeline comes at the cost of larger latency and branch penalty
which adversely affects the overall performance. Various
techniques predict branches but none of them was deemed to
give a shorter latency. The five pipeline stages are as follows:

1. Fetch
2. Decode
3. Execute 1
4. Execute 2
5. Write Back

(IF)
(ID)
(EXE1)
(EXE2)
(WB)

TABLE. II
INSTRUCTION SET

R-R R-K R-I Misc.
ADD LOR ADDK LORK ADDI LD
SUB LNOR SUBK LNORK SUBI ST
MUL LNOT MULK LNANDK LANDI BZF
MULADD LNAND MULADDK LANDK LXORI BEQF
MULSUB LAND MULSUBK STK LXNRI BGTF
MULACC LSL MULACCK LSLK LORI BSF
LXOR LSR LXORK LSRK LNORI JMP
LXNR MIN LXNRK MINK LNANDI CMP
 MAX MAXK MINI NOP
 MAXI

Each stage takes a single clock cycle to execute. IF and ID
stages read the instruction and two execution stages (EXE1
and EXE2) support the logical and multiply accumulate
operations e.g. MULADD, MULSUB. The
programmer/compiler takes care of possible data and control
hazards during scheduling and register allocation.
The execution model follows a traditional processor approach
where the instruction is first fetched from the IM and decoded
by the ID; this generates corresponding control signals to
modify/control the data-path needed to execute respective
instruction. During ID, data operands are read asynchronously
from the RF or KM and stored into pipeline registers. In next
clock cycle, they are forwarded to the EXE1 stage; both EXE1
and EXE2 are internal to the DSP48E1 block. At this stage,
the DSP48E1 is dynamically reconfigured on a cycle-to-cycle
basis utilizing the control signals generated by ID. This
process has explained in detail in reference [10].

D. Flags& Branches
Flags are important status indicators in processors and used to
handle exceptions encountered during data computation. IPPro
currently supports data flags but flexible to define new flags
by defining them in the Branch Controller (BC) as shown in
Fig. 2.

1. GTF
2. EQF
3. ZF
4. SF

(Greater than)
(Equal)
(Zero)
(Sign Flag)

Flags in IPPro are generated using the p
function embedded inside the DSP48E1. It c
operands available at the input of DSP48E
PATTERNDETECT (PD) bit in the very sam
both operands are equal. Therefore no addition
needed to compute the flag bit which is impo
of conditional/data dependent instructions be
the multicore architecture. BC is flexible and
as combinational logic.

TABLE. III
IPPro SYNTHESIS RESULTS

IPPro Virtex-6 Virtex-7
XC6VLX240T -3 XC7VX550T -3

Slice Reg’s 330 <1% 330
Slice LUTs 273 <1% 273
DSP48E1 1 <1% 1
BRAM 1 <1% 1
Freq. (MHz) 509 526

E. Conditional Branch and Jump
IPPro supports both conditional and uncon
instructions to support loops, which in tu
program code size. IPPro handles branch instr
help of the BC and Branch Handler (BH) as i
2. The BC compares the IPPro flags aga
instruction. If the condition is met, it instr
change the Program counter (PC) value to th
in IM, and branch is executed. With the
constraints, the branch penalty is 5 clock cy
instruction is handled in the same way
unconditional.
The reason to have a separate BC and BH ha
make the IPPro scalable and adaptable for
for handling conditional execution using
technique. In this case, the BC generates the
sends it to the SIMD Controller (SIMDC) to
the respective processor need to be halted o
IPPro is extendable and can be used to de
processor designs.

F. IPPRO Results
The complete design is synthesized, implemen
on the Xilinx ZYNQ XC7Z020 SoC using X
and Mentor Graphics ModelSim SE v10.2. T
the synthesis results and the percentage of
resource of different FPGAs.

III. MULTICORE PROCESSOR

Fig. 3 shows the block diagram of the fron
architecture. It was prototyped on a Zedboard
Xilinx Zynq SoC which comprises on-chip
processors and programmable logic. The
comprised of a number of IPPro cores connec
giving an n-way SIMD-IPPro. Each SIMD

pattern detector
compares the two
E1 and sets the
me clock cycle if
nal clock cycle is
ortant in the case
eing executed in
scalable defined

Zynq SoC
XC7Z020-3

330
273

1
1

526

nditional branch
urn reduces the
ructions with the
illustrated in Fig.
ainst the branch
ructs the BH to
he target address

e IPPro pipeline
ycles. The Jump
y except it is

as been driven to
SIMD operation
a core masking

e mask value and
o decide whether
r not. Therefore,
evelop multicore

nted and verified
Xilinx ISE v14.1
Table III presents
f each hardware

R
nt-end processor
platform using a
dual-core ARM
SIMD-IPPro is

cted together thus
D-IPPro has two

levels of memories i.e. local and s
is to connect these multiple IPPro
together sharing data to meet the
without compromising performance
Multicore operation is achieved
pipeline of IPPro datapath by replac
letting the SIMD Program Memory
program code controlled by SIMD
BH module have to be removed f
keeping the BC and incorporating
modifications result in the multip
architecture shown in Fig. 3. Sinc
IPPro are connected in SIMD m
resources that can be shared amon
area utilization (see Table. IV).
The Zedboard contain external me
DDR3 to buffer captured ima
processing. The dual-ARM cores ar
unprocessed data to SIMD-IPPro
control scheduling, synchronizatio
transfer etc. Direct Memory Acces
transfer of data between ARM and
Similarly, SIMD Controller is res
control decisions inside SIMD-IP
decode instructions and control the
processors. Right
down in the
processing chain
there are IPPro
processors that
are presented in
this paper. They
are simple scalar
highly efficient
programmable processors having
designed to accelerate basic data
FPGA’s PL.

Fig. 3 Front-End Process

SHA
Hardware Resou
Program Memory
Kernel Memory
Instruction Decod
Register File
Data Memory
ALU (DSP48E1)

hared. The main challenge
o processors interconnected

algorithmic characteristics
e.

by modifying the fetch
cing the IM with the IR and
cache hold the main SIMD

DC. Moreover, the PC and
from IPPro datapath whilst

it into the SIMDC. These
ple SIMD-IPPro, processor
ce all processors in SIMD-
mode, there are hardware
ng them allowing reduced

emory interfaces including
ages in real-time before
re responsible for streaming
o processor and handling
on, intra SIMD-IPPro data
ss (DMA) is used for fast
Programmable Logic (PL).
sponsible for handling the
PPro which include fetch,
e execution of SIMD-IPPro

a special instruction set
a intensive operations on

sor architecture

TABLE IV
ARED RESOURCES

urce IPPro SIMD-IPPro
y NO YES

NO YES
der NO YES

NO NO
NO NO
NO NO

IV. CASE STUDY: TRAFFIC SIGN RECOGNITION
This section presents an implementation and assessment of
TSR algorithm acceleration using SIMD-IPPro as it is a
typical image processing application. Fig. 4 illustrates the
different stages of TSR algorithm. Colour filtering is the most
data intensive operations and used to separate red and blue
traffic signs from the background of the image. Morphological
operations are then applied to clean up small holes in objects,
thus avoiding unnecessary processing on objects which are too
small to be successfully recognised even if they are traffic
signs.
Some FPGA-based accelerator solutions exist [10-13]. The
work in [11] uses a MicroBlaze processor on a Virtex-5 with
hardware accelerators for colour filtering and morphological
operations on images of
320x240 pixels; it
computes in 777ms. In
[12], LEON3 CPUs are
used in a Virtex4
FPGA, but this leaves
little room for custom
accelerators; their
design completes within
600ms, but the image
size is not discussed.
The Altera-based
Cyclone II based design
in [13] does not
consider circular traffic signs. In [14], a Zynq SoC is used to
accelerate the colour and morphology operation of TSR using
a 1920x1080 image size, whole algorithm is performed in the
ARM processors; it takes 5s to process it. The key advantage
here is the use of soft processors for the complete software
based acceleration.
Fig. 5 shows the adopted system level architecture. The image
size used is 600x400 pixels. The host is used to send
commands to the PS using the UART interface that gives
console access to Linux operating system. It gives access to
OpenCV libraries which are used to perform rest of the TSR
stages inside the ARM. The Ethernet connection can be used
for larger data transfer to/from the Zedboard. Data
communication between the Processing System (PS) and the
PL is provided by the High Performance (HP) ports, as they
give much higher throughput than General Purpose (GP)
ports. The GP ports are used but only to read/write to the AXI
Lite register space inside the DMA Engine. In the PL, there is
a SIMD-IPPro controlled by a defined finite state machine. In
our design, the colour and morphology operations were
accelerated, as they represent the most computationally
complex as shown in Fig. 6 while rest of the stages were
implemented using on-chip dual ARM core (see Fig. 5). To
accelerate colour and morphology stages, SIMD-IPPro consist
of 32 and 16 processors are used respectively.
Table. V present the results obtained by processing set of real
images using IPPro running on Zedboard. The execution time
taken by the targeted colour and morphology stages using 32
and 16 IPPro cores is 2x smaller (19.710ms and 41.361ms)

provided that difference in computational intensity was 4.5x
higher (88.865ms and 399.793ms) previously achieved by
[14]. Fig. 6 clearly shows that proposed architecture achieved
better acceleration maintaining higher throughput 30-
92MPixels/s. Moreover, this gain indirectly accelerated the
edge/contours detection and bounding boxes stages
implemented in PS, as they are using colour and morphology
filters.

Fig. 5: System Level Architecture of TSR acceleration

The synthesis result presented in Table. V did not share
resources for quick prototyping as discussed in Table. IV.
Therefore the design has not been optimised for area. Also, the
IPPro is capable of operating at 526MHz rather than 150MHz
due to limited clock support in Zedboard. In this case the
results presented in Table. VI will have 3.51 times
improvement without any additional optimisation in the
datapath. This gives a throughput of 105–323 MPixels/s,
means the IPPro is capable of processing HD video at almost
155 frames per second (fps).

TABLE. V
ACCELERATION OF TSR USING SIMD-IPPro

SIMD-IPPro @ 150MHz SIMD-IPPro @ 526MHz
Colour Morph. Colour Morph.

of cores 32 16 32 16
Freq.(MHz) 150 150 526 526

Slices Regs. 38622 (36%) 42066 (40%) 38622 (36%) 42066 (40%)
LUTs 23318 (44%) 30207 (57%) 23318 (44%) 30207 (57%)

DSP48E1 32 (15%) 48 (22%) 32 (15%) 48 (22%)
BRAM 40 (29%) 75 (54%) 40 (29%) 75 (54%)

Cycles/pixel 160 26 160 26
MPixels/sec 30 92.30 105.3 323.973
Exec. Time (ms) 19.710 41.361 5.615 11.787
Speed up 4.51x 9.66x 15.83x 33.90x

TABLE. VI
PERFORMANCE COMPARISON

Design Family Fps Processor Image Size
IPPro Zynq 2.38/3.62* Hard ARM Cortex 600 x 400
[14] Zynq 0.2 Hard ARM Cortex 1920 x1080
[11] Virtex-5 1.29 Soft Microblaze 320 x 240
[12] Virtex-4 2 Soft LEON Not Avail.
[12] Cyclone-II 0.058 Soft Nios II 320 x 240

*SIMD-IPPro running @ 526MHz

Table. VI compares performance of different software based
accelerators in fps. It shows how the proposed architecture can
achieve better performance. However, it can further improved

Fig. 4 Traffic sign detection algorithm

as limiting factor is the overhead of data
infrastructure as it spends approximately
processing time transferring data to/from DDR

Fig. 6: Comparison of TSR acceleration (Sta

V. CONCLUSIONS AND FUTURE

In this paper, a high performance and sc
processor design has been presented. The sca
been fully implemented and tested on Zed
implementation of a TSR algorithm. Given t
TSR acceleration, the IPPro accelerated the
by 15-33 times. Given that the design involves
written IPPro code, the implementation stag
decomposing the algorithm and mapping to th
The design effort and time is significantly
compromising throughput. This shows th
potential of being able to approach the perfo
crafted FPGA designs with the advantages
design. With the custom-made toolset and co
currently under development, it will be pos
decompose and parallelize the interested al
much effort and reduced design time.

The following has been proposed to optimize t
• Modify the system level clock mana

Zedboard to enable the IPPro to run a
526MHz.

• A shared resource based SIMD-IPPro arch
• Substitution of the finite state machin

Controller.
• Acceleration of the template-matching st

as it is taking 22.5% of overall execution

ACKNOWLEDGMENT
The work has been funded by the UK E
Physical Science Research Council’s
(EP/K009583/1), a collaborative grant with t
Heriot-Watt.

a communication
49.7% of the

R to DMA.

ge-wise)

WORK
calable soft-core
alable design has
dboard, with the
the results of the
reference design
s producing hand
ge only involves
he instruction set.
reduced without
he considerable

ormance of hand-
of fast software

ompiler, which is
ssible for one to
lgorithm without

the work:
agement in the
at full speed i.e.

hitecture.
ne with a SIMD

tage using IPPro
time.

Engineering and
s ICT grant
the University of

REFEREN

[1] Embedded Vision. (2013). Image Re
Billion by 2018. Available:http://www
analysis/market- analysis/2014/
worth-2565-billion-2018. Last access

[2] Srinidhi Kestur, John D. Davis,
Comparison on FPGA, CPU and GP
IEEE Annual Symposium on VLSI
Society, Washington, DC, USA, Jul. 2

[3] R. M. Russell, “The CRAY-1 compu
of the ACM - Special issue on Compu
21, pp. 63–72.

[4] P. Yiannacouras, J.G. Steffan and J
Scalable Soft Vector Processors", in
Aug. 2012, vol. 20, pp. 1429-1442.

[5] A. Severance and G. Lemieux, “VEN
for FPGA applications” in Int’l
Technology (FPT), Seoul, Korea, Dec

[6] K. Andryc, M. Merchant, and R. Te
for FPGAs”, in Int’l Conf. on Field-P
Kyoto, Japan, Dec. 2013, pp. 230–237

[7] X. Chu and J. McAllister, “FPGA bas
MIMO-OFDM Fixed-Complexity Sph
Conf. on Field-Programmable Techno
2010, pp. 479–484.

[8] H. Y. Cheah, S. Fahmy, and D. Mas
FPGA soft processor”, in Int’l
Technology (FPT), Seoul, Korea, Dec

[9] H. Yviquel, “From Dataflow based
embedded multicore platforms”, Ph
Rennes 1, France, 2013.

[10] Xilinx Inc, “Xilinx Virtex-6 FPGA
UG369, 2011

[11] S. Waite and E. Oruklu, "FPGA-Ba
Advanced Driver Assistance System
Technologies, Jan. 2013, vol. 3, pp. 1

[12] M. Mu�ller, A. Braun, J. Gerlach, W
Zollner and O. Bringmann,, "Desig
recognition system targeting a mul
Int’l Conf. on Design, Automatio
Dresden, Germany, Mar. 2010, pp. 53

[13] M.A. Souki, L. Boussaid and M. Abi
time traffic sign recognizing" 3rd I
Workshop, Monastir, Tunisia, Dec. 20

[14] M. Russell and S. Fischaber, "OpenC
Zynq" in 11th IEEE Int’l Conf. on
Bochum, Germany, Jul. 2013, pp. 596

NCES
ecognition Market Worth $25.65
w.embedded-vision.com/industry-
/03/26/image-recognition-market-
ed August 2014.
and Oliver Williams, “BLAS

PU”, in Proceedings of the 2010
I (ISVLSI '10). IEEE Computer
2010, pp. 288-293.
uter system”, in Communications
uter Architectures Jan. 1978, vol.

J. Rose, "Portable, Flexible, and
n IEEE Trans. on VLSI Systems,

NICE: A compact vector processor
Conf. on Field-Programmable

c. 2012, pp. 261–268.
ssier, “FlexGrip: A soft GPGPU

Programmable Technology (FPT),
7.
sed soft-core SIMD processing: A
here Decoder case study”, in Int’l
ology (FPT), Beijing, China, Dec.

skell, “iDEA: A DSP block based
Conf. on Field-Programmable

c. 2012, pp. 151–158.
Video coding tools to dedicated

h.D. dissertation, Universite de

A DSP48E1 Slice”, User Guide,

ased Traffic Sign Recognition for
ms", in Journal of Transportation

-16.
W. Rosenstiel, D. Nienhuser, J.M.
gn of an automotive traffic sign
lti-core SoC implementation", in
n & Test in Europe (DATE),
32-537.
d, "An embedded system for real-
Int’l Conf. on Design and Test
008, pp. 273-276.

CV based road sign recognition on
Industrial Informatics (INDIN),

6-601.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

