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Abstract—The memory requirements of digital signal process-
ing and multimedia applications have grown steadily over the
last several decades. From embedded systems to supercomputers,
the design of computing platforms involves a balance between
processing elements and memory sizes to avoid the memory
wall. This paper presents an algorithm based on both dataflow
and approximate computing approaches in order to find a good
balance between the memory requirements of an application
and the quality of the result. The designer of the computing
system can use these evaluations early in the design process to
make hardware and software design decisions. The proposed
method does not require any modification in the algorithm’s
computations, but optimizes how data are fetched from and
written to memory. We show in this paper how the proposed
algorithm saves 23.4% of memory for the full SKA SDP signal
processing computing pipeline, and up to 68.75% for a wavelet
transform in embedded systems.

Index Terms—Signal Processing, Radio Astronomy, SKA
Project, Approximate Computing, Dataflow Models

I. INTRODUCTION

Memory issues strongly impact the quality and performance
of computing systems. The area occupied by the memory
can be as large as 80% of a chip and may be responsible
for a major part of the power consumption of both Edge
Computing [1], [2] and High-Performance Computing (HPC)
systems [3]. As new digital signal processing and multimedia
applications require more and more data to process and store,
processing elements, internal memories and external storage
components increase in number and size. Computing systems
are growing more heterogeneous and interconnects more com-
plex in order to increase computational performance while
keeping energy consumption under control. Solving memory
issues remains a challenging objective in both Edge and HPC
Computing systems.

The worlds largest radio telescope project, the Square Kilo-
metre Array (SKA), will have to generate real-time multidi-
mensional images of the sky from a 7.2 Terabit/s data stream
without the option of storing the raw input data. The SKA
Science Data Processor (SDP) computing system will be a
dedicated low-power HPC architecture combining a mixture
of primary processors and hardware accelerators to achieve
its exascale computing requirements at low power within the
next decade. The SDP computing system has to be designed
and sized taking into account unprecedented data throughput
requirements, constrained budget, computing precision and
energy efficiency. The memory architecture of the SDP must

be accurately evaluated so as suitably balance these concerns.
The need for methods and tools to accurately evaluate the
exascale memory requirements of SKA is the initial motivation
of the work presented here.

Dataflow graphs are often used to model, analyse, map and
schedule concurrent digital signal processing and multimedia
applications. Most of the work done in this area has been
applied to the design of embedded systems, but methods and
tools based on dataflow graphs are now also studied in the con-
text of SKA exascale computing [4], [5]. Dataflow MoC allows
the specification of applications in the form of graphs whose
nodes, called actors, are the functions executed, and whose
arcs are First-In First-Out queue (FIFO) buffers ensuring data
transfers between the actors. Most of the literature on dataflow
models focuses on the optimisation of timing performance,
such as execution rate or throughput, or the computation of
the minimal number of FIFO buffers to implement a static
periodic schedule [6]. Optimizing buffer sizes is usually done
by decreasing the number of tokens in each buffer [7], [8].
In [9], the dataflow graph is used to compute memory bound
requirements of an application. In [10], the amount of allocated
memory is minimized by memory reuse: the buffer lifespan is
calculated depending on the actor scheduling and the analysis
of lifespans enables several buffers to share the same memory
space at run-time, reducing the required global memory space.

In this paper, we present a complementary size-reduction
method that can be used in addition to previous dataflow
memory optimizations. Our method uses the Approximate
Computing (AxC) paradigm [11] to define the minimal binary
representation of the tokens in FIFO buffers, taking into
consideration both computational accuracy and complexity.
The goal is to decrease both the memory footprint and the
energy consumption of the application without signficantly
reducing the quality of output.

The proposed method has been evaluated on two use cases:
an implementation of the SKA imaging pipeline illustrating
exascale signal processing on HPC systems, and a wavelet
transform illustrating generic image processing on embedded
systems.

Section II provides the context of the study and the related
background concepts on dataflow models and approximate
computing used in this paper. Section III details the concept
of Approximate Buffer introduced in this paper. Finally, Sec-
tion IV presents the experimental evaluation of the Approxi-
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Fig. 1: Parameterized and Interfaced Synchronous Dataflow (PiSDF) MoC semantics and example

mate Buffer technique and Section V concludes this paper.

II. CONTEXT AND BACKGROUND

A. PiSDF MoC

The reconfigurable dataflow MoC studied in this paper
is the Parameterized and Interfaced Synchronous Dataflow
(PiSDF) MoC [12]. Fig. 1 depicts the graphical elements
of the PiSDF semantics and gives the example of a graph,
composed of four actors, implementing a Discrete Wavelet
Transform (DWT) and an Inverse Discrete Wavelet Transform
(IDWT) applied to each frame of a video sequence. In this
example, the resolution of the video is set by the W and
H parameters which are nodes specifying the width and the
height of each frame of the video sequence. Production and
consumption rates of actors are specified with numerical values
or expressions depending on parameters. Rate configuration
parameters are used to specify application reconfigurations
in the PiSDF MoC. Following PiSDF execution rules [12],
an actor may trigger a reconfiguration of the graph topology
and intrinsic parallelism by setting a new parameter value at
runtime.

At each iteration of the graph, corresponding to the pro-
cessing of a new frame, the NbSliceSetter actor triggers a
reconfiguration of the data rates by assigning a new value
to parameter N . Reconfigurations enable a dynamic variation
of the number of parallel executions of actors inside DWT
and IDWT subgraphs. The parameter N is used internally by
these subgraphs to parallelize inner 1D-convolutions actors by
splitting the processed frame into slices.

B. Square Kilometre Array Dataflow Model

The SKA1 project aims to build the world’s largest radio
telescope, with eventually over a square kilometre of effective
collecting area. It will consist of hundreds of thousands of
antennas and hundreds of dishes. The collected data are fed
to the Central Signal Processor (CSP) on site which handles
front-end processing before sending it across dedicated long
haul fibre links to the SDPs, which converts it into data and
images suitable for radio astronomers.

The SDP Imaging Pipeline2 is an implementation of the
SKA SDP for its most compute intensive task. It produces
images from visibility data output from the CSP. It is this

1https://www.skatelescope.org/
2https://gitlab.com/ska-telescope/sep pipeline imaging/
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Fig. 2: Simplified representation of the SEP.

implementation of the SKA SDP that has been chosen as a
use case in this paper. The SDP Imaging Pipeline generates
sky images with an iterative process, refining the image on
every major cycle. Each of these major cycles goes through
a deconvolution step, tasks with extracting relevant “bright”
sources during each of its minor cycles. In this paper, the
dataset we have been using has been generated from a
GLEAM observation3 in order to generate sky images we can
analyse in terms of quality. The dataset used is generated for
a 15 minute observation with a visibility per baseline each
30 seconds for 512 antennas. In comparisons SKA will have
hundreds of receivers producing billions of visibilities per
second.

The SDP Imaging Pipeline has been represented for the first
time as a PiSDF graph using PREESM4. The complexity to
represent an algorithm like the SDP Imaging Pipeline lies in
the fact that the algorithm is iterative. Fig. 2 shows a simplified
representation. The delay between the actors Gains Calib and
Gains Apply is used to represent the major cycles of the SDP
Imaging Pipeline and the delay on the actor Deconvolution is
used to represent the minor cycles. The PiSDF graph of the
SDP is made up of 150 actors and 280 FIFO buffers. This graph
is then flattened by PREESM in a Single-rate Directed Acyclic
Graph (SrDAG) for the analysis, the mapping-scheduling and
the code generation steps. The SrDAG of the SDP is made up
of 4430 actors and 11850 FIFO buffers using the parameters
of the GLEAM dataset we used.

C. Approximate Computing

Several approaches have been proposed as AxC to decrease
the computation complexity, the memory footprint and the
energy consumption of an application. AxC techniques can
be divided into three categories : Computation Level AxC,
Hardware Level AxC and Data Level AxC. Data Level AxC

3http://www.mwatelescope.org/gleam-x
4https://github.com/preesm/preesm/



techniques benefit from a reduction in either the amount of
data to process (Data Reduction), or its actual representation in
computer memory (Precision Optimization). The contribution
of this paper is related to Data Level Precision Optimization
AxC techniques.

The Precision Optimization process requires modifications
that impact an algorithm at its core. Algorithms are first evalu-
ated with the intent of producing high-accuracy results, usually
using double-precision floating-point arithmetic and high-level
programming languages (C/C++, Matlab, Python, ...). Such
naive but straight-forward implementations come with high
memory footprints, high compute processing requirements and
poor timing performance. Their reference algorithms are then
rewritten for specific embedded systems or exascale HPC
systems to meet real-time and power consumption constraints.
Considering the digital representation of data provides one
avenue to meet these requirements at the expense of affecting
the output accuracy [13].

Floating-point arithmetic is commonly used in application
development for its ease of use. It offers both a high dynamic
range and a high precision, and any necessary conversion
step is handled directly by the hardware. According to the
IEEE-754 standard [14], floating-point number representation
is composed of three parameters: the exponent, the mantissa
and the sign. The corresponding value is encoded as follow:

x = (−1)s ×m× 2e (1)

where s is the sign bit, m the M-bit mantissa and e the E-
bit exponent stored as an integer representing the position of
the radix-point. The two most commonly used floating-point
data-types are single precision floating-point and double pre-
cision floating-point. Single precision floating-point numbers
are 32-bit numbers represented with M = 24 and E = 8.
Double precision floating-point numbers are 64-bit numbers
represented with M = 53 and E = 11.

The penalty for using floating-points types over integers
with basic operations such as addition and multiplication
was evaluated in [15]. Compared with an integer adder, a
floating-point adder requires an area 3.5 to 3.9 times larger,
a power consumption between 12 and 15.7 times higher and
latency around 2 times longer. Concerning the multiplication, a
floating-point multiplier requires approximately 30% less area
than an integer multiplier, has a similar latency, but has a
power consumption up to 35 times higher.

Custom floating-point data types have found use in specific
applications. For instance, the Posit arithmetic (also called
Type III Unums) claims to have a larger dynamic range and
a higher accuracy [16] than with IEEE-754 floating-point
arithmetic. Posit arithmetic has been used successfully in areas
including machine learning or graphics rendering but not in ar-
eas such as particle physics simulations [17]. Another example
of alternative data types is the 16-bit half-precision floating-
point format is defined in the IEEE 754-2008 standard [14].
The internal architectures, instruction sets and compilers of
Central Processing Units (CPUs), Digital Signal Processors
(DSPs) and Graphics Processing Units (GPUs) have to be

optimised for the management of new data types. Otherwise
their use implies specific implementations on Application-
Specific Integrated Circuits (ASICs) or Field-Programmable
Gate Arrays (FPGAs). A specific and time consuming study
is thus required to ensure the benefits and the validity of results
in a targeted application using standard or custom data-types.

Another way to satisfy implementation or real-time con-
straints is the use of fixed-point arithmetic representing
floating-point values as integers. A number x is encoded using
fixed-point arithmetic with three parameters, the sign-bit s, the
number of bits m used to encode the integer part, and the
number of bits n used to encode the fractional part. The sum
m+ n+ 1 gives the total width of the data. m represents the
distance in number of bits between the radix-point and the
Most Significant Bit (MSB) and n the distance between the
radix-point and the Least Significant Bit (LSB). The fixed-
point representation xFxP of the floating-point number x is
obtained as:

xFxP =< x× 2n > × 2−n (2)

with < . . . > being the rounding mode. The data is encoded
as follow:

xFxP = −2m × S +

m−1∑
i=−n

bi × 2i (3)

where bi is the value of bit i. Fixed-point arithmetic is
more complicated to use than floating-point as it requires
determining the suitable parameters m and n for each variable.
It also has a lower dynamic range. However, the position
of the radix-point is known at compile-time in fixed-point
arithmetic, not stored with the exponent field as done in
floating-point arithmetic, allowing hardware and software op-
timizations. Fixed-point DSPs are cheaper than their floating-
point counterparts, and fixed-point implementation are faster
on General Purpose Processors (GPPs).

III. APPROXIMATE BUFFER

Evaluating the relative merits of different representations
is time consuming and require specific knowledge in both
hardware and software domains. Our contribution detailed in
this section is the application of AxC Precision Optimization
techniques with the design approach based on dataflow models
to automate and accelerate these evaluations. The idea behind
the Approximate Buffer contribution is to store the data
associated to edges of the PiSDF dataflow graph in FIFO
buffers using fewer bits than what would be expected by the
data-type used during computations inside the nodes of the
graph.

In the dataflow approach, the processed data are of two
types : the data associated with actors (nodes of the graph)
and the data associated with the FIFO buffers (edges of the
graph). As the code inside actors is imperative code, the
use of usual AxC Precision Optimization is possible but
requires a fine knowledge of the algorithm and modifications
inside the imperative code. In our approach, we evaluate the
impact of AxC Precision Optimization on data associated with
FIFO buffers without any modification of the imperative code,
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enabling a controlled degradation of the output quality at the
price of a small performance penalty.

A. Variable data-width

As mentioned in Section II-C, algorithms are usually de-
signed using 64-bit double-precision or 32-bit single-precision
floating-point arithmetic, as these data representations enable
the use and computation of non-integer numbers. However,
this available precision can often be underused. Regardless of
how much precision is required for a floating-point variable,
it still occupies the same memory space. The same applies
to integer variables. Standard data-types sizes tend to occupy
either 8, 16, 32, 64 or 128 memory bits.

Depending of the nature of the data, a number N of bits,
either LSB or MSB, could be scrapped to reduce the size of
the data-type associated to a FIFO buffer, and thus of the whole
buffer. Fig. 3 shows a simplified representation of this.

Without any intermediate representation of the data stored in
an Approximate Buffer, whether to discard some LSBs and/or
MSBs depends on the initial data representation.With floating-
point variables, discarding LSBs means removing lower bits
from the mantissa. How many bits can be removed from the
mantissa is bounded by the acceptable degradation of the
output quality, as well as the actual size of the mantissa itself.

For integer data-types, similarly to floating-point data-types,
removing LSBs leads to an increasing degradation of the
output quality. However, if values in the array do not reach
the 2N threshold, then it becomes possible to remove M −N
MSBs without any loss in terms of output quality for data
represented by M bits.

One of the objectives of this method is to be as
least intrusive as possible with modifications to the orig-
inal algorithm. Indeed, while methods such as fixed-point
arithmetic would require the algorithm to be widely re-
designed, our method only requires modifying data ac-
cess schemes. In case of a C-like syntax, the data-
writing process would be modified from array[index]
= value; to ApproxFifoSet(&ApxFifo, index,
value);. To correctly handle data insertions and extractions
from the Approximate Buffer, a WorkingSize field and a
StorageSize field are kept as buffer metadata. They respectively
correspond to the size of the datum in bits during processing
and to the size of the datum in bits when stored in the
array. This allows data stored on a reduced number of bits
to be extracted and processed as originally intended, then
stored back into a buffer. Future work will be to automatically

FxP2

FxP2

Actor

Approximate Buffer
Data representation

conversionApproximate Buffer

FxP1

FxP1

Fig. 4: Variable data-width buffer with FxP representation.

generate the data access schemes defined here in PREESM to
automate the process.

B. Custom data representation

As briefly mentioned in Section III-A, the original data
representation in memory greatly affects the number of bits
that can be removed. For example, using 32-bits floating-point
variables, the actual value is encoded in the 23 LSBs, the rest
serving as a scaling factor or the sign bit. This means the
data-width reduction possibilities are limited.

To counter this issue, the chosen solution is to use an
alternative data representation when storing inside the Ap-
proximate Buffer. The alternate representation considered is
the fixed-point format. As explained in Section II-C, fixed-
point variables are presumed to have their exponent values
known at compile time, meaning the order of magnitude of
variables stored in the Approximate Buffer should be known
beforehand. Unfortunately this may not be known in practice.
To bypass this issue, the same exponent value is used for every
data inside the Approximate Buffer. This common exponent
value is stored as metadata for the Approximate Buffer,
alongside the WorkingSize field and the StorageSize field. This
allows floating-point variables to be stored in even fewer bits
than the method described in Section III-A. A simple working
example is shown in Fig. 4. FxP1 and FxP2 are two fixed-
point based data representation using different data-width.

Data stored using the FxP1 representation are extracted
from the Approximate Buffer, converted into FP32, which
is the working datatype of this example, processed by Actor,
then written into another Approximate Buffer using the FxP2

representation. As shown in Fig. 4, FxP1 and FxP2 can be
different formats using different numbers of bits.

In order to setup an appropriate common exponent value
for the Approximate Buffer, two choices are available. The
first consists in determining the maximum value that needs
to be stored in the buffer. This can easily be done with an
image processing pipeline, as pixels composing an image have
bounded values. These values will vary in a predictable way
depending on what image processing operations are applied.
However, this might not be possible with an application
processing unpredictable data. In the second approach, if
the exponent value needed to store the data is higher than
the current exponent value of the buffer, then the whole
buffer can be re-evaluated to fit this new exponent. While
this means that the previously stored data will lose some
precision, it enables storing values that would otherwise end
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up overflowing. The main drawback of this storage method is
that Approximate Buffers containing variables across a wide
range might have their smallest values rounded to zero, which
might be problematic with some applications. This issue may
be solvable by using a custom floating-point representation.
This approach will be investigated in future work.

IV. RESULTS

The proposed method was applied to two use cases to
demonstrate its relevance as well as its drawbacks. It shows
the possible gains in terms of memory footprint with the
associated impact on output quality.

A. Results for the SDP Imaging Pipeline

The SDP Imaging Pipeline is an iterative process which in
each major cycle produces a dirty image, containing interfer-
ometry artifacts, and cleans it with a series of minor cycles that
detect sources and remove them from the image. In this use-
case, the first major cycle is a calibration cycle used to correct
antenna gains, followed by imaging cycles to detect fainter and
fainter sources. A total of 4 cycles are processed, producing an
residual dirty image each time in which fainter sources can be
resolved. The reference used for output quality measurements
are the four dirty images produced by taking the precise but
computationally-expensive direct Fourier Transform. From the
PiSDF representation of the SDP, the peak memory usage is
measured to determine an optimal buffer allocation. The size
reduction methods described in Section III are then applied
progressively on these buffers and the corresponding memory
consumption and output quality degradation are measured
and displayed in Fig. 5. The Peak Signal-to-Noise Ratio
(PSNR) values displayed are the worst results obtained by
comparing the reference dirty image of the N th iteration with
the corresponding dirty image obtained with reduced precision.

The memory footprint of the base version of the SDP is 235
MB. It can be reduced to 223 MB (-5.1%) with a PSNR of

120dB down to 180 MB (-23.4%) while keeping a PSNR value
of 70dB. From this point, reducing data precision any further
prevents the SDP Imaging Pipeline from correctly finding the
expected number of sky sources, leading to the generation of
erroneous intermediate dirty images, hence the precision dip.

As the SDP Imaging Pipeline is a complex application, it
is not possible to precisely predict the extent of the quality
degradation that comes with the use of Approximate Buffers.
Reducing data-storage accuracy of one buffer can lead to a
significant decrease in the output quality, but applying the
reduction to a second one can, in some case, almost completely
negate this degradation. Fine tuning the data-width in complex
applications can be a lengthy but necessary process. This
method leads to a performance penalty between 10 and 13% in
this application, depending of how many buffers are impacted.

This use case represents only a fraction of what the SKA
SDP aspires to be. As stated in I and II-B, the SKA SDP
pipeline will be designed to process multiple Terabit/s in real
time. This tremendous amount of data to process will be
scattered across compute nodes and is identified as one of
its significant compute challenges.

B. Results for the Wavelet algorithm

The second use-case is an image processing pipeline con-
sisting of a 2D-DWT followed by an 2D-IDWT, as shown
in a simplified way in Fig. 1b. The goal of this example
is to show that image processing algorithms can be very
resilient to precision reduction, and not just in terms of
subjective perception, and that memory footprint reduction
methods shown in this paper are not limited to applications
such as SKA.

This experiment applies the DWT to a video stream, stores
the result in Approximate Buffers, then applies the IDWT. The
output degradation compared to an unprocessed reference is
shown in Fig. 6, and compared to a FP32 result in Fig. 7.
The metrics used to evaluate quality are the PSNR and the
Structural SIMilarity (SSIM).

It shows that the data-width can be reduced from the original
32 bits of single precision floating-point representation down
to 10 bits without too much degradation, a 68.75% size
reduction. In fact, in this example, the output images obtained
by using a data-width from 22 bits and up shows the PSNR
beyond 100 dB, and are strictly identical to the output of the
reference FP32 version for data-width ranging from 29 to 32
bits.

Interestingly enough, according to Fig. 6, it appears that in
some cases such as this one, reducing the precision can lead
to better global output quality. The output image obtained by
reducing data-width from 32 down to 10-to-19 bits is closer to
the original image than the output obtained using the reference
FP32 data representation, with a PSNR value above 48.1dB.

V. CONCLUSION

This paper presents a new AxC technique oriented not
toward reducing the computation intensity of an application
but rather reducing its memory footprint. It stores data encoded
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with a variable number of bits into buffer, while allowing the
use of alternative data representations to mitigate the loss of
precision.

We have shown the relevance of these methods in ap-
plications such as the SDP Imaging Pipeline, an important
component of the SKA processing, as well as in a classic
image processing algorithm. It displays promising results in
both memory footprint reduction and output quality tolerances.

An interest of our work is to enable memory-constraint
architectures to process algorithms which previously had too
large a memory footprint. Another interest is also to improve
performance on parallel architectures bounded by their mem-
ory or interconnect bandwidth, such as multi-core embedded
systems, multi-node HPC systems or hardware accelerators.

The proposed method will first be extended to the use of
custom floating-point representations to mitigate the output
quality degradation even further and increase memory savings.

As our method only requires the modification of data access
schemes in the code associated with PiSDF FIFO buffers,
future work will be to extend and integrate the proposed AxC
technique in PREESM to provide a solution without any user
code modification.
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