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Abstract—Variable length encoding can considerably decrease
code size in VLIW processors by decreasing the amount of bits
wasted on encoding No Operation(NOP)s. A processor may have
different instruction templates where different execution slots
are implicitly NOPs, but all combinations of NOPs may not be
supported by the instruction templates. The efficiency of the NOP
encoding can be improved by the compiler trying to place NOPs
in such way that the usage of implicit NOPs is maximized. Two
different methods of optimizing the use of the implicit NOP slots
are evaluated: prioritizing function units that have fewer implicit
NOPs associated to them, and a post-pass to the instruction
scheduler which utilizes the slack of the schedule by rescheduling
operations with slack into different instruction words so that
the available instruction templates are better utilized. The post-
pass optimizer saved an average of 2.5 % and at best of 9.1
% instruction memory, without performance loss. Prioritizing
function units gave best case instruction memory savings of 12.7
% but the average savings were only 1.0 % and there was in
average 5.7 % slowdown for the program.

I. INTRODUCTION

One of the main pitfalls of Very Long Instruction Word
(VLIW) and Transport Triggered Architectures (TTAs) [1] is

large code size which is caused by the long instruction word

and No Operation(NOP)s that have to be inserted into the

program code. When the processor has several computational

resources to achieve high performance on critical tight unrolled

and software-pipelined loops, it also has wide instruction

word with several execution slots, and often there is lots

of rarely-executed more control-oriented helper code outside

these critical loops consuming lots of instruction memory.

This code cannot exploit the parallel execution units, this the

code contains large number of instructions where most of the

execution slots are NOPs.

To save instruction memory and instruction fetch power, this

code should be encoded with instruction encoding where most

of the execution slots are encoded in such way that most of

execution slots implicitly NOPs, and the instruction word is

much narrower. The processor may have different instruction

templates to encode such instructions where some execution

slots are NOPs. However, supporting all the combinations of

operations in wide instructions might make the instruction

decoding logic too complicated especially in cases where the

execution slots in the instruction encoding may have different

bit widths. In a reasonable implementation there are only few

different instruction templates where different execution slots

are implicitly NOPs. [2] [3]

An example of template selection and NOP removal for a

5-issue processor is shown in Fig. 1. In this example, a large

amount of NOPs is seen in four instruction words. Two new

instruction formats are assigned to the templates ’10’ and ’11’,
which only use the execution slots A,B and D,E. The rest of

the execution slots in these two formats are considered as NOP

slots. If NOPs are seen in the NOP slots, they are removed

from the instruction. These templates can be used in three

instructions to remove a majority of the NOP operations in

the program code. Considerable instruction memory savings

can be achieved by simply scheduling the instructions for

maximum performance without optimizing the code for the

implicit NOP slots and just using the shorter instructions

when they can be used. This is, however, suboptimal, as the

usage of the short instructions can be increased by compiler

optimizations.

In this paper, two solutions to this are presented and

compared: Prioritizing function units that have implicit NOP

slots associated to them in fewer instruction templates, and

executing a post-scheduler NOPOptimizer which utilizes slack

of the schedule by spatially moving operations which have

slack into different instruction words so that the available

instruction templates are better utilized to their maximum

capacity. Prioritizing function units may decrease the per-

formance of the code as this may conflict with other, more

performance-critical methods of function unit priorization.

The post-scheduler optimizer should have minimal effect on

performance.

II. RELATED WORK

In [4] a post-scheduler optimization algorithm is introduced

to minimize the instruction fetch and control logic transitions

between successive instructions. In this method, horizontal

and vertical rescheduling of operations is performed, moving

operations both between instructions and between execution

slots in same instructions. This method however does not

consider the NOP usage and does not try to optimize the code

size.

In [5], a variable-length encoding for VLIW is proposed.

This method has “protected” versions of many long-latency

operations and control operations. These versions of the oper-

ations add pipeline stalls after the operations, so that there is

no need to add subsequent instruction words containing only

NOPs. Their instruction scheduler fills the delay slots and

instruction words after a long-latency operation with usable
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Fig. 1. A short program before (left) and after (right) assigning two new
instruction formats, which define two execution slots to be used out of the
five in the processor. Most of the NOP operations are removed by using the
shorter instruction formats in the 2nd, 3rd and 4th instruction.

instructions, and uses the ordinary version of the operation if

possible, to maximize performance. In case it cannot schedule

any useful operations to the delay slots or instructions after

some long-latency operation, it replaces the operation with

the “protected” version of the operation. When optimizing for

minimal code size, the compiler always uses the protected

versions of the instructions, resulting in lower performance

but eliminating all NOPs due to delay slots and long-latency

operations.

In [6], a method of collapsing the prolog and the epilog of

software pipelined loop is introduced. This optimization can be

combined with the proposed methods as they attack different

parts of the code length problem.

The approach in [7] eliminates many NOP operations by

encoding only data dependencies and enabling different exe-

cution slots to execute operations from different instruction

words. This however requires considerable changes to the

processor architecture and adds complexity to the processor’s

control logic.

In [8], a method to minimize code size with global schedul-

ing is introduced. Their approach, however, does not consider

optimization the code size for variable-length instructions.

In [9] compiler optimizations for EPIC architecture are

discussed. EPIC architecture is a variation of VLIW where

one group of instructions can execute in parallel and one

instruction word may contain operations from different instruc-

tion groups, and one instruction group can span over multiple

instruction words. The instruction groups are separated by stop

bits which are specified by the instruction template used for

the instruction words. They introduce an algorithm to create

schedules which are optimal in both performance and code size

for infinitely wide EPIC processors which are never resource

constrained. The optimal alforithm becomes slow when large

basic blocks are scheduled. The authors propose non-optimal

heuristics to overcome this problem. The instruction templates

in EPIC architectures are, however, quite different than the

variable-width templates and their method can be only used

for EPIC-type instruction templates.

III. PROPOSED OPTIMIZATIONS

A. Baseline

In this work, the cycle-based list scheduler [10] is used

as baseline and the proposed optimizations are compared

against this method. The baseline also includes a postpass

delay slot filler which performs some inter-basic block code

motion. The baseline method schedules operations to the best

possible cycle but if multiple execution units can execute the

operation in same cycle, the smallest function unit that can

execute the operation is selected. If there are multiple units

with an equal amount of operations, then the connectivity of

the function unit is considered and the unit with the least

connectivity is selected. The reason for this logic is that if

some operation, for example addition, can be executed on both

function unit A and function units B, but another operation,

for example multiplication, can only be executed on unit A,

the add operations will mostly be scheduled onto unit B, so

that unit A will be free to execute the multiplications. The

optimizations could also be used with different instruction

schedulers.

B. Function Unit Selection

A prioritize NOP-slots option was added to the function

unit selection. This option works by calculating on how many

instruction templates a function unit can be encoded as an

implicit NOP, and deprioritizing those function units with

highest implicit NOP count. If two or more function units have

the same NOP slot value, then the instruction scheduler reverts

to the old performance-optimized mechanism when selecting

between those function units.

C. Post-Scheduler Optimizer Algorithm

The main motivation of the post-scheduler optimizer is to

make better use of NOP slots without decreasing performance;

decisions taken during the actual instruction scheduling phase

would affect the schedule and might decrease the performance

of the program.

Figure 2 shows an example on how rescheduling can

improve the usage of the shorter instruction templates. In this

example, the data dependencies do not limit the rescheduling;

In real situation, the data dependencies would usually not

allow all the operations to be rescheduled, and the benefit

from the optimization would be smaller than in this example.

The algorithm is run for every basic block after that basic

block has been scheduled, but before the inter-basic block

delay slot filler.

Figure 3 shows how the algorithm first pushes all moves or

operations into a queue. Then the main algorithm is iterated

as long as the queue contains elements. An operation can be

in the queue only once. In the main loop, the first element in

the queue is popped and processed.

If the instruction where the operation belongs is already

full, nothing is done for that operation; these instructions are

already optimally coded, there are no wasted bits in those

instructions. Rescheduling operations in these moves might

sometimes ease up the dependencies of other operations and



Fig. 2. A short program without (middle) and with (right) the post-scheduler rescheduling. Left side shows the instruction templates used. Upper row shows
the operations in full-width instructions and bottom row shows the instructions after the NOP-slot compression is applied. Without the optimization (middle
column) the usage of both B and D slots simultaneously prevents usage of any short template in instruction 2, usage of both A and E slots simultaneously
prevents usage of any short template in instruction 3, and usage of slot C prevents usage of any short template in instruction 4. On the optimized version
D2 is moved to instruction 3, A3 and B2 are moved to instruction 4 and C4 is moved to instruction 6. This allows instruction template 10 to be used for
instructions 2 and 4 and instruction template 11 to be used for instruction 3.

allow more optimal placement of those other operations, but

these situations are very rare and rescheduling also operations

in already full instructions would mean that the algorithm

would never finish naturally. Jump and call operations are

not moved since moving them would affect the length of the

basic block and, therefore, the performance of the code. This

is shown in Fig. 4, lines 1-5

Figure 4, lines 6-18 show how the slack of the schedule

is considered; The data dependencies of the operation are

checked and the latest and earliest possible time for the

operation are calculated based on the data dependencies. If

an operation has no data producers limiting how early it

can be scheduled, it is not moved earlier, and if it has no

data consumers limiting how late it can be scheduled, it is

not moved later. This is to guarantee that the basic block

cannot get longer and that later inter-basic-block code motion

optimizations do not lose optimization opportunities due to the

NOP optimization.

The operation is then unscheduled and tried to be scheduled

to both earlier and later cycles, until either it is scheduled to an

instruction which will not grow longer due the rescheduling,

or the data dependence limits are reached. Moving operations

to both directions allow the same algorithm to be used for

both top-down and bottom-up scheduled code, and also al-

lows later reverting of inefficient reschedules without special

backtracking logic. When an operation is scheduled into a new

instruction, its predecessors are requeued if the operation was

moved forward, and successors are requeued if the operation

was moved backward. This is shown in Fig. 4, lines 19-39 and

Figure 5

When taking new operations from the queue, there is

a counter limiting how many times one operation can be

rescheduled; this is to prevent the algorithm from going into

an infinite loop scheduling some two consecutive operations

1: for all m in operations do
2: queue←m
3: end for
4: while queue not empty do
5: m = queue.pop()
6: if counter[m] < limit then
7: if tryPushNode(m) then
8: counter[m]++
9: end if
10: end if
11: end while

Fig. 3. The NOPOptimizer outer loop routine

back and forth. This is shown in Fig. 3, lines 6-10

IV. EVALUATION

A. Benchmarks

We evaluate the performance of our methods with a subset

of the CHStone [11] benchmark. This benchmark is selected

since it contains a range of real-world routines, not mi-

crobenchmarks, with varying amounts of control code and

instruction-level parallelism. Tests adpcm, gsm, mips, jpeg,

aes, blowfish and sha are used. The software floating-point

tests dfadd, dfmul, dfdiv and dfsin are omitted since they are

microbenchmarks with a very small code footprint so they are

not good benchmarks for code size measurement.

B. Processor Architectures

In order to measure the efficiency of the optimizations

in practice, two Transport Triggered Architecture (TTA) type

VLIW processors were developed using the TTA Codesign
Environment (TCE) [12], and the compiler for the TCE toolset

was modified to include the proposed optimizations.

TTA-type VLIW gives the compiler extra freedom to trans-

fer some operands to earlier instructions than the execution

starts and to read results later than they are produced. The

implemented version of the post-scheduler optimizer algorithm



1: originalCycle = m.cycle
2: ins = m.instruction
3: if ins full or m call or jump then
4: return false
5: end if
6: if datadeps.earliestCycle(m) == datadeps.latestCycle(m) then
7: return false
8: end if
9: if datadeps.earliestCycle(m) == 0 then
10: earlyLimit =∞
11: else
12: earlyLimit = datadeps.earliestCycle(m)
13: end if
14: if datadeps.latestCycle(m) ==∞ then
15: latestLimit = -1
16: else
17: latestLimit = datadeps.latestCycle(m)
18: end if
19: ec = m.cycle
20: lc = m.cycle
21: unschedule(m)
22: repeat
23: lc = lc + 1
24: if lc <= latestLimit then
25: if tryMoveToCycle(m, lc) then
26: queue← predecessors(m)
27: return true
28: end if
29: end if
30: ec = ec - 1
31: if ec >= earlyLimit then
32: if tryMoveToCycle(m, ec) then
33: queue← successors(m)
34: return true
35: end if
36: end if
37: until ec < earlyLimit and lc > latestLimit
{Could not reschedule, revert to original}

38: schedule(m, originalCycle)
39: return false

Fig. 4. The tryPushNode helper routine for the NOPOptimizer

1: ins = instruction(cycle)
2: sizeBefore = size(ins)
3: if fitsIntoCycle(m, cycle) then
4: schedule(m, cycle)
5: if size(ins) > sizeBefore then
6: unschedule m
7: return false
8: else
9: return true
10: end if
11: end if
12: return false

Fig. 5. The tryToMoveToCycle helper routine for the NOPOptimizer

takes advantage of this by rescheduling individual moves

instead of whole operations.

The first processor architecture, threeway, is a 3-issue pro-

cessor with a 96-bit instruction word. The overall processor ar-

chitecture was designed to give relatively good performance on

the CHStone test while keeping the instruction width at 96 bits,

to have good balance between performance and instruction

size even without variable-length instruction encoding. The

processor has 6 buses, each of which have their own slot in the

instruction encoding. The first two buses are connected into a

combined Load-Store-Unit (LSU) and Arithmetic-Logical Unit
(ALU). Buses three and four are connected to a combined ALU

and multiplier, and buses five and six are connected to ALU

and control unit.

The processor has 4 different instruction templates; One

with 32-bit length, one with 48-bit length and two full-length

ones, one with long immediate value and one without long

immediate value. The 32-bit instruction template was selected

by first finding all bus combinations that can be encoded in

32 bits and then selecting the one that is mostly used when

the adpcm of the CHStone benchmark was compiled without

any compiler optimizations for the NOP slot usage. The 48-

bit instruction template was selected in similar manner, finding

all combinations that can be encoded in 48 bits and selecting

the one that is mostly used when the adpcm of the CHStone

benchmark was compiler without any compiler optimizations

for the NOP slot usage.

Another processor architecture, fourway, is a 4-issue pro-

cessor with a 128-bit instruction word. The processor archi-

tecture has 8 buses, each of which have their own slot in

the instruction encoding. The organization of the fourway
processor architecture is such that most code with low level

of instruction-level-parallelism (ILP) can execute using only

the two first buses and the first function unit, as these are

connected to both combined ALU and LSU and also separate

control unit. The 3rd and 4th bus are connected to combined

ALU and multiplier, and 5th and 6th bus are connected

to another combined ALU and multiplier. 7th and 8th bus

are connected an ALU. This organization of the function

units is reletively close to the default configuration of HP’s

VLIW EXample (VEX) processor architecture [13], with the

difference that in VEX the control unit is combined with the

last ALU.

Instruction templates in fourway processor architecture are

such that in all instruction templates, the first and second bus

can always contain moves. In the 40-bit template, all the other

slots are implicit NOPs, and in 72-bit template, there is also

32-bit immediate value in addition to the two first buses. The

short templates in this processor are bigger than the templates

in the threeway processor because of the requirement to be

able to have the moves in the first two buses in all of the

instruction templates.

C. Evaluation Results

Tables I and II show the performance and instruction counts

and code sizes of the CHStone benchmark with different

optimization methods on the two processors. The baseline “No

opt” in these results means that the shorter instructions are

used when the compiler happens to generate instructions which

can be encoded with smaller instructions, but the compiler

does not perform any optimizations which encourage their

usage.

On more high-ILP workloads such as adpcm, blowfish and

aes prioritizing the function units had a considerable negative

effect on the performance, and also the number of instructions.

In these cases, the increase in instruction count usually caused

bigger consumption of instruction memory than what was

saved by the better usage if the smaller instructions, and the

total program memory size increased by 2.8 - 4.7 %. The worst

slowdown occured with the blowfish benchmark where the

program slowdown was 15.8 %. On more control-oriented low-

ILP workloads such as gsm and mips prioritizing function units

caused smaller slowdown on performance on both processors,

and with fourway processor decreased the program memory

size by 10.0 - 12.7 %. The sha benchmark behaved in

similar fashion than gsm and mips benchmarks, even though

it has more ILP, benefiting 6.2 % from the function unit

prioritizing. On the threeway processor the results of function



TABLE I
INSTRUCTION TEMPLATE USAGE ON CHSTONE BENCHMARK WITH AND WITHOUT THE PROPOSED OPTIMIZATIONS ON 3-ISSUE, 4-TEMPLATE

PROCESSOR. No optimization PRIORITIZES FUNCTION UNITS BASED ON SUPPORTED OPERATIONS AND SELECTS THE UNIT WITH THE FEWEST

OPERATIONS. Prioritize FUs PRIORITIZES FUNCTION UNITS BASES ON THE IMPLICIT NOP SLOTS. Post-optimize RUNS THE POST-OPTIMIZER AFTER

INSTRUCTION SCHEDULING. Both PRIORITIZES FUNCTION UNITS BASED ON THE NOP SLOTS AND RUNS THE POST-OPTIMIZER. CODE SIZE IS IN BITS.

Test Strategy Instr. count Full-width 48 bits 32 bits code size cycle count code size saved slowdown

adpcm

No opt 1535 1215 78 242 128128 69780
Prioritize FUs 1642 1215 92 335 131776 70274 -2.8 % 0.7 %
Post-Optimize 1533 1124 106 303 122688 69680 4.2 % -0.1 %

Both 1639 1085 130 424 123968 70124 3.2 % 0.5 %

jpeg

No opt 7914 2837 2330 2747 472096 8443457
Prioritize FUs 8422 2665 2530 3237 479904 9540437 -1.7 % 13.0 %
Post-Optimize 7898 2798 2331 2769 469104 8448877 0.6 % 0.1 %

Both 8405 2610 2536 3259 476576 9542282 -0.9 % 13.0 %

aes

No opt 1959 1235 388 336 147936 25555
Prioritize FUs 2128 1248 389 491 154192 28833 -4.2 % 12.8 %

Post-Opt 1938 1144 440 354 142272 25366 3.8 % -0.7 %
Both 2115 1183 419 513 150096 28773 -1.4 % 12.6 %

blowfish

No opt 1162 770 203 189 89712 587828
Prioritize FUs 1266 788 189 289 93968 680532 -4.7 % 15.8 %

Post-Opt 1162 720 231 211 86960 578593 3.1 % -1.6 %
Both 1266 744 228 294 91776 671302 -2.3 % 14.2 %

gsm

No opt 1721 1050 420 251 128992 12437
Prioritize FUs 1793 1066 393 334 131888 12629 -2.2 % 1.5 %

Post-Opt 1722 1021 439 262 127472 12410 1.2 % -0.2 %
Both 1794 1033 414 347 130144 12689 -0.9 % 2.0 %

mips

No opt 562 213 226 123 35232 34637
Prioritize FUs 567 217 221 129 35568 35300 -1.0 % 1.9 %

Post-Opt 543 169 240 134 32032 34398 9.1 % -0.7 %
Both 548 171 236 141 32256 35061 8.4 % 1.2 %

sha

No opt 643 430 126 87 50112 406368
Prioritize FUs 669 427 129 113 50800 417165 -1.4 % 2.7 %

Post-Opt 644 408 141 95 48976 406366 2.3 % 0.0 %
Both 667 409 138 120 49728 421017 0.8 % 3.6 %

TABLE II
INSTRUCTION TEMPLATE USAGE ON CHSTONE BENCHMARK WITH AND WITHOUT THE PROPOSED OPTIMIZATIONS ON A 4-ISSUE, 4-TEMPLATE

PROCESSOR. No optimization PRIORITIZES FUNCTION UNITS BASED ON SUPPORTED OPERATIONS AND SELECTS THE UNIT WITH THE FEWEST

OPERATIONS. Prioritize FUs PRIORITIZES FUNCTION UNITS BASES ON THE IMPLICIT NOP SLOTS. Post-optimize RUNS THE POST-OPTIMIZER AFTER

INSTRUCTION SCHEDULING. Both PRIORITIZES FUNCTION UNITS BASED ON THE NOP SLOTS AND RUNS THE POST-OPTIMIZER. CODE SIZE IS IN BITS.

Test Strategy Instr. count Full-width 72 bits 40 bits code size cycle count code size saved slowdown

adpcm

No opt 1254 993 174 87 143112 64035
Prioritize FUs 1407 878 295 234 142984 65645 0.1 % 2.5 %

Post-Opt 1249 954 197 98 140216 63884 2.0 % -0.2 %
Both 1403 835 308 260 139456 65544 2.6 % 2.4 %

jpeg

No opt 7573 4032 1129 2412 693864 8379890
Prioritize FUs 8460 3398 1357 3705 680848 8035700 1.9 % -4.1 %

Post-Opt 7562 3938 1159 2465 686112 8374541 1.1 % -0.6 %
Both 8458 3314 1390 3754 674432 8034580 2.8 % -4.1 %

aes

No opt 1682 1275 181 226 185272 23912
Prioritize FUs 1890 1144 340 406 187152 24602 -1.0 % 2.8 %

Post-Opt 1682 1226 215 241 182048 23891 1.7 % -0.1 %
Both 1886 1112 351 423 184528 24492 0.4 % 2.4 %

blowfish

No opt 1041 726 143 172 110104 511568
Prioritize FUs 1166 656 226 284 111600 636276 -1.4 % 24.4 %

Post-Opt 1039 696 167 176 108152 511308 1.8 % -0.5 %
Both 1166 612 241 313 108208 636276 1.7 % 24.4 %

gsm

No opt 1634 1132 238 264 172592 11455
Prioritize FUs 1663 908 281 474 155416 11811 10.0 % 3.1 %

Post-Opt 1626 1101 251 274 169960 11647 1.5 % 1.7 %
Both 1667 869 290 508 152432 11818 11.7 % 3.2 %

mips

No opt 498 274 99 125 47200 34742
Prioritize FUs 556 164 142 250 41216 33830 12.7 % -2.6 %

Post-Opt 498 268 99 131 46672 34742 1.1 % 0.0 %
Both 556 164 142 250 41216 33830 12.7 % -2.6 %

sha

No opt 585 440 73 72 64456 380379
Prioritize FUs 628 355 128 145 60456 400955 6.2 % 5.4 %

Post-Opt 584 431 78 75 63784 380122 1.0 % -0.1 %
Both 627 344 132 151 59576 399931 7.6 % 5.1 %



unit prioritizing were also negative, but the increase in code

size was smaller than with fourway, in the range of -1.0 to

-2.2 %

The post-optimizer pass mode had a more stable effect on

both performance and code size on both processors. The code

size decrease was in the range between 0.6 % and 9.1 %.

The performance in all cases was very close to the original

performance, in average being 0.4 % better than the non-

optimized version. The average code size decrease was 3.5 %

for the threeway processor, 1.5 % for the fourway processor,

average of both being 2.5 %. The reason for the weaker

improvement with the fourway processor is that operations in

other than the first function unit always required a full-length

instruction to be used, while with threeway there was also a

shorter instruction template that included the final three buses.

The effect of applying both optimizations together usually

had a similar result as the sum of the benefits of the optimiza-

tions done separately, but sometimes gave better performance,

for example, in the adpcm and aes tests on the threeway
processor and blowfish test on fourway processor.

The best case improvement was same 12.7 % as with the

function unit selection in the mips test in processor fourway.

In this test the performance and code size was exactly the

same as when only prioritizing function units, so the post-

optimizer could not do anything when the function units were

prioritized for the NOP slots, even though without the function

unit priorization the post-optimizer could decrease the program

size by 1.5 % in the same test with the same processor.

V. FUTURE WORK

As most of the sparse code that benefits most from the

variable instruction encoding is outside the critical inner loops

of the program, the overall slowdown of the program might

be relatively small if the compiler would sacrifice some

performance in order to reduce the code size in these parts

of the code.

Loop analysis or profiling should be used to identify these

non-performance-critical parts of the program and the NOP

usage optimization methods that can sacrifice performance

should only be applied to these parts of the code, producing

smaller code while keeping performance of the critical inner

loops at same level.

The post-scheduler optimizer should also be improved to

aggressively horizontally reschedule operations into those ex-

ecution slots that have fewer implicit NOP slots associated

with them, even when the main scheduling is done with

function unit selection which favour performance instead of

code size. This could increase the code size savings from the

post-scheduler optimizer without performance degradion.

VI. CONCLUSIONS

Two compiler optimizations to better utilize short instruction

words in a variable-length instruction coding scheme were

presented and analyzed. The introduced post-optimizer pass

resulted in average 2.5 % and a best case of 9.1 % code

size reduction without performance loss. As the post-scheduler

optimizer had a good impact on both code size and perfor-

mance, it should be always used.

Prioritizing function units based on the implicit NOP slots

gave best case code size savings of 12.7 % and average savings

of 1.0 % while the performance decreased by an average of

5.7 %. Also the architecture had significant effect whether

the function unit priorization decreased or increased the code

size; With the threeway processor the function unit selection

increased code size, but with fourway it decreased the code

size. Due the performance reduction and sometimes even code

size increase, the function unit prioritization should be used

cautiously, only after testing that it provide benefit for the case

and only in cases where the performance reduction is not too

severe.
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