
Structured Sparse Ternary Weight Coding of
Deep Neural Networks for Efficient Hardware

Implementations
Yoonho Boo and Wonyong Sung

Department of Electrical Engineering and Computer Science
Seoul National University

Seoul 151-744, South Korea
Email: yhboo.research@gmail.com; wysung@snu.ac.kr

Abstract—Deep neural networks (DNNs) usually demand a
large amount of operations for real-time inference. Especially,
fully-connected layers contain a large number of weights, thus
they usually need many off-chip memory accesses for inference.
We propose a weight compression method for deep neural
networks, which allows values of +1 or -1 only at predetermined
positions of the weights so that decoding using a table can
be conducted easily. For example, the structured sparse (8,2)
coding allows at most two non-zero values among eight weights.
This method not only enables multiplication-free DNN imple-
mentations but also compresses the weight storage by up to x32
compared to floating-point networks. Weight distribution normal-
ization and gradual pruning techniques are applied to mitigate
the performance degradation. The experiments are conducted
with fully-connected deep neural networks and convolutional
neural networks.

Index Terms—Deep neural networks, weight storage com-
pression, structured sparsity, fixed-point quantization, network
pruning.

I. INTRODUCTION

Deep neural networks (DNNs) show high performance in
various classification problems. However, the implementation
of them requires a much increased number of arithmetic
operations when compared to traditional pattern recognition
and classification algorithms [1], [2]. In particular, fully-
connected layers of fully-connected deep neural networks
(FCDNNs) or convolutional neural networks (CNN) contain
a large number of parameters, which makes it difficult to
implement them using resource-limited hardware. The number
of weights usually exceeds millions, which incurs many off-
chip memory accesses and large power consumption. When
all the weights are expressed as ternary values (+1, 0, and -1),
it is possible not only to reduce the off-chip memory access
but also to remove multiplications.

Weight quantization is a straightforward way of reducing the
size of parameters [3]–[9]. Many DNNs show high resiliency
on weight quantization [10]. In particular, the precision of
the weight can be lowered to 2-bit (+1, 0 and -1) without
much performance degradation by retraining the quantized
networks [3], [6], [7]. This ternary representation can compress
the weight by x16 when compared to the 32-bit floating-
point network. In recent years, there were some trials to

represent the DNN weight using the 1-bit binary (+1 and -
1) format to increase the compression ratio (x32) and perform
inference using only logical operations [8]. However, it still
shows considerable performance degradation. Compression
of DNNs and CNNs employing a few data compression
techniques has been developed in [9]. This method prunes
small valued weights to remove 89% and 92.5% of connec-
tions for AlexNet [11] and VGG-16 [12] and applies vector
quantization. Also the final weights are compressed using a
compressed sparse row/compressed sparse column (CSC/CSR)
format with relative index and Huffman coding to achieve x35,
x49 times weight storage compression. However, not only the
decoding method used in this approach is quite complex, but
also the implementation of decompressed networks requires
high-precision arithmetic units [13].

In this work, we develop a decoding-conscious weight
representation method not only to highly compress the network
but also to implement it very efficiently in real-time. The
proposed algorithm trains the network so that the weights
are represented using a structured sparse ternary format. This
format allows +1 or -1 only at specified locations, while most
of the values are pruned to zero. The network can achieve the
compression ratio of almost up to x32, but the performance of
the network is much better than the binary or XNOR networks.
The hardware for inference contains a small look-up table
for decompressing the code, but the procedure is very simple
and deterministic. The data-path needs a reduced number
of arithmetic units because most of the weights are pruned
to zero. The indexing addresses can be easily interpreted
to corresponding weights. Also, this method has a good
scalability because the look-up table size is independent of the
network complexity. However, training the structured sparsity
network is more difficult than optimizing the conventional
ternary valued networks. We use batch normalization and
weight normalization techniques to mitigate the performance
degradation. Also gradual pruning technique is applied for a
large-sized network to improve the performance. The proposed
scheme was evaluated on FCDNN, VGG-9, and AlexNet and
obtained the compression rate between x23 and x32.

The rest of this paper is organized as follows. Section II

ar
X

iv
:1

70
7.

03
68

4v
1

 [
cs

.C
V

]
 1

 J
ul

 2
01

7

∆

-∆

Pruning
Retraining and

quantization

Floating-point
sub-vector

Sparse floating-point
sub-vector

Sparse ternary
sub-vector

Fig. 1: The process of sub-vector structure sparse ternary quantization when (N,K) is (8, 4).

TABLE I: The number of table entries (T), the table size(ST)
and the length address (I) for one sub-vector.

Codes T ST (KB) I (bits)

(16, 4) 34113 136.452 16

(16, 3) 4993 19.972 13

(16, 2) 513 2.052 10

(8, 2) 129 0.258 8

(8, 1) 17 0.034 5

(4, 1) 9 0.009 4

presents the proposed structured sparse ternary networks. In
Section III, the network training method is presented. The
effects of DNN normalizers and gradual pruning are also
explained. Experimental results are shown in Section IV.
Concluding remarks follow in Section V.

II. STRUCTURED SPARSE TERNARY QUANTIZATION

A. Review of ternary quantization

Ternary quantization represents a weight of a DNN using
only +1, 0, and -1, and can achieve good performance by
retraining [3], [6], [7]. In this case, one ternary weight is
represented by 2 bits, thus a compression ratio of x16 can
be obtained when compared with the 32-bit floating-point
format. However, since only 3 levels (+1, 0, -1) are used, the
information that can be represented with 2-bit per weight is not
fully utilized. In addition, the ternary optimization results show
that very high portion, about 85%, of the weights are zero,
which implies the possibility of additional compression [3].

B. Sub-vector structured sparsity

The proposed structured ternary quantization divides a
weight into many one-dimensional sub-vectors with the size
of N , and each sub-vector is represented by a ternary vector
with a limited number, K, of +1 or -1. We first prune
each sub-vector of the floating-point weight matrix to have
only K non-zero values. Then, quantization and retraining
are performed with pruned weights kept to zero. By the
retraining and quantization, the number of non-zero values

can be decreased. The process is described in Fig. 1 when
(N,K) is (8, 4). In this figure, the final vector is determined as
[0,+1, 0, 0,−1,+1, 0, 0], and contains only 3 non-zero values

This structure can reduce the weight storage using a look-
up table and indexing addresses. For example, the (4, 1)
structured sparse coding denotes that the sub-vector length is
4 and only one position is allowed to be +1 or -1. Since the
number of sub-vectors satisfying this condition is 9 including
(0, 0, 0, 0), (0, 0, 0,+1), (0, 0, 0,−1), ..., and (−1, 0, 0, 0), the
sub-vector index can be represented in 4 bits. As a result,
the number of bits for (4, 1) structured ternary encoding is
just 1-bit per weight excluding the memory for look-up table.
In this structured sparse ternary encoding scheme, the sub-
vector size, N , needs to be limited, such as 8 or 16, because
the look-up table size increases as N grows. The proposed
structured sparse ternary network needs a look-up table and
indexing addresses. All possible sub-vectors are stored in the
look-up table. Since the number of look-up table entries, T ,
is
∑K

i=0

(
N
i

)
2i, the table occupies 2NT bits and the indexing

address of the sub-vector demands dlog2 T e bits. For example,
if (N,K) is (16, 4), the total number of table entries is
34,113 and the address length is 16 bits. Also, if (N,K)
is (8, 1), the address length becomes 5 bits and the table
size is just 34 Bytes. Since the table size is relatively small,
the weight storage can be further reduced when compared to
the conventional ternary coding. The proposed method only
performs table indexing without any complicated decoding
process, thus there is little decoding overhead. TABLE I shows
the address length and the table size for each code employed
for the experiments.

We only compress the weight matrix of fully-connected
layers in FCDNNs and CNNs. Since fully-connected layers
of large-sized CNNs usually consume over 90% of the weight
storage, the weight matrix compression is important not only
for FCDNNs but also for CNNs.

The propagation of a fully-connected layer can be repre-
sented with a matrix W as

yk+1 = φk+1(Wk+1yk + bk+1), (1)

where a row corresponds to connections for a single output
neuron, and a column corresponds to connections from a single
input neuron. We group the weights in the same column of W
because the sub-vectors in this direction are less correlated.

X2

X3

W[2]

0

W

Din

+

Bias0

Bias1

sel

rstnet

net
Dout

3

8

16

16

16

21

PE
array

16

Look-up
table

Encoded
weights

Input
FIFO

Input Output

Index Weights

PE
arrayLook-up

table

Encoded
weights

Input
FIFO

Input

Output

Index

Weights

(a) FC layer architecture

Non-zero
detector

x

+

Net_0

Net_1

Net_2

Net_3

0

[0, 0, -1, 0]

-1

Index

Value

2

Net_2

-x

Sub-vector

-1

Non-zero
detector

x

+

Net_0

Net_1

Net_2

Net_3

0

Index

Value

Sub-vector

-1

Non-zero
detector

x

Net_0

Net_1

Net_2

Net_3

0

[0, 0, -1, 0]

-1

Index

Value

2

Net_2

-x

Sub-vector

-1

+

(b) Processing element (PE)

Fig. 2: Architecture of a structured sparse FC layer. (a)
Overall architecture. (b) Structure of a processing element
when (N,K) is (4, 1).

The performance of row/column sub-vector structured sparse
networks is compared in Section IV.

C. Hardware design

The structured sparse ternary matrix can easily be decoded
by employing table look-up operations. The overall architec-
ture for a FC layer can be designed as shown in Fig. 2a.
A sub-vector index is converted to an uncompressed weight
sub-vector simply by indexing the look-up table. Since we
drastically reduce the size of encoded weights and the look-
up table, as shown in Section IV, the power consumption by
external memory access can be eliminated or reduced with a
small weight decoding overhead.

In addition, unnecessary computation can easily be removed
with the column sub-vector structured sparsity. The column
sub-vector approach also supports the outer-product based im-
plementation, which is advantageous to parallel processing [4],
[5]. In the outer product approach, all PEs receive the same
input and they conduct outer-product with the consecutive
weights. If we choose the column sub-vector based structure,
zero weights can be ignored efficiently. Fig. 2b shows the
structure of PE with an example flow when (N,K) is (4, 1).
One PE has only K arithmetic units and processes N outputs.
For example, when the weight vector is [0, 0,−1, 0]T , the non-
zero detector block finds the non-zero value −1 and the index
of non-zero as 2. The non-zero value detection can easily be
done because the length of a sub-vector is small, which is
from 4 to 16 in our experiments. Since the weights are ternary
quantized, the value just decides whether the input x is added,
subtracted, or ignored. The index decides which register is
activated. The selected register accumulates the input while
others with 0 valued weights keep the current values.

III. TRAINING OF STRUCTURED SPARSE TERNARY
NETWORKS

Structured sparse ternary coding applies a constraint on the
maximum number of non-zero weights in addition to ternary
quantization. These constraints can incur performance loss.
This section explains the structured sparse training method.

- Masking weights:

W l = W l,trained �M l

- Quantization step size determining:

∆l = Qstep(W l)

= argmin
∆

∑
wij∈W l

(
Q(wij ,∆l)− wij

)2
- Quantized weights:

w
(q)
ij = Q(wij ,∆)

= sgn(wij) ·∆ ·min

(⌊
|wij |

∆
+ 0.5

⌋
,
P − 1

2

)
- Loss calculation:

netl = W
(q)
l yl + bl

yl+1 = φl(netl)

E = −
∑

(t,yL)

t log yL

- Weights update:

wij,new = wij − α
∂E

∂wij
·mij

w
(q)
ij,new = Q(wij,new,∆new)

Fig. 3: The retraining algorithm of structured sparse fixed-
point network is summarized. ∆ is the quantization step size,
P is the number of quantization points, l denotes the layer,
which is from 1 to L, yl is the output vector of layer l, φl()
is the activation function, E is the loss, t is one-hot encoded
label vector, and α is the learning rate. Floating-point weights
W and fixed-point weights W (q) are kept pruned by masking
matrix M .

A. Structured pruning and quantization

The network is trained in floating-point first. Then, we
simultaneously conduct the structured pruning and quantiza-
tion, and then retrain the network. Each sub-vector of the
floating-point weight matrix is pruned in order of magnitude
so that every sub-vector only has K non-zero elements. The
masking matrix M is a Boolean matrix showing the pruned
locations. In other words, if wij is pruned, then mij becomes
0, otherwise 1. The quantization step size ∆ is calculated using
the pruned weight matrix instead of the original one. Forward
propagation procedure is the same with the previous retraining
based quantization algorithm [3].

We modify the backpropagation algorithm to maintain the
structured sparsity during retraining. The gradients for pruned
connections are removed by using the masking matrix. This
algorithm keeps pruned weights unchanged, while updating the
quantized weights. The overall algorithm is illustrated in Fig. 1
and also summarized in Fig. 3.

B. Weight distribution normalization with DNN normalizers

In order to reduce the performance degradation of the struc-
tured sparse ternary coding, we apply the batch normalization

and weight normalization techniques.
1) Batch normalization: Batch normalization (BN) is

widely used for training of FCDNNs and CNNs [14]. BN
mitigates the gradient descent problem and acts as a regularizer
when the training data is large enough. It normalizes the output
neurons of DNNs in the same mini-batch during the forward
and backward passes. In each training batch, BN renders the
outputs of each neuron follow the Gaussian distribution.

2) Weight normalization: Weight normalization (WN) uses
a simple reparameterization of the weights that accelerates the
DNN training [15]. During training, each weight vector w is
rescaled to v, which has unit L2-norm. The loss is calculated
with v and gradients are applied to w. For the inference, L2-
normed weights are used instead of the original ones.

C. Gradual pruning and quantization

If many connections are pruned in a single step, it is difficult
to compensate for the loss by retraining. Gradual pruning can
alleviate this problem, which repeats pruning and retraining
gradually from low sparsity to high sparsity. At each iteration,
a small number of connections are pruned to preserve the
performance. Then, after retraining, an increased number of
weights are forced to zero and retraining is performed again. In
our scheme, we combine the gradual pruning and quantization.
At the first iteration, the network is retrained according to
the proposed algorithm with a low sparse (N,K), which
means a large K. Floating-point weights W and fixed-point
weights W (q) are both retrained at this iteration. At the next
iteration, instead of W (q), W is pruned with higher sparsity by
decrementing K. Further, we determine the step size ∆ using
W because the weight values change much during retraining.
The effect of adapting the step size to the changed weights
is shown in [16]. After the network is pruned for the target
sparsity, the final W (q) is used for the inference.

IV. EXPERIMENTAL RESULTS

A. InfiMNIST

The MNIST is a handwritten digit recognition dataset that
consists of 28×28 greyscale images. The InfiMNIST dataset is
derived from the MNIST using pseudo-random deformations
and translations [17]. The training set is composed of 1M
examples among the 8M sample data. The test set is the same
with the original MNIST dataset, and 50K examples in the
training set are used for validation. We train the networks
using ADAM [18] optimizer. The learning rate decreases from
1e-3 to 1.6e-5 with a factor of 0.2 when the validation does
not show improvements for 4 consecutive evaluations. The
experimental results are the averages of 5 experiments with
different random seeds. The network configuration is as shown
below.

Input−Hidden1(1024)−Hidden2(1024)− 10Softmax,
(2)

The weight matrix of the output layer is quantized, but not
pruned because the size is small. Also, biases and normaliza-
tion parameters are kept in high precision. The performances

TABLE II: Miss classification rate(MCR(%)) on the test set
with InfiMNIST example. ‘Baseline’ means the networks are
trained without any DNN normalizer.

Baseline BN WN

Float network 1.03 0.72 0.77

Ternary network 1.30 0.86 1.05

Col sub-vector (16,3) 1.60 0.92 1.00

Row sub-vector (16,3) 2.62 0.93 1.03

according to the direction of the sub-vectors and normalizers
are shown in TABLE II. In all experiments, the sub-vector
length N is 16 and the maximum number of non-zero in a
sub-vector K is 3. The ternary network is retrained using
the algorithm shown in [3]. BN and WN show very high
accuracy on the floating-point network because they act as
regularizers. Also, BN and WN improve the performance of
ternary and structured sparse networks. These results show that
the normalizers are effective in alleviating the performance
degradation due to the structured sparsity constraint. As we
discussed in Section II, the row sub-vector structure results in
high error rate. With BN and the column sub-vector structure,
we obtain x1.7 times of weight storage compression with
0.06% miss classification rate (MCR) loss when compared to
the unconstrained ternary network.

B. CIFAR-10

The CIFAR-10 dataset includes examples from ten classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship
and truck. The training set consists of 50K 32×32×3 RGB
samples and the test set contains 10K samples. We use 10%
of the training set as the validation set. For data augmentation,
training data are horizontally flipped with a probability of 50%
at every epoch. Also, global contrast normalization(GCN) is
applied to all images. The training procedure is the same with
the InfiMNIST task. We use VGG-9, which is modified to ac-
commodate CIFAR-10 input data. The network configuration
is as shown below.

Input− (2× 128C3)−MP2− (2× 256C3)−MP2
(3)

− (2× 512C3)−MP2− (2× 1024FC)− 10Softmax,

This network demands 54.8MB for weight storage with the
floating-point format and 3.45MB when the network is ternary
quantized. For the experiments, BN is applied to the CONV
layers and different normalizers are applied to the FC layers.
The performances of the networks are shown in TABLE III.
(N,K) is (16, 4) for the structured sparse networks. Floating-
point networks show the lowest error rate when normalizers
are not applied. Although ternary quantization decreases the
performance a lot, the column sub-vector structured sparse

TABLE III: MCR(%) of CIFAR-10 classification task.

Baseline BN WN

Float network 8.00 8.55 9.16

Ternary network 9.36 8.94 9.74

Col sub-vector (16,4) 9.81 8.92 9.41

Row sub-vector (16,4) 9.75 8.97 9.77

TABLE IV: MCR and the weight storage comparison with
various (N,K) for CIFAR-10. N is sub-vector length, and K
is the number of non-zeros in a sub-vector.

(N,K)
MCR(%) Weight

storage(MB)

Compression

ratioBN WN

Float 8.55 9.16 54.804 X1

Ternary 8.94 9.74 3.453 X15.87

(16,4) 8.92 9.87 2.433 X22.52

(8,2) 8.88 9.78 2.301 X23.81

(4,1) 9.02 10.01 2.301 X23.81

(16,3) 9.35 10.11 2.097 X26.14

(16,2) 8.93 10.36 1.874 X29.25

(8,1) 8.91 10.32 1.869 X29.32

network trained with BN shows quite good performance.
Further, our scheme shows better results than the ternary
network when BN and WN are applied. This is because proper
pruning can prevent over-fitting.

TABLE IV shows the performance and the weight stor-
age compression ratio of networks with various choices of
(N,K). The column sub-vector structure is applied to all
experiments. When the networks have the same sparsity, the
constraint is stronger when N is small, which can decrease
the performance. However, if N is large, the weight storage
occupied by the table increases. By applying BN and the (8, 1)
structured sparse network, we achieve x29.32 weight storage
compression with MCR loss of 0.36% compared to the float-
point network.

C. ImageNet

The ImageNet is a 1000 objects classification problem. We
train AlexNet with ImageNet ILSVRC-2012 dataset, which
has 1.2M training data and 50K validation data. BN is
applied to all CONV layers instead of skipping response
normalization. Training is performed with the Matconvnet
framework [19].

AlexNet has 61M parameters, of which 54.5M parameters
are devoted to the FC layers. Therefore, it is important
to compress FC layers to reduce the weight storage. The
result of retraining to have the structured sparsity for various
kinds of (N,K) is shown in TABLE V. Top-1 and top-5
MCR of the floating-point network are 41.73% and 18.94%,

TABLE V: Top-1 error rate, top-5 error rate(%) and the
weight storage comparison with various (N,K) for ImageNet
classification problem.

(N,K) Top-1 Top-5
Weight

storage(MB)

Compression

ratio

Float 41.73 18.94 232.61 X1

Fixed 42.37 19.50 16.28 X14.29

(16,4) 42.17 19.89 9.92 X23.45

(8,2) 42.58 19.79 9.78 X23.78

(4,1) 43.04 20.00 9.78 X23.78

(16,3) 42.94 20.08 8.78 X26.49

(16,2) 43.51 20.52 7.35 X31.66

(8,1) 43.64 20.66 7.34 X31.68

TABLE VI: Comparison of the error rate(%) between the
gradual scheme and direct pruning. Note that ‘Direct’ means
that the network is pruned by target sparsity at once. All results
are evaluated after the retraining is conducted.

(N,K)
Gradual Direct

Top-1 Top-5 Top-1 Top-5

(8,4) 42.24 19.75 42.24 19.75

(8,3) 42.05 19.68 42.65 19.93

(8,2) 42.48 19.92 42.58 19.79

(8,1) 43.07 20.26 43.64 20.66

respectively. Fixed-point networks are quantized with 8-bit
precision for CONV layers and 2-bit precision for FC layers.
The unstructured fixed-point network shows 42.37% top-1
MCR and 19.50% top-5 MCR. For example, when (N,K) is
(16, 4), the weight storage compression of x22.64 is obtained
compared to the floating-point network. In this case, top-1
error increases 0.43%. Performance degradation increases as
the sparsity grows. By allowing a top-1 error increase of up to
2% over the floating-point network, x31.68 compression ratio
is achievable.

We further perform the gradual pruning to increase the
performance of the structured sparse ternary network. The
results are shown in TABLE VI. For every iteration, K is
decremented by 1. Gradually pruned network shows 43.07%
top-1 MCR, which is lower than that of the directly pruned
network by 0.57%. Finally, we obtain x31.68 weight storage
compression ratio with a top-1 MCR increase of 1.34% over
the floating-point network.

We compare our model with other fixed-point networks
on TABLE VII. The baseline is the floating-point network
trained using Matconvnet framework. XNOR-Net achieves a
compression ratio of x32 through binary quantization, but the
error increases sharply. Ternary weight network (TWN) [6]

TABLE VII: Comparison of networks in the error rate(%) and
the weight storage compression ratio. Results are on ImageNet
data with AlexNet.

Top-1 Top-5
Weight

storage(MB)
Ratio

Float(baseline) 41.7 18.9 232.6 X1

XNOR-Net 55.8 30.8 7.3 X32

TWN 45.5 23.2 17.0 X14

TWN V2 42.5 20.3 17.0 X14

Deep Compression 42.8 19.7 6.9 X35

Ours 43.1 20.3 7.3 X32

and TWN V2 [7] quantize weights to ternary values. TWN
V2 shows 42.5% Top-1 error rate, which is the lowest among
the fixed-point networks. Deep Compression uses the relative
indexed CSC/CSR format and Huffman coding to compress
the sparse fixed-point network and reduces the weight storage
by x35 while maintaining the performance. However, TWN
V2 and Deep Compression have disadvantages of hardware
implementation. Since each quantization point has a different
step size, high-precision arithmetic operations are needed. On
the other hand, XNOR-Net, TWN, and ours can substitute the
multiply-accumulate operations to simple logical or accumu-
late operations [4], [5], [8]. Further, Deep Compression needs
additional decoding units [13]. Considering the complexity and
overhead, our coding scheme is very advantageous to hardware
implementations.

V. CONCLUDING REMARKS

We presented a structured sparse ternary coding scheme
for low-energy hardware implementation of deep neural net-
works. The proposed method compresses a matrix for a
fully-connected layer by decomposing it into sub-vectors and
allowing only a limited number of non-zero values in each sub-
vector. The decoding is conducted simply by consulting a look-
up table. Batch normalization and gradual pruning techniques
are employed to mitigate the performance degradation due
to structured sparsity. We can reduce the weight storage
for VGG-9 and AlexNet to 1.87MB (x29 compression) and
7.34MB (x32 compression) with only small accuracy loss.
This research is useful for the implementation of large-sized
DNNs on resource-limited hardware.

ACKNOWLEDGMENT

This work was supported in part by the Brain Korea 21
Plus Project and the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIP) (No.
2015R1A2A1A10056051).

REFERENCES

[1] Christopher M Bishop, Neural networks for pattern recognition, Oxford
university press, 1995.

[2] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Nguyen
Patrick, Tara N Sainath, et al., “Deep neural networks for acoustic
modeling in speech recognition,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82, 2012.

[3] Kyuyeon Hwang and Wonyong Sung, “Fixed-point feedforward deep
neural network design using weights+ 1, 0, and- 1,” in Signal Processing
Systems (SiPS), 2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[4] Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung, “X1000 real-time
phoneme recognition vlsi using feed-forward deep neural networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 7510–7514.

[5] Jinhwan Park and Wonyong Sung, “Fpga based implementation of deep
neural networks using on-chip memory only,” in Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE International Conference on.
IEEE, 2016, pp. 1011–1015.

[6] Fengfu Li, Bo Zhang, and Bin Liu, “Ternary weight networks,” arXiv
preprint arXiv:1605.04711, 2016.

[7] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally, “Trained
ternary quantization,” in ICLR, 2017.

[8] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali
Farhadi, “Xnor-net: Imagenet classification using binary convolutional
neural networks,” in European Conference on Computer Vision.
Springer, 2016, pp. 525–542.

[9] Song Han, Huizi Mao, and William J Dally, “Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding,” in ICLR, 2016.

[10] Wonyong Sung, Sungho Shin, and Kyuyeon Hwang, “Resiliency of deep
neural networks under quantization,” arXiv preprint arXiv:1511.06488,
2015.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, “Imagenet
classification with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012, pp. 1097–1105.

[12] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in ICLR, 2015.

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally, “Eie: efficient inference engine on com-
pressed deep neural network,” in Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 2016, pp. 243–254.

[14] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in Proceed-
ings of the 32nd International Conference on Machine Learning (ICML),
2015, pp. 448–456.

[15] Tim Salimans and Diederik P Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,” in
Advances in Neural Information Processing Systems, 2016, pp. 901–901.

[16] Sungho Shin, Yoonho Boo, and Wonyong Sung, “Fixed-point opti-
mization of deep neural networks with adaptive step size retraining,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE
International Conference on, 2017.

[17] “Projects:infimnist,” http://leon.bottou.org/projects/infimnist, Accessed:
2017-05-01.

[18] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014.

[19] Andrea Vedaldi and Karel Lenc, “Matconvnet: Convolutional neural
networks for matlab,” in Proceedings of the 23rd ACM international
conference on Multimedia. ACM, 2015, pp. 689–692.

http://leon.bottou.org/projects/infimnist

	I Introduction
	II Structured sparse ternary quantization
	II-A Review of ternary quantization
	II-B Sub-vector structured sparsity
	II-C Hardware design

	III Training of structured sparse ternary networks
	III-A Structured pruning and quantization
	III-B Weight distribution normalization with DNN normalizers
	III-B1 Batch normalization
	III-B2 Weight normalization

	III-C Gradual pruning and quantization

	IV Experimental results
	IV-A InfiMNIST
	IV-B CIFAR-10
	IV-C ImageNet

	V Concluding remarks
	References

