Efficient Reconfigurable Architecture for MIMD
Streaming Execution Using Permutation Network

Chi Wen Cheng
Dep. of EE, National Taiwan University
Email: 599901041 @ntu.edu.tw

Abstract—Reconfigurable architectures grant many circuits
more flexibility as well as more efficiency. By dynamically recon-
necting the datapath between calculation units, we can optimize
the performance of many designs. Inspired by some prior works,
we proposed a new MIMD Streaming (MIMDS) execution scheme
on the aid of reconfigurable design, featuring high efficient stream
processing. In this work, we also take the locality of programs
into account when designing our reconfigurable architecture.
Therefore, we use the permutation network [1] as our recon-
figurable path, which provides less but enough reconfigurability,
leading to less area cost and less power consumption. In this
paper, we will take a commercial processor, C54x from Texas
Instrument [2], as example, as well as detail the modification
from the baseline C54x to our proposed MIMDS architecture. We
show that with the extra ALUs and efficient datapath, C54x with
MIMDS feature has overall 63% less execution cycles and 45%
less memory access at most. Compared with traditional C54x,
our design has only 12% area overhead. Besides, if we consider
only configurable network, our permutation network saves 85%
area compared to fully reconfigurable datapath while supports
sufficient reconfigurability.

Keywords—reconfigurable architecture, permutation network,
digital signal processor, explicit datagraph execution

I. INTRODUCTION

Reconfigurable architectures have become more and more
important in modern architecture designs. Compared to fixed
datapath in application specified IC (ASIC), reconfigurable
architectures are able to dynamically reconnect different com-
putation units. Many previous works such as [3]-[7] indicate
that reconfigurable architectures are more powerful than fixed-
datapath designs. For example, [3]-[5] demonstrate that recon-
figurable datapath is powerful in camera pipeline along with
streamed data. Besides, some people proposed the concept
of explicit datagraph execution (EDGE) [8] for CPUs, which
combines many individual instructions into a larger group
known as a "hyperblock”. EDGE CPUs usually has much
more ALUs than traditional CPUs. A hyperblock can be easily
converted to data dependency graph and directly mapped to
ALUs (as nodes) and the connection (as edge) between them,
enabling many instructions to execute in parallel. Also, we
can view EDGE as multiple-instruction-stream-multiple-data-
stream (MIMD) architecture.

Inspired by the camera stream processor and and EDGE,
we proposed a new architecture that can handle multiple
instructions and multiple streams, which we call the MIMDS
architecture. Different from EDGE, our proposed MIMDS
architecture focuses on and reinforces instructions in loops.
With reconfigurable network, hyperblocks are pipelined and

U.S. Government work not protected by U.S. copyright

Yu Sheng Lin, Shao Yi Chien
GIEE, National Taiwan University
Email: {johnjohnlys,sychien} @media.ee.ntu.edu.tw

repeatedly executed on the hardware. The data go through
the hyperblocks clock by clock as if the data are processed
streamingly.

Furthermore, literatures on reconfigurable architectures
usually do not mention much about their reconfigurable data-
path. In the naive MUX-based design, for each possible input
of calculation units, one MUX is used to select the signals
from all outputs. Although it can support full connectivity,
it wastes a lot of area, including big-area multiplexers and
unnecessary control signals. Therefore, considering the locality
of real programs, we proposed a new solution for reconfig-
urable architecture designs using "A Permutation Network”
[1]. Although it has limited connectivity, we find that such
limited connectivity is enough in our testcases. Moreover, the
proposed permutation network has less area with many small
switches (which will be introduced in II-C). Reasonably, we
can infer that the permutation network is more cost-efficiently
than traditional MUX-based networks.

We chose a commercial digital signal processor C54x
from Texas Instrument [2] as our baseline, and proposed our
MIMDS scheme with a permutation network. We reinforce
the special repeat instruction, which is powerful for stream
processing in the original C54x. On the aid of reconfigurable
architecture, the performance is improved by explicit datagraph
execution of streamed data, which also reduces unnecessary
data memory accesses and saves more power accordingly.

To verify the performance, the corresponding C54x RTL
model is synthesized with TSMC 90nm technology. Under
different representative workloads, we show that C54x with
reconfigurable datapath has overall 64% less execution cy-
cle and at most 45% less memory accesses over traditional
C54x with only 12% area overhead. Besides, our permutation
network uses saves 85% area as MUX-based reconfigurable
network while supports sufficient connectivity if we consider
only configurable network.

The rest of the paper is organized as follows. We introduce
important previous works in Section II. In Section III, we
elaborate on our proposed processor scheme. We describe our
evaluation methodology and experiment result in Section 1V,
and conclude in Section V.

II. RELATED WORKS

A. Reconfigurable Architectures

Reconfigurable architectures can process data efficiently
in many aspects. For example, [3]-[5] have proven that the

reconfigurable architectures can be applied in camera pipeline,
including color adjustment, noise reduction and feature de-
tection. From observation, many operations of these image
processing algorithm can be classified into few patterns. These
papers show that many algorithms can be supported by only
using few small hardware units such as window buffers, line
buffers, ALUs and interpolation units. By merely reconnecting
these units, many complex operations, such as demosaicing
and SIFT [9], can be performed. Besides, these designs allow
stream-in-stream-out dataflow scheme, which is consistent
with camera pipeline, where pixels are streamingly read out
from the sensor. In contrast, DSP or CPU must store the
frames before the data can be processed, which requires large
expensive on-chip SRAMs. As a result, compared to DSPs of
similar performance, these reconfigurable circuits are 80~250x
faster while consuming only 1/500~1/1000 power, and the
normalized size are only 1/2~1/20.

Explicit datagraph execution (EDGE) also implicates the
concept of reconfigurable architecture, and some of the most
famous literatures are TRIPS [10] and Wavescalar [11], whose
behaviour is like very long instruction word (VLIW) CPUs to
some extent. Both EDGE and VLIW’s ISAs support multiple
inputs and outputs at once, so multi-bank memory is required
in order to support such wide I/O. Their difference is their scale
and the configurability. In VLIW, independent instructions are
grouped together and executed concurrently. For example, one
VLIW instruction may perform one add, one multiplication
and one memory store because they use different hardware
units. However, how many and what kind of instructions
can be grouped are fixed by the specification of CPU. But
in EDGE, usually one or more compatible basic blocks are
grouped into a “hyperblock™ (basic block roughly equals to
a code segment enclosed in a pair of braces in C code).
Then a hyperblock is converted to a data dependency graph
by a compiler, and the resulting graph is directly mapped
onto the ALUs and the routings between ALUs. EDGE have
some advantages over other instruction level parallelism (ILP)
mechanism. First, as long as a hyperblock can be mapped,
the data can flow spontaneously in the graph composed of the
ALUs and routings, as if they are executed on an application
specified IC (ASIC). As a result, all possible ILP can be
exploited so the execution time is just the shortest possible
time in the data dependency graph. Moreover, most of the
temporary data can traveling around ALUs without going out
to caches or DRAMs, causing lower power consumption and
higher speed.

B. TI C54x DSP

We chose Texas Instrument’s digital signal processor,
C54x, because it featured fast and streamed data execution
even without the SIMD feature. Therefore, we would describe
the important feature of its architecture as well as its DSP
library.

1) Features: To begin with the architecture of C54x, we
demonstrate with a common C code shows as follows:

Listing 1. A simple C code segment calculating inner product of two vectors
sum += (*ptr_a++)*x(*ptr_b++);

Imagine if we repeat this line many times, then this will
calculate the inner product of vector ptr_a and ptr_b, and

similar pattern also appears in signal filtering and matrix mul-
tiplication. For most of the processors, this would cost many
extravagant instructions to handle the pointer’s value, multiply
and then add them into a temporary register. On the other hand,
C54x’s special instruction set and architecture takes such kind
of operation for just one instruction (cycle). Moreover, another
feature in C54x is its repeat instruction, which can execute a
single instruction consecutively. Combining the C54x’s pow-
erful instruction and repeat functionality, streamed data from
incremental SRAM address can be processed efficiently. For
some long-latency instructions, repeat instruction can also hide
their latency by filling up the pipeline with the data stream
under this architecture.

Fortunately, we get the prototype C54x from the website
Opencores [12]. To be frank, the C54x described in the rest of
this paper is not absolutely the same as the commercial one.
However, we support most of the important instructions so that
we can utilize its compiler and code generator.

2) DSPLIB: C54x’s DSP library describe many common
and useful computation intensive functions which are highly
optimized with C54x’s special architecture. The functions
of C54x’s DSP library can be categorized into 8 different
classes, including FFT, filtering and convolution, adaptive
filtering, correlation, math, trigonometric, matrix function and
miscellaneous. We would select some representative functions
from each classes as our workloads and detail the evaluation
methodology in Section I'V.

C. Permutation Network

Abraham Waksman’s "A Permutation Network” [1] de-
scribes an n-input to n-output switching network, and the
outputs of the network can be all possible permutations of
the inputs. A building block of such a network is a simple
2-to-2 switch as Figure 1(a) shows, notice that it is a 2-to-2
permutation network itself. Each switch is controlled through
a 1-bit signal. When the signal is 1, the switch would swap the
two input signal. Otherwise, the switch wouldn’t do anything,
and just bypass the input signal directly to the output signal.
A 4-to-4 permutation network is illustrated in Figure 1(b).

1 4

:X: : 2

— - 3 -3

sel =0 sel =1 4 |1

(a) The building block of the per- (b) A 4-to-4 permutation network and a
mutation network. Whether the possible configuration.

2 inputs are exchanged is deter-

mined the selection signal.

Fig. 1. Some illustrations of the permutation network.

Larger permutation networks can also be built from small
permutation networks. For example, combining two parallel 4-
to-4 permutation networks and 7 extra switches, we can build
an 8-to-8 permutation network using 17 switches. Provided
the target permutation, the control bits for the switches can be
solve systematically in a recursive manner. To solve an 8-to-8
permutation network, we solve the 7 extra switches first and

then solve the two 4-to-4 permutation networks individually
and recursively. Such a network can be proven to be optimal
mathematically, and more detailed solution can be founded in

[1].

Compared to the typical MUX-based reconfigurable net-
work, we believe the permutation network is better in several
aspects. The cost of area is the first topic. For example, an
N-to-N network with MUX-based design has a degree of
complexity of ©(/N?) (N numbers of N-to-1 multiplexers). In
contrast, a permutation network has a degree of complexity
of ©(Nlog(N)). Furthermore, each output of a MUX-based
design has a pretty high fanout, while each output of a
permutation network has at most 2.

III. PROPOSED ARCHITECTURE
A. Modify the ISA

Memory operation, multiplication and addition occupy
82% instructions in the loops of C54x DSPLIB on average, so
optimizing these instruction may yield large efficiency boost.
Next we will illustrate our idea by a simple example.

Consider this case: if we want to multiply 2 complex
vectors, assuming the real and imaginary part of the vectors
are given as individual C pointers, the code will be looked like
this:

Listing 2. A simple C code segment executing complex number multiplication
OR = (#iR1) (#iR2) - (#1I1) (xiI2);

0I = (¥1R1)* (x1iI2)+(*x1iI1l) % (*1R2);

++0R, ++0I, ++iR1l, ++iIl, ++iR2, ++iI2;

Imagine that if we repeat this segment many times, then
we can have correct data stored in the memory space pointed
by the initial oR and oI. The scheme is similar to the one we
mentioned in II-B. In the inner product example, the DSP can
repeatedly add or multiply two operands from SRAM and store
the result to SRAM at each clock while moving the SRAM
address pointers concurrently.

Our ISA tries to make the DSP’s repeat functionality more
general and is fully compatible to the original dataflow of
the DSP. At each clock, the DSP can now receive multiple
operands from and store multiple results to SRAM. Besides,
the DSP can now perform not only single operations such as
add or MAC but also compounded small instruction blocks.
In this example, with this ISA, the DSP can now accept the
real and imaginary parts of the two inputs and output the
complex-multiplied results at each clock (with some latency).
Equivalently we can say the DSP processes 4 streams and
outputs 2 streams over the given repeating period, and this
is why we call our architecture MIMD Streaming (MIMDS)
execution. Such an ISA is especially useful in vector operation.
In the next subsection we will describe how our architecture
can support such MIMDS execution.

B. New Datapath in DSP

Multiplication and addition instructions occupy most of
the processing time in C54x dsplib so we add some extra
multipliers and adders to the original DSP. Many literatures
such as [7] shows that ALUs are relative very small to data

path in modern CPUs. That is, we can generously add ALUs
as long as we have efficient datapath to well utilize them.

The reconfigurable routing is then added between these ex-
tra ALUs, but supporting full reconfigurability is wasting and
unnecessary. For example, a basic MUX-based reconfiguration
circuit such as [13] is shown in Figure 2. First, the input data
are sent to some of the ALUs in the cluster (1). After that,
data can be calculated and sent to other ALUs many times
(2) before it goes to the output ports (3). However, in such
scheme, the resulting configuration will allow long cascaded
ALUs or even form ALU loops, which seldom appears in
data dependency graphs in real programs due to locality of
programs.

E E Outputs

Inputs

}

Inputs

Fig. 2. A basic ALU cluster with reconfigurable architecture. (a) (a-1) Input
data are sent to ALUs, (a-2) data are calculated and sent to other ALUs and
(a-3) the data goes to the output ports. (b) is a more concrete illustration of
the left one. In this figure we only show some representative connections.

Therefore our final design looks like Figure 3(a) and it
is a 2-stage architecture. First the M data from SRAM are
permuted and sent to the "ALU slots”. The ALU slots are
capable of holding one ALU which can be one of multiplier,
adder, MAC or just bypass the data to next stage. The second
stage are just the same as the first stage while it receives data
from ALUs of previous stage and sends the ALU results to
SRAM.

In our design, N = M = 4 and there are 4 ALU slots in
each stage, enabling 8 ALUs to operate simultaneously. Also,
there are 8 adders, 4 multipliers and 2 MACs for users to
choose. Besides, although our design may lengthen the critical
path, we add pipeline registers in the permutation network so
that we can prevent from longer combinational critical path
and make sure it meet the original timing constraint.

Because permutation networks only permute the original
data, we duplicate each input twice into the permutation
network to analogize registers which are read more than once
in the programs. The number 2 is chosen because [14] shows
that most of the temporary registers are accessed less than 3
times in programs.

As the preliminary assessment for applied research in
future, we compile the network configuration offline now. For
run-time compling the network in future work, we take refer
to the methods in [15], in which either naive greedy manner
or Recursive Dominator Split (RDS) is possible solution. We
further reduce the number of switches in the permutation
circuit because we duplicate the data. For instance, if 1 and
2 are the same data in Figure 1(b), then the switch connected
directly to 1 and 2 will be useless and can be removed with

___ALUslots __ real
Input, Output 1 eal
Tl 3 roH 8 e

D (] — 1

5 g imag (minus)
Input c c 1 imag
2B o

et = Output

= = 2

=] o — real .

=] =] 2

Zl L |z z

ol i , — 2
Input__{= B Output ImZaQ — 3
N o o M =]

[l Il —

~ = L

(a) Proposed 2-stage reconfigurable ar- (b) The configuration of complex

chitecture: Each stage permutes inputs number multiplication: 4 streams

from the last stage to ALU slots. ALU are duplicated twice and the re-

slots can be configured to hold ALUs. sults come out from the two adders
streamly.

Fig. 3. Proposed ALU cluster with permutation network.

relief. Eventually, totally 27 bits is used to represent one
configuration in our design, 7 bits for the ALU slots and 20 bits
for the permutation network. Such configurability is sufficient
throughout all of the testcases we used. In the next part, we
will elaborate how this circuit works by the same complex
multiplication example.

Figure 3(b) shows a particular configuration for the com-
plex multiplication example. First, we need to select 4 multi-
pliers as first-column ALUs, and 2 adders as second-column.
Then the first stage permutation network would permute the 8
signals of 4 streams into the 4 corresponding multipliers and
the second stage would permute each outputs of the multipliers
into the 2 adders. The 4 input streams are transformed into 2
output streams directly with such simple configuration.

C. Banked SRAM

The C54x in the experiment uses two 1024x16 srams for
instruction memory and data memory instead of 16kB sram
in the commercial one. On the consideration of simplicity,
we left the problem when it comes to function size larger
than 2kB for future work. Furthermore, in order to support
our MIMDS architecture’s ability to process many different
streams at the same time, we need to expand the memory
bandwidth by partitioning data memory into many banks.
As described before, our proposed scheme supports up to
4 streams in parallel, so the original memory is partitioned
evenly into 4 smaller ones. That is, our in-processor data
memory is with four 256x16 srams instead of one 1024x16
sram. In our trial, the bank conflict problem is avoided with
manual data layout. Data in complex functions such as FFT is
interleaved in sram banks to promise the data correctness. Our
partition scheme is inspired from NVIDIA GPU’s register file
partitioning scheme [16] as Figure 4 shows. Such multi-bank
register files architecture supports high bandwidth that GPU’s
bulk threads access. We use the similar idea in our memory
partition preventing performance bottlenecked from memory
bandwidth.

Address 1R1W SRAM To
request datapath
Bank O
E Bank 1 ,C__/;

S &

o =

= Bank 2 93
Bank 3

Fig. 4. Multi-bank data memory supporting wide I/O bandwidth.

TABLE 1. C54X SYNTHESIS RESULT
Technology TSMC 90nm CMOS
Area (mm?) 0.36
2 [ALU units [0.028

Area overhead (mm®) | 0.0038 [Reconf. network | 0.010
Operating Frequency 230 MHz

. Instruction [(1024x16 dual-port SRAM)x1
On-chip Memory Data [(256x16 dual-port SRAM)x4

IV. EVALUATION

We select 5 representative functions in the DSPLIB as
our workloads, including vector add (add), complex number
multiplication (cmul), matrix multiplication (mmul), complex
Fast Fourier Transform (cfft) and finite impulse response
filter (fir).

To evaluate the performance of proposed architecture,
these workloads are estimated with a hardware model. Both
the baseline C54x and MIMDS architecture have their cor-
responding RTL model and synthesized with TSMC 90nm
technology using Synopsys Design Compiler and SRAM are
generated with TSMC 90nm memory generator. The synthesis
result is shown in Table I. The area overhead is only 15%
and our design can run with the same clock period because
the architecture can be easily pipelined. Figure 5 shows the
MIMDS execution cycles are averagely 63% less then the
original C54x. Besides, the table shows that ALUs contribute
74% of the area overhead, which proves the efficiency of our
datapath.

On the one hand, we observe that complex number multi-
plication outperforms the others significantly. In cmul, base-
line architecture wastes lots of instructions to store the tempo-
rary value. We conclude that such 2-stage cascade instructions
fit in our MIMDS architecture because such reconfigurable
architecture reduce many redundant register access instructions
and highly parallelize the datapath. On the other hand, we
observe that as the workloads computation parameter grows,
the performance boost are much higher, closer to its ideal
parallelism bound.

What’s more, we evaluate the data memory access counts
in Table II, and find that at most 45% memory accesses are
reduced by our MIMDS architecture, saving much SRAM
access power. The access counts of fir and mmul remain
the same because we only parallelize streams. Also, the cmul
outperforms again, and the reason are similar to the one of its
performance.

add ——

0.8 -
K|
=
8
L 0.6
o
&
=l
8
= 04 .
g
=}
Z
02 B
0 | | 1
8 16 32
Function size
Fig. 5. DSPLIB execution time comparison: Normalized MIMDS execution

cycles with respect to different workloads and loop count n.

TABLE II. SRAM ACCESS COUNT REDUCTION OF DSPLIB WITH OUR

MIMDS EXECUTION.

Workload add mmu 1l fir cfft cmul
Reduction ratio 30% 0% 0% 32% 44%

Furthermore, compared to naive MUX-based network, our
proposed permutation network saves 85% area while preserv-
ing sufficient connectivity. In our trial, merely implementing
the MUX-based network costs upto 20% area of the original
C54x design. The building block of the permutation network
is synthesized with two multiplexers in this works. Actually,
the switch can be modelled with a higher density customized
cell. We left this part as our future work.

V. CONCLUSION

Again, our work proves that reconfigurable architectures
are powerful. We verify that by adding little reconfigurable
wires to TI C54x DSP, the DSP can support both its origi-
nal functionality and MIMDS execution simultaneously and
seamlessly. Our work greatly reduces SRAM accesses and
execution cycles with little area overhead compared to the
original design. Besides, the reconfigurablility of our circuit
is based on the permutation network, which prevents large
MUXes and high fanout wires. Although with some limita-
tions, the permutation network is sufficient owing to locality
of programs, and is pretty enough in our testcases. Our
result has a great impact because dataflow schemes similar
to our MIMDS execution also appear in many aspects. For
instance, in graphics pipeline, we can stream geometries into
our processing unit to perform 3D transformation or lighting
speedily. We believe our result open another door in the
promising research area of configurable computing.

REFERENCES

[1] A. Waksman, “A permutation network,” J. ACM, vol. 15, no. 1, pp.
159-163, Jan. 1968. [Online]. Available: http://doi.acm.org/10.1145/
321439.321449

[2] C54x DSP. [Online]. Available: http://www.ti.com/lsds/ti/dsp/c5000_
dsp/c54x/products.page?paramCriteria=no

[3] J. Chen and S.-Y. Chien, “Crisp: Coarse-grained reconfigurable image
stream processor for digital still cameras and camcorders,” Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 18, no. 9, pp.
1223-1236, Sept 2008.

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

T.-Y. Cheng, L.-G. Chen, and S.-Y. Chien, “Crisp-ii: Coarse-grained
reconfigurable image stream processor for image-processing and in-
telligent operations in qfhd video cameras,” in Solid State Circuits
Conference (A-SSCC), 2012 IEEE Asian, Nov 2012, pp. 209-212.

T.-H. Chen, J. Chen, T.-Y. Cheng, and S.-Y. Chien, “Crisp-ds: Dual-
stream coarse-grained reconfigurable image stream processor for hd
digital camcorders and digital still cameras,” in Solid-State Circuits
Conference, 2009. A-SSCC 2009. IEEE Asian, Nov 2009, pp. 193-196.

S. Hauck, T. Fry, M. Hosler, and J. Kao, “The chimaera reconfigurable
functional unit,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 12, no. 2, pp. 206-217, Feb 2004.

W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency
& flexibility in specialized computing,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 24-35, Jun. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508148.2485925

D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin,
C. Moore, J. Burrill, R. McDonald, and W. Yoder, “Scaling to the end
of silicon with edge architectures,” Computer, vol. 37, no. 7, pp. 44-55,
July 2004.

D. Lowe, “Object recognition from local scale-invariant features,” in
Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-
tional Conference on, vol. 2, 1999, pp. 1150-1157 vol.2.

D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin,
C. Moore, J. Burrill, R. McDonald, and W. Yoder, “Scaling to the end
of silicon with edge architectures,” Computer, vol. 37, no. 7, pp. 44-55,
July 2004.

S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,”
in Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 36. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 291-. [Online]. Available:
http://dl.acm.org/citation.cfm?id=956417.956546

Opencores. [Online]. Available: http://opencores.org/

J. B. Dennis and D. P. Misunas, “A preliminary architecture for
a basic data-flow processor,” SIGARCH Comput. Archit. News,
vol. 3, no. 4, pp. 126-132, Dec. 1974. [Online]. Available:
http://doi.acm.org/10.1145/641675.642111

M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.
Dally, E. Lindholm, and K. Skadron, “Energy-efficient mechanisms
for managing thread context in throughput processors,” SIGARCH
Comput. Archit. News, vol. 39, no. 3, pp. 235-246, Jun. 2011. [Online].
Available: http://doi.acm.org/10.1145/2024723.2000093

E. Chan, R. Ng, P. Sen, K. Proudfoot, and P. Hanrahan, “Efficient par-
titioning of fragment shaders for multipass rendering on programmable
graphics hardware,” in Proceedings of the conference on Graphics
hardware 2002. Eurographics Association, 2002, pp. 69-78.

J. Choquette, M. Gautho, and J. Lindholm, “Methods and apparatus
for source operand collector caching,” Jun. 20 2013, US Patent
App. 13/326,183. [Online]. Available: http://www.google.com/patents/
US20130159628

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

