
Understanding the Landscape of Accelerators for
Vision

Nandhini Chandramoorthy,
Karthik Swaminathan, Matthew

Cotter, Xueqing Li,
Vijaykrishnan Narayanan

Pennsylvania State University

Indranil Palit, Sharon Hu,
Michael Niemier

University of Notre Dame

Kevin Irick
Silicon Scapes Inc.

Abstract— Visual analytics applications are becoming
ubiquitous and embedded in various systems that we interact with
daily. Limited power budgets and the need for high performance for
cognitive visual analytics have led to a three-pronged approach of
integrating advances in algorithms, architectures and technology
towards designing next generation vision accelerators. Vision
applications benefit from increasing processor customization,
emerging devices and technologies such as Tunnel-FETs and
Resistive-RAMs, and trends in non-Boolean computing such as
Cellular Neural Networks (CNNs) and neuromorphic architectures.
This paper provides an overview of the evolving landscape of vision
accelerators.

Keywords
Emerging devices; Heterogeneous architecture; Non-Boolean
computation;

I. INTRODUCTION
 Visual perception, image processing and analytics

applications have become pervasive across automotive,
medical, retail, education, agriculture, personal and security
domains. Algorithms of increasing computational complexity
are used in these diverse domains to provide enhanced user
experience. For example, facial recognition algorithms can be
used in retail stores to identify customers and provide a
personalized shopping experience. Feature points from edge
detectors and depth information are used in automatic parking
assist systems. Video surveillance systems rely on object
detection and tracking algorithms. Figure 1 shows a typical
object recognition pipeline and sample images showing
application of these algorithms in vehicle navigation
assistance, personal analytics and surveillance.

Implementation of such ‘smart’ applications on hardware
poses severe computational challenges in today’s energy-
limited processors. There have been concerted efforts in
exploiting new architectures, algorithms and emerging device
technologies to achieve high performance, energy efficient
processing. Most image processing tasks demonstrate
common computational characteristics which can be well-
exploited by a synergistic approach in device, architectural
and algorithmic design domains. Research efforts in System-
on-Chip architecture have focused on processor
customization in order to improve performance and energy
efficiency. Emerging technologies such as Tunnel FETs,
Resistive RAMs and Spin Transfer Torque (STT) RAMs are
being proposed as complements, or even as alternatives to
existing logic and memory technologies, on account of their

superior characteristics such as power efficiency and density.
Recent work in the analog computing domain propose models
for power efficient computation of low level image
processing tasks. Non-Boolean computation for image
processing such as Cellular Neural Networks (CNNs)
implemented using Tunnel-FETs and symmetrical-graphene-
insulator-graphene FETs (SymFETs) offer significant
advantages over traditional architectural approaches.
Research trends in each of these design spaces exploit
characteristics of smart vision tasks to efficiently map
different classes of applications on these platforms. Figure 2
shows a taxonomy of image processing and analytics systems
illustrating design approaches in conventional CMOS
architectures, emerging devices and technologies, CMOS
analog computing and non-Boolean computing.

In this work, we explore trends in such heterogeneous
architectures and examine the design features that make them
amenable for efficient implementation of image processing
applications. We also compare the implementations of

Figure 1: Sample object recognition pipeline including image
capture, visual saliency map computation, SURF object
recognition and matching. Images show application of
recognition and tracking algorithms in different domains

Saliency ROI Selection

Object
Matching SURF

Image
Capture

U.S. Government work not protected by U.S. copyright

several algorithms on systems that comprise different points
in the device, architecture and algorithm design space.

II. CUSTOMIZED CMOS ARCHITECTURES
With the end of Dennardian scaling [1], recent industry
and academic efforts in processor architecture have focused
on processor customization as a solution to improve
performance and energy efficiency, also taking advantage of
rising transistor count with technology scaling. Processors
such as Nvidia’s Tegra 4, Samsung’s Exynos 5, Octa and
Tilera’s Gx72 [2] employ heterogeneous cores and domain-
specific accelerators for maximum performance and
improved energy efficiencies for media-rich applications.
Most computer vision and image processing applications
have common characteristics such as fine-grain parallelism,
coarse-grain parallelism, structured memory accesses,
streaming data access patterns, and pipelined data flow. Most
customized image processing and analytics systems exploit
these characteristics to provide high performance and low
energy processing. The micro-architectural features that
allow efficient implementation of image processing
applications are summarized in Figure 3a. In this section we
describe several classes of heterogeneous architectures used
in vision systems, as follows.
 A. GPUs: GPUs offer hundreds of cores for
computation and are well suited for embarrassingly parallel
algorithms. Graphics and video processing and scene analysis
applications can be partitioned into segments processed by
independent thread blocks, individual threads within blocks
processing smaller sub-regions in parallel using the CUDA
programming model. The Single Instruction Multiple Thread
(SIMT) architecture schedules thread blocks concurrently on
available multiprocessors, hiding memory latencies using
abundant thread-level parallelism.
 B. Homogeneous multi-cores accelerators: Multi-
core clusters such as Tilera Gx [2], Platform-2012 [3] make
use of abundant data level parallelism present in tasks such as
feature extraction. Platform2012 [3] proposes an array of
CPUs with independent instruction streams and shared L1
memories with DMA engines. Each image is segmented into
tiles and the workload is distributed among cores enabling
parallel computation. Code segments shown in Figure 3b are
good candidates for such multicore accelerators. Unlike

SMPs with cache-coherency and memory consistency
models, DMA engines in Platform-2012 transfer data from
external memories into shared L1 memories overlapping
computation on the cores. The Polymorphic Pipeline Array
(PPA) [4] is a multi-core accelerator aimed at exploiting fine-
grain and coarse-grain parallelism found in streaming
applications. The PPA consists of a large number of simple
cores each with multiple processing elements and shared
scratchpad memories connected using a Mesh-style
interconnect. Direct connections between register files in
neighboring cores enable fast sharing and forwarding of data.
Cores can also be combined logically to create a larger virtual
core which can speed up inner-loop fine grain parallelism.
The compiler converts application task graphs into
instruction schedules using Virtualized Modulo Scheduling
[4] while the hardware dynamically allocates resources. Run-
time virtualization is possible by transferring instructions
from a core’s loop buffer to the neighboring core’s loop
buffer. Applications such as H.264, AAC video encoders
with coarse-grain pipeline parallelism and inner-loop level
parallelism show improvement in performance by exploiting
fine-grain parallelism using modulo scheduling.
 C. Homogeneous multi-cores with SIMD
extensions: SIMD extensions such as ARM-Neon [5] save
computation energy by operating on 128 bit vectors in
multiple vector lanes of computing units in parallel, rather
than fetch and process scalar instructions.. Neon instructions
consist of vector load/store and compute instructions and also
perform data copying between general purpose registers and
vector registers. Compilers can autovectorize fine-grain loops
exploiting data-level parallelism and reducing instruction
fetches. Code segments with regular control flow such as the
second one in Figure 3b are good examples.
 D. Vector Architectures: Traditional vector
processors map elements on multiple vector lanes or pipes of
deeply pipelined functional units in a striped fashion, with
data chaining between units. Special vector memory
instructions perform strided or indexed memory accesses to
load data elements from memory into vector registers. Lee et
al propose a vector-thread architecture, Maven [6], a hybrid
of vector-SIMD and SIMT architectures. The advantage of

Figure 2. A taxonomy of image processing systems showing trends in CMOS SoCs, emerging devices and non-Boolean computation

Maven over vector-SIMD architectures lies in the handling of
irregular control and data flow among vector threads such as
in Figure 3b. Handling branch divergence among vector
threads using flags can lead to complicated flag arithmetic
logic for complex conditions. Maven proposes a SIMT-like
solution, where the threads with taken branches are buffered
while the others execute, followed by the divergent vector
threads. Most classification and recognition-based algorithms
such as k-means clustering and radix sort which have
irregular control flows benefit from such architectures.
 E. Heterogeneous multi-cores: Platforms such as
ARM big.LITTLE [7] consist of high performance Cortex-
A15 cores and low power/high efficiency Cortex-A7 cores
connected using a cache-coherent interconnect. Depending
on workload characteristics in mobile SoCs, big.LITTLE
software can schedule threads on appropriate cores and
dynamically track changing performance demands. The
big.LITTLE cores augmented with Neon SIMD extensions
can improve performance of compute intensive game
physics, graphics algorithms etc.
 F. Heterogeneous multi-cores with application-
specific extensions: Works such as EFFEX [8] and EVA [9]
have application-specific accelerator extensions for feature
extraction, tightly coupled to simple and complex cores.
These works profile several feature extraction and
classification algorithms to identify common kernels or
computation patterns among them. Specialized processing
elements to accelerate these kernels are tightly coupled to the
processor. To access a rectangular region or tile of pixels as
is commonly the case with feature extraction algorithms, a
patch memory architecture is used. This architecture uses a
software re-arrangement of a 2-d data tile into a single
DRAM row. Accesses to consecutive 2-d tiles are serviced by
the DRAM row buffer [8]. EFFEX offers 12X speed-up over
an ARM core for HoG feature extraction algorithm.
 G. Multi-cores with shared accelerators and shared
memories: Works such as SARC [10], CHARM [11], AXR-
CMP [12], Cogniserve [13] propose a system with multiple
cores and shared accelerators. Cong et al [11,12] propose a

system with general purpose cores, shared L2 cache banks
and shared composable accelerator blocks, improving
accelerator utilization. A core’s request to use an accelerator
is processed by a global controller which composes an
accelerator from building blocks and allocates it to the core.
Each accelerator building block island has a dedicated scratch
pad memory and a DMA engine to transfer data into local
scratch pads from L2, which can be overlapped with
computation. The accelerator operations can be sequenced or
chained by transferring data from one accelerator into another
directly. Each accelerator has a TLB to work with virtual
addresses. A large number of algorithms such as FAST corner
detection [14], Canny edge detection, Face recognition using
Local Binary Patterns [15], disparity map computation can be
broken into stages with completely streaming memory
access, with data flow from one stage to another enabling
accelerator operations to be chained. In addition, these
algorithms have a number of similar compute kernels
enabling the design of accelerator building blocks.
 H. Custom Accelerators: A large number of
dedicated architectures have been developed for a specific
application and prototyped on FPGAs. For example, Bae et.
al [16] describe a platform for AIM visual saliency system

Figure 4: Ratio of output frames per second over that of an ARM
core for FAST corner detection algorithm TCA = Tightly Coupled
Accelerators; LCA=Loosely Coupled Accelerators

0

2

4

6

8

10

GPUs Homogeneous
multi-core

Heterogeneous
multi-cores with
TCAs (EVA) units

Multi-cores with
shared LCAs and

memories

Fully customized
accelerator

N
ro

m
a

li
ze

d
 o

u
tp

u
t

fr
a

m
e

s
p

e
r

se
co

n
d

 (
o

ve
r

A
R

M
 c

o
re

)

Figure 3a: Summary of architectures useful for image

Architecture Architectural features Most suitable Applications

GPUs Hundreds of cores for coarse & fine grain parallel
computation; SIMT architecture

Graphics Rendering, Game
physics, Object /face
Detection & Tracking

General purpose SMP Multiple cores for coarse-grain parallelism Sequential phases

Homogeneous multi-
core accelerators

Multiple cores with fine-grain workload distribution;
Optimized data flow interfaces for core-core
communication; Optimized external memory transfers in
parallel with computation

Feature extraction, Video
encoding algorithms,
Filtering, Edge detection

Multi-core SIMD
extensions

Vectorized operations on data in parallel accelerating
fine-grain inner-loops; Reduction in instruction count and
fetch bandwidth for cores

Kernels such as convolution,
gradient in feature extraction
applications with regular data
and control flow

Vector-Thread
Architectures

Hybrid vector SIMD-SIMT; Buffers to handle branch
divergence among concurrent vector thread lanes

K-means clustering, R-sorting
with irregular control flow

Heterogeneous multi-
cores with Tightly
Coupled Accelerators
(TCA)

Big and small cores with tightly coupled accelerator units
to compute common kernels; Memory interfaces for
regular data access patterns

Feature extraction and object
detection , classification
algorithms

Multi-cores with shared
Loosely Coupled
Accelerators (LCA) and
memories

Shared accelerators improving utilization; composable
specialized accelerators to offload computation
improving performance and energy savings; Operation
sequencing and chaining; Optimized external memory
transfers and data flow between cores and accelerators

Object/Face recognition,
tracking, feature extraction,
filtering and image
processing, video encoding
algorithms

Figure 3b: Code characterization for heterogeneous mapping

for n=1 : nframes
nrows = height – 10
ncols = width – 10

for r = 5 : height-6
for c = 5 :width-6

for m = -5 : 5
for n = -5 : 5
(*arr2_ptr++) += arr1[(m+r)*width+ (c+n)] * kernelptr++)
endfor

endfor
endfor

endfor

for r = 0: nrows-1
for c = 0 : ncols -1

arr3[r*ncols+c] = arr2[r*ncols + c] ^ 2
endfor

endfor

for k = 0 : nrows*ncols
if (arr3[k] > 0)

arr5[k] = arr3[k] * arr4[arr6[k]];
endif

endfor

endfor

regular
memory access
loop mapped
to a streaming
accelerator
with 11x11
operations in
parallel or
multi-core
accelerators

Vectorizable
loop with
regular data
flow mapped
to multicore
accelerators

Parallel loop
with irregular
data and
control flow
mapped to
Vector thread
architecture

Coarse-grain
pipeline
parallelism for
n frames with 3
stages
sequenced or
chained

with an input camera interface prototyped on a Virtex-6
Xilinx FPGA and Park et. al [17] proposes a custom
accelerator for HMAX.
Evaluation: Figure 4 shows the performance comparison for
different CMOS architectures in terms of frames per second
for the FAST corner detection algorithm [14]. The values are
normalized over the performance of a 1GHz ARM core
obtained using the GEM5 full-system simulator. Performance
of FAST for homogeneous multi-core system is obtained by
mapping the application on Platform-2012 [3]. The GPU used
is the Nvidia GTX 280. Reported results from [9] were used
for evaluating the EVA platform. We designed streaming
accelerators to compute the basic primitives in FAST, such as

sum of center-surround differences and non-maximal
suppression. 4 out-of-order ARM CPUs were used for control
flow between the accelerators. The multi-core system with
shared accelerators running at 500MHz, was simulated using
GEM5. The fully customized accelerator was designed with
datapath and control optimized for FAST.

III. ANALOG IMAGE AND VIDEO PROCESSING
Challenges of further scaling down the threshold voltage

increasing leakage, as well as increasing uncertainty in device
behavior are rendering real-time processing difficult. These
challenges are exacerbated due to the rapidly increasing
amount of the “Big Data” from images and videos. CMOS
analog signal processing (ASP) of images becomes an
attractive alternative by taking advantage of massive
parallelism and unique analog circuit and architecture design
[18]. Recently, a 1015 operations/watt analog deep machine-
learning engine composed of an 8x4 array of parallel
reconfigurable analog computation cells (RAC) was
presented in [19], which mimics the hierarchical presentation
of information in the human brain to achieve robust
automated feature extraction with the accuracy comparable to
the baseline software simulations. In [20], a mixed-signal
VLSI array with 1.1 TMACS (1012 multiply-and-accumulates
per second) per mW is presented, which is used in
applications like pattern recognition and data compression.

In addition, several analog-based systems facilitate
biological computing techniques by leveraging emerging
technologies. Architectures such as IFAT [30] and NeuroDyn
[31], which employ a conductance-based model of the
spiking neurons found in the brain can enable non-traditional
computation of problems that may be difficult or inefficiently
solved using digital systems. The recent IBM SyNapse chip
[45] has demonstrated unprecedented power efficiencies by
using a brain-inspired neuron-based processing paradigm.

IV. ROLE OF EMERGING TECHNOLOGIES IN VISION
SYSTEMS

The increasingly significant role played by device
researchers has led to the adoption of several promising
device technologies in the design of new architectures for
vision algorithms. Most of these new technologies exhibit
physical characteristics that enable performance and power
efficiency superior to existing CMOS-based architectures.

A. Magneto-metallic spin neurons: These devices
have been proposed for the design of associative memory
array pattern matching applications. These devices are highly
energy efficient and can operate at voltages as low as 10mV
[21]. These devices can operate with analog signals to
determine the degree of correlation between images in terms
of the magnitude of output voltage. A resistive crossbar
memory designed using spin neurons is capable of highly
energy efficient in-memory processing. Spin neurons can be
used to realize ultra-low energy analog systems for various
image processing algorithms [37]. These algorithms include
edge detection, halftone compression, and digitization.

B. Patterned magnetic media: In nano-magnet logic
(NML) devices, the magnetization state is used to represent
binary information [22]. For example, arrangements of
devices with perpendicular magnetic anisotropy could be
used for image edge detection [23]. In [24], the authors report
how a 2-D array of NML devices with perpendicular
anisotropy can be used to implement an image filtering
algorithm to remove noise from a black and white image.

C. Emerging memory technologies: There have been
works that demonstrate the design of memories used for
associative computing. Associative memories (AMs) are
content-addressable memories that have important
applications in pattern recognition, feature extraction, and
classification. Several emerging memory technologies such
as Phase Change Memory (PCM) and Spin Torque Transfer
(STT-RAMs) [25] have been shown to be viable device
options. These designs are optimized for fast lookup and
hashing functionalities, which are essential in several signal
and image processing applications. For every input vector,
the task of the AM circuit is to find the memory vector that is
the closest to the input vector using a distance metric such as
the Euclidean norm. Transistor technologies such as
symmetrical-graphene-insulator-graphene FETs (SymFETs)
and bi-layer pseudospin FETs (BiSFETs) have I-V
characteristics that are quite different from classical FETs.
These characteristics make them suitable for approximating
analog and multi-valued systems. As reported in [26], a
SymFET-based AM has been designed and compared with an
active synapse simulated in 0.13μm CMOS process. For fair
comparison, a peak-to-valley ratio similar to that of the
SymFET-based approach was targeted. Each CMOS-based
synapse had 23 transistors (as opposed to 2 SymFETs) and
consumed 76μW on average. In the SymFET design, the
average power per synapse was 7.2μW.

Resistive Switching Memories, commonly known as
ReRAMs, are considered to be promising candidates for
future nonvolatile memory applications on account of their

Figure 5: Comparison between L2 norm and oscillator response

switching speed, scalability with technology and
compatibility with existing CMOS technology. In [27], the
authors demonstrate the similarity between a biological
synapse and its electronic equivalent using a metal oxide
ReRAM. In these devices, the resistance is varied gradually
by controlling the input pulse amplitudes. In order to
demonstrate adaptive learning in a neural network, these
electrical synapse devices are equipped with spike-timing-
dependent plasticity (STDP) functionality, a learning
technique in which output depends on input data rate. More
recently, Magnetic RAMs and PCMs [28] have also been
adapted to similar analog architectures to enable efficient
implementations of synaptic weights for the STDP exhibited
by biological neurons. In [29], the authors use these learning
schemes for recognition of characters in a noisy background.

D. Tunnel-FET based Accelerators: In addition to
being regarded as a promising replacement to low voltage
CMOS technology in general purpose processors, Tunnel
FET-based customized accelerators have also been shown to
demonstrate significant energy and performance benefits
over conventional transistor designs. In [36], the authors have
realized TFET-based accelerators used in computer vision,
such as pattern matching engines. These accelerators show a
6X improvement in energy over an iso-voltage CMOS and a
30% power benefit over an iso-performance CMOS design.

E. Non-Boolean Computing: Problems such as
image/pattern recognition and visual saliency can consume
huge computational resources in the Boolean processing
framework. This motivates the study of non-Boolean
computing approaches such as locally coupled oscillators,
Cellular Neural Networks (CNN) and memristor-based
approximate computing.
i) Locally coupled oscillators: [32] examines the use of
locally coupled oscillators in edge detection and saliency.
When oscillator devices like the resonant body transistors
(RBTs) [33], spin-torque nano-oscillators (STNOs) [34] and
Metal Insulator Transistion (MIT) materials are coupled with
each other, their outputs will finally settle down to the same
phase or frequency after a settling time which depends on the
difference in the input voltages to the device. Recent research
on a vanadium dioxide (VO2) MIT material, integrated with
MOSFET, has shown the capability of improved image
processing quality with ~20X lower power consumption over
a CMOS edge/saliency detection accelerator [35]. The
inherent device characteristics are observed to be similar to a
distance norm of (X0.5-Y0.5)2. Figure 5 shows the comparison
between an L2 distance norm, (x2-y2)0.5 for a range of input
values, and the response of the oscillator to the same inputs.
Based on this figure, it is clear that the oscillators exhibit a
comparable distance metric while the difference (x-y) is
moderately small, with the approximation falling off more
abruptly as this difference increases.
ii) Cellular Network-inspired computing: Cellular Neural
Networks (CNNs) belong to a special class of Artificial
Neural Networks called continuous-time Hopfield Networks.
In these CNNs, all processing elements are typically
connected to just nearest neighbors – which can simplify

implementation. Quantitatively, for complex, 2-d image
processing functions, a CNN-based processor with an area of
1.4cm2 and a power budget of 4.5 W could match the
performance of the IBM Cellular Supercomputer with an area
of 7 m2 and a power budget of 491 KW [38].

In spite of these advantages, existing CNN
implementations have several key limitations. For instance,
the resolution of a state-of-the-art CNN architecture is still
limited. This is because, although, an image to be processed
via a CNN may typically have multiple gray levels, the output
is typically binary. Recent FPGA-based approaches from
Altera-Eutecus [40] are capable of processing high definition
video. However, this comes at a cost of reduced functionality,
increased power and reduced throughput.

Ongoing research also suggests that emerging
technologies can also play an important role in improving the
power/efficiency of CNNs. Non-linear devices such as
resonant tunneling diodes (RTDs) [41], and more recently
TFETs [42] have been introduced into CNN circuitry to solve
binary classification problems by eliminating the required
output transport function hardware.
 Additionally, designs for TFET-based CNNs have also
been proposed that could be used to solve more complex,
multi-valued classification problems. When studying a
slippage detection problem, where tactile data is treated as an
image, a conventional binary CNN requires 5 processing
steps (i.e., template operations) and 2 hardware data paths
[43]. Alternatively, a TFET-based circuit with ternary outputs
can solve the same problem with just 3 computational steps
and 50% less hardware. Further, a ternary CNN cell is
expected to dissipate 70X less energy for the detection task.

 In CNNs, most template operations leverage linear
relationships between cells. However, non-linear templates
often reduce the number of programming steps required to
solve a particular problem, when compared to an algorithm
that employs only linear templates. Initial work [44] suggests
that non-linearities associated with SymFETs can be used to
efficiently realize non-linear templates. As an example, to
perform thresholding on an interval using a band pass filter,
three sequential linear operations are needed. The same task
can be accomplished with a single template operation when
SymFETs are employed. Thus, there are two potential
sources of simultaneous improvement – a reduction in
template operations and hardware complexity required to
realize non-linear operations.
iii) Memristor-based Approximate Computing: As processing
power budgets continue to tighten, non-traditional techniques
such as approximate computing are becoming more popular.
In this paradigm, rather than trade chip area or performance,
architectures leverage the accuracy of computation for saving
power. Memristor-based computing architectures exploit the
non-determinism of resistive memories to produce efficient,
high performance systems, which yield approximate, rather
than definitive results. These systems are shown to be capable
of highly power-efficient computation, consuming up to
300X less power and over 400X improved performance
compared to general purpose CPUs [39].

Evaluation: Figure 6 shows the power per output pixel, for
various technology-based accelerators described in this
section when implementing a pattern matching algorithm. A
distance compute accelerator was designed and synthesized
using Synopsys tools with the Synopsys SAED 32nm
libraries. We obtained power from Synopsys design compiler
and scaled it down to 10nm technology using factors reported
in [1] and projections from ITRS (International Technology
Roadmap for Semiconductors). We synthesized the TFET
accelerator using the 22nm library described in [36] and used
TCAD simulations to obtain corresponding power numbers
at the 10nm node. Results for the spin neuron-based
implementation were reported in [21].

V. CONCLUSION

 This paper provides a comprehensive survey of the various
techniques used to design image processing systems. From
this work, it is evident that the potential for improvements in
performance and energy efficiency lies at the convergence of
advances in device technology, analog and digital circuit
design and system architectures and algorithms.

VI. ACKNOWLEDGMENTS
This work was supported by the Center for Low Energy
Systems Technology (LEAST), an SRC program sponsored
by MARCO and DARPA and by the NSF award 1317560.

REFERENCES

[1] Esmaeilzadeh, H et al, “Dark silicon and the end of multicore scaling”.
In ISCA, 2011.
[2] www.tilera.com/sites/default/files/productbriefs/TILE-Gx8072_PB041-
03_WEB.pdf
[3] Melpignano, D., et al. "Platform 2012: a many-core computing
accelerator for embedded SoCs” DAC 2012.
[4] Park, H., et al, “Polymorphic pipeline array: a flexible multicore
accelerator with virtualized execution for mobile multimedia applications”.
In MICRO 2011.
[5] http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/
DHT0002A_introducing_neon.pdf
[6] Lee Y, et al “Exploring tradeoffs between programmability and
efficiency in data-parallel accelerators”, ACM SIGARCH Comp. Arch News
[7] “Improving Energy Efficiency and Performance in Mobile Devices”,
Brian J., Nov 2013.
[8] Clemons, J, et al. "EFFEX: an embedded processor for computer vision
based feature extraction." Design Automation Conference (DAC), 2011.
[9] Clemons, J et al, “EVA: An efficient vision architecture for mobile
systems”. In CASES 2013
[10] Ramirez, Alex, et al. "The SARC architecture." IEEE Micro 2010.
[11] Cong, J et al, CHARM: a composable heterogeneous accelerator-rich
microprocessor”. In ISLPED 2012

[12] Cong, J et al, “AXR-CMP: Architecture support in accelerator-rich
CMPs”. SoC Architecture, Accelerators and Workloads (SAW), 2011.
[13] Iyer, R., et al “Cogniserve: Heterogeneous server architecture for large-
scale recognition”. Micro, IEEE, 31(3), 20-31.
[14] Rosten, E., & Drummond, T. (2006). “Machine learning for high-speed
corner detection”. Computer Vision–ECCV 2006, 430-443.
[15] Ahonen, T., Hadid, A., and Pietikainen, M. Face Recognition with Local
Binary Patterns. Computer Vision - ECCV 2004 (2004), 469–481
[16] Bae, S., et al. "An FPGA implementation of information theoretic
visual-saliency system and its optimization." FCCM 2011.
[17] Park, Sungho, et al. "System-on-chip for biologically inspired vision
applications." IPSJ Transactions on System LSI Design Methodology, 2012
[18] Yu Chi, et al “Intensity Histogram CMOS Image Sensor for Adaptive
Optics,” ISCAS 2010
[19] Junjie et al, “A 1TOPS/W Analog Deep Machine-Learning Engine with
Floating-Gate Storage in 0.13μm CMOS,” ISSCC 2014
[20] R Karakiewicz, et al “1.1 TMACS/mW Fine-Grained Stochastic
Resonant Charge-Recycling Array Processor,” IEEE Sensors Journal, 2012.
[21] Mrigank S et al, "Ultra low power associative computing with spin
neurons and resistive crossbar memory”, in DAC '13.
[22] M. T. Niemier et al., "Nanomagnet Logic: Progress Toward System-
Level Integration," J. Phys. Con. Mat., vol. 23, p. 493202, 2011.
[23] M. Niemier, et al., "Boolean and Non-Boolean Architectures for Out-
of-Plane Nanomagnet Logic," Procedings of the International Workshop on
Cellular Nanoscale Networks and their Applications, pp. 1-6, 2012
[24] A. Popovici and D. Popovici, "Cellular Automata in Image Processing,"
in Int. Symp. on Mathematical Theory of Networks and Systems, 2002.
[25] Q. Guo et al. A resistive TCAM accelerator for data-intensive
computing. MICRO 2013.
[26] B. Sedighi, et al, "Nontraditional Computation using Beyond-CMOS
Tunneling Devices," under review in JETCAS, 2014.
[27] D. Kuzum, et al, “Low-Energy Robust Neuromorphic Computation
Using Synaptic Devices,” IEEE Trans. Electron Devices, Dec 2012.
[28] Jackson, B., et al, "Nanoscale electronic synapses using phase change
devices." Journal on Emerging Technologies in Computing Systems 2013.
[29] V Narayanan, et al, "Video Analytics Using Beyond CMOS Devices",
Design Automation & Test in Europe (DATE), 2014
[30] Vogelstein, R. et al. "Dynamically reconfigurable silicon array of
spiking neurons with conductance-based synapses." Neural Networks, IEEE
Transactions on 18.1 (2007): 253-265.
[31] Yu, Theodore, and Gert Cauwenberghs. "Analog VLSI biophysical
neurons and synapses with programmable membrane channel kinetics."
Biomedical Circuits and Systems, IEEE Transactions on, 2010.
[32] M. Cotter et al, “Computational architectures based on coupled
oscillators,” NewCAS 2014;
[33] D. Weinstein and S. A. Bhave, "The Resonant Body Transistor," Nano
Letters, pp. 1234-1237, 2010.
[34] J. Akerman, "Spin torque oscillators," in International Conference on
Advanced Materials, 2009.
[35] N. Shukla, et al, “Pairwise coupled hybrid Vanadium dioxide-MOSFET
(HVFET) Oscillators for non-Boolean associative computing,” IEDM 2014
[36] Swaminathan, K, et al. "Modeling steep slope devices: From circuits to
architectures”, DATE, 2014.
[37] M . Sharad et. al., “Ultra Low Energy Analog Image Processing Using
Spin Based Neurons”, Nanoarch 2012.
[38] Roska, T., "Cellular wave computers for brain-like spatial-temporal
sensory computing," Circuits and Systems Magazine, IEEE, 2005.
[39 Li, B. et. al., "Memristor-based Approximate Computation", ISLPED
2013, pp-242-247
[40] Eutecus. (2012). Multi-core Video Analytics Engine (MVE™).
[41] P. Mazumder, S. Li, and I. Ebong, "Tunneling-Based Cellular Nonlinear
Network Architectures for Image Processing," VLSI Systems, Trans 2009.
[42] I. Palit, et al, "TFET based Cellular Neural Network (CNN)
Architectures," in ISLPED 2013.
[43] A. Kis, et al, "3D tactile sensor array processed by CNN-UM: a fast
method for detecting and identifying slippage and twisting motion: Research
Articles," Int. J. Circuit Theory Appl, 2006.
[44] A. Horváth, et al., "Architectural Impact of Emerging Transistors,"
IEEE NEWCAS, 2014.
[45] T. Simonite, “IBM Chip Processes Data Similar to the Way Your Brain
Does”, MIT Technology Review, Aug, 2014

Figure 6: Comparison of power per output pixel across different
technology-based systems for a pattern matching accelerator

0

0.2

0.4

0.6

0.8

1

1.2

CMOS custom
accelerator@10nm

TFET custom
accelerator @10nm

CMOS oscillator
@10nm

Spin-neuron

Po
w

er
 p

er
 o

ut
pu

t p
ix

el
 (m

W
)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

