
1

Implementation of a High-Throughput Fast-SSC
Polar Decoder with Sequence Repetition Node

Haotian Zheng, Alexios Balatsoukas-Stimming, Zizheng Cao, Ton Koonen
Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

{h.zheng, a.k.balatsoukas.stimming, z.cao, a.m.j.koonen}@tue.nl

Abstract—Even though polar codes were adopted in the latest
5G cellular standard, they still have the fundamental problem
of high decoding latency. Aiming at solving this problem, a fast
simplified successive cancellation (Fast-SSC) decoder based on
the new class of sequence repetition (SR) nodes has been proposed
recently in [1] and has a lower required number of time steps than
other existing Fast-SSC decoders in theory. This paper focuses
on the hardware implementation of this SR node-based fast-SSC
(SRFSC) decoder. The implementation results for a polar code
with length 1024 and code rate 1/2 show that our implementation
has a throughput of 505 Mbps on an Altera Stratix IV FPGA,
which is 17.9% higher with respect to the previous work.

I. INTRODUCTION

Polar codes are the first provably capacity-achieving channel
codes with an explicit construction, low-complexity encoding
and decoding algorithms, and easily adaptable coding rate [2].
Although the capacity of binary symmetric memoryless chan-
nels can be achieved using the low-complexity successive
cancellation (SC) decoding algorithm, the sequential nature of
SC decoding typically leads to a large decoding latency, which
constrains its application in high-throughput and low-latency
communication scenarios such as 5G and optical wireless com-
munications [3]. A simplified successive cancellation (SSC)
decoder was proposed in [4], where fast decoding methods are
described for subcodes of the polar code (called constituent
codes) that consist either of only information bits or of
only frozen bits. Following this idea, other constituent codes
with special information bit patterns and their corresponding
fast decoders were identified in [5]–[8]. The family of these
decoding algorithms is often referred to as fast-SSC decoding.
To increase the number of fast decoding constituent codes, [9],
[10] altered the polar code construction to further improve
latency at the cost of a small error-correcting performance
degradation. Methods to optimize the memory footprint of
fast-SSC decoders were described in [11].

The work of [1] proposed a new class of sequence repetition
(SR) constituent codes, which is a generalization of most
existing constituent codes. It was also shown that the decoding
of SR constituent codes can be highly parallelized to achieve
further latency reduction compared to the state of the art
without tangibly affecting the error-correcting performance.
However, the work of [1] only focused on the algorithmic
aspects of SR constituent codes and no hardware implemen-
tation has been reported in the literature.

Contribution: In this work, we describe a hardware archi-
tecture for a fast-SSC decoder that exploits the SR constituent
codes described in [1] and we provide FPGA implementation
results. Even though our proposed implementation is not yet

Channel LLR α1
3

N 1
3

N 1
2 N 2

2

N 1
1 N 2

1 N 3
1 N 4

1

N 1
0 N 2

0 N 3
0 N 4

0 N 5
0 N 6

0 N 7
0 N 8

0

û [1] û [2] û [3] û [4] û [5] û [6] û [7] û [8]

α1
2

β1
2

α2
2

β2
2

α1
1

β1
1

α2
1

β2
1

α3
1

β3
1

α4
1

β4
1

α1
0

β1
0

α2
0

β2
0

α3
0

β3
0

α4
0

β4
0

α5
0

β5
0

α6
0

β6
0

α7
0

β7
0

α8
0

β8
0

Fig. 1. SC decoding tree representation of a polar code with N = 8.

highly optimized, it still achieves a 17.9% higher decoding
throughput than the state of the art.

II. BACKGROUND

A. Polar Codes
A polar code with code length N = 2n and information

length K is denoted by P (N,K) and has rate R = K/N .
The input bit sequence u consists of K information bits whose
positions form set A and N −K frozen bits whose positions
form Ac. The values of the frozen bits are usually set to 0. The
encoded bit sequence can be calculated as x = uGN , where
GN = RNF⊗n2 is the generator matrix of the polar code, RN

is a bit-reversal permutation matrix and F2 = [1 0
1 1].

B. SC and Fast-SSC Decoding
1) Algorithm: SC decoding of polar codes can be repre-

sented as the traversal of a binary tree as in Fig. 1. The
i-th node at level j (1 ≤ i ≤ 2n−j) of the SC decoding
tree corresponds to a constituent code with bit index from
2j · (i− 1)+1 to 2j · i, and is denoted as N i

j . The left and the
right child nodes of N i

j are N 2i−1
j−1 and N 2i

j−1, respectively.
For N i

j , the symbol αij [k], 1 ≤ k ≤ 2j , denotes the k-th
input logarithmic likelihood ratio (LLR) value, and βij [k],
1 ≤ k ≤ 2j , denotes the k-th output binary hard-valued
message. The SC decoding follows a depth-first principle, with
priority to the left branch. When LLR messages pass to the
left and right child nodes, f and g functions over the LLR
domain are executed, respectively, which are given by

α2i−1
j−1 [k] ≈sign

(
αij [2k − 1]

)
sign

(
αij [2k]

)

·min
(
αij [2k − 1] , αij [2k]

)
,

(1)

ar
X

iv
:2

00
7.

11
39

4v
2

 [
cs

.I
T

]
 1

9
A

ug
 2

02
0

2

α2i
j−1 [k] = (−1)β

2i−1
j−1 [k]

αij [2k − 1] + αij [2k] . (2)

When the LLR value of the k-th bit at level zero αk0 , 1 ≤ k ≤
N , is calculated, the estimation of u [k], denoted as û [k], is

û [k] = β̂k0 =

{
0, if k ∈ Ac,
1−sign(αk

0)
2 , otherwise.

(3)

The hard messages are propagated back to the parent node as

β̂ij [k] =

{
β̂2i−1
j−1

[
k+1
2

]
⊕ β̂2i

j−1
[
k+1
2

]
, if mod (k, 2) = 1,

β̂2i
j−1

[
k
2

]
, if mod (k, 2) = 0.

(4)
The estimation of each bit depends on the estimation of all

previous bits in the SC decoding algorithm, which leads to a
large latency. It was pointed out in [12] that for a node N i

j , the
maximum-likelihood (ML) estimate of the vector βij

[
1 : 2j

]

can be calculated in parallel by evaluating

β̂ij
[
1 : 2j

]
= argmax
βi
j [1:2

j]∈Ci
j

2j∑

k=1

(−1)β
i
j [k] αij [k] , (5)

where Cij is the set of all the codewords associated with
node N i

j . The complexity of evaluating (5) is generally very
high. However, the main idea behind fast-SSC decoding is
that for some nodes with special frozen and non-frozen bit
patterns the evaluation of (5) can be simplified significantly.
Some prominent examples of such nodes include the Rate-0
node (2j frozen bits), the Rate-1 node (2j information bits),
the repetition (REP) node (one information bit and 2j − 1
frozen bits), and the single parity-check (SPC) node (2j − 1
information bits and one frozen bit).

The key advantage of using specific parallel decoders for the
aforementioned special nodes is that, since the SC decoding
tree is not traversed when one of these nodes is encountered,
a significant latency reduction can be achieved. For example,
if N i

j is a Rate-1 node, hard decision decoding can be used
to immediately obtain the decoding result as

β̂ij [k] = h
(
αij [k]

)
=

{
0, if αij [k] ≥ 0,
1, otherwise.

(6)

If N i
j is a REP node, all its bits are either equal to one or

equal to zero. According to (5), estimation can be obtained by
extracting the sign bit of the sum of its LLR values. If N i

j is
an SPC node, a hard decision based on (6) is first performed,
which is followed by the calculation of the parity of the output
using modulo-2 addition. The hard decision value with the
index of the least reliable bit will be flipped if the parity check
constraint is not met.

2) Fast-SSC Decoder Hardware Architectures: A typical
fast-SSC decoder contains three main modules [5]: a mem-
ory, an arithmetic logical unit (ALU), and a controller. The
memory consists of five separate sub-modules. The channel
LLR, internal LLR α, and estimation β sub-modules feed
the ALU. The instruction sub-module stores the operations
to be executed and is routed into the controller. Finally, the
codeword sub-module stores and outputs the final codeword.

Rate-0/REP

Rate-0/REP

SR node

E

r

ˆ E

r

i

j
ˆ i

j

1j 

j

r
Source node

i

j

E

r

Fig. 2. General structure of a sequence repetition node.

The ALU implements the f function given in (1), the g
function given in (2), the combining operation given in (4),
as well as the update rules for various special nodes like the
rate-1 node given in (6). Finally, the controller tracks which
node in the decoding tree is currently being decoded by using
a list of instructions that is pre-compiled based on A and Ac.

III. FAST-SSC DECODING WITH SEQUENCE REPETITION
NODES

A. Sequence Repetition Node

Let N i
j be a node at level j of the binary tree representation

of SC decoding as shown in Fig. 1. An SR node is any node at
stage j for which all its descendants are either Rate-0 or REP
nodes, except the rightmost one at a certain stage r, 0 ≤ r ≤ j,
that is a generic node of rate C. The general structure of an
SR node is depicted in Fig. 2. The rightmost node N i×2j−r

r

at stage r is denoted as the source node of the SR node N i
j .

Let E = i× 2j−r so the source node can be denoted as NE
r .

An SR node can be represented by three parameters as
SR(v,SNT, r), where r is the level of the SC decoding tree
in which NE

r is located. SNT is the source node type, and as
shown in [1], SNT ∈ {Rate-0,Rate-1,EG-PC,Rate-C}. The
EG-PC node is a node at level j having all its descendants as
Rate-1 nodes except the leftmost one at a certain level r < j,
that is a Rate-0 or REP node. Rate-C is a generic node of
rate C. When SNT ∈ {Rate-0,Rate-1,EG-PC}, the source
node is a special node whose bits are all non-frozen except
the leftmost b bits, where

b =





0, if SNT=Rate-1,
1, if SNT=Rate-0,

2h or 2h − 1, if SNT=EG-PC,
(7)

and where h < r − 1 is the level of the leftmost Rate-0/REP
node of the EG-PC node. Note that the source node has a
minimum length of 2 as all the possible frozen bit patterns
with length 2 fall into the above category. The vector v =
(v [j] , v [j − 1] , . . . , v [r + 1]) has length (j − r) such that for
the left child node of the parent node of NE

r at level k, r <
k ≤ j, v [k] is calculated as

v [k] =

{
0, if the left child node is a Rate-0 node,
1, if the left child node is a REP node.

(8)

Note that when r = j, N i
j is a source node and thus v is an

empty vector denoted as v = ∅.

3

B. Repetition Sequence

In this subsection, we define repetition sequences, which
can be used to calculate the output bit estimates of an SR
node based on the estimates of its source node. To derive
the repetition sequences, v is used to generate all the possible
sequences that have to be XORed with the output of the source
node to generate the output bit estimates of the SR node. Let
ηk denote the rightmost bit value of the left child node of the
parent node of NE

r at level k+1. When v[k+1] = 0, the left
child node is a Rate-0 node so ηk = 0. When v[k+1] = 1, the
left child node is a REP node, thus ηk can take the value of
either 0 or 1. The number of repetition sequences is dependent
on the number of different values that ηk can take. Let Wv

denote the number of 1’s in v. The number of all possible
repetition sequences is thus 2Wv . Let S = {s1, . . . , s2Wv }
denote the set of all possible repetition sequences.

The output bits of SR node βji [1 : 2j] have the property that
their repetition sequence is repeated in blocks of length 2j−r.
Let βEr [1 : 2r] denote the output bits of the source node of an
SR node N i

j . The output bits for each block of length 2j−r

in N i
j with respect to βEr [1 : 2r] can be written as

βij
[
(k − 1) 2j−r + 1 : k2j−r

]
= βEr [k]⊕ sl, (9)

where k ∈ {1, . . . , 2r} and sl = {sl[1], . . . , sl[2j−r]} is the l-
th repetition sequence in S. To obtain the repetition sequence
sl and with a slight abuse of terminology and notation for
convenience, the Kronecker sum operator � is used, which
is equivalent to the Kronecker product operator, except that
addition in GF(2) is used instead of multiplication. For each
set of values that ηk’s can take, sl can be calculated as

sl = (ηr, 0)� (ηr+1, 0)� · · ·� (ηj−1, 0) . (10)

For a given code, the locations of SR nodes in the decoding
tree are fixed and can be determined offline. Therefore, the
repetition sequences in S of all of the SR nodes can be pre-
computed and used in the course of decoding.

C. Decoding of SR Nodes

To decode SR nodes, the LLR values αErl [1 : 2r] of the
source node NE

r associated with the l-th repetition sequence
sl are calculated based on the LLR values αij [1 : 2j] of the SR
node N i

j and repetition sequence sl by the following equation
which is proved in [1, Proposition 1]

αErl [k] =

2j−r∑

m=1

αij
[
(k − 1) 2j−r +m

]
(−1)sl[m]

. (11)

Using (9) and (11), (5) can be written as [1, (20)]

β̂ij = argmax
βE
r [1:2r]∈CE

r

l∈{1,...,|S|}

2r∑

k=1

(−1)β
E
r [k]

αErl [k] . (12)

Thus, the bit estimates of an SR node β̂ij
[
1 : 2j

]
can be

calculated by finding the bit estimates of its source node
βEr [1 : 2r] and the repetition sequence using (12), and then
combine them as shown in (9).

Algorithm 1: Decoding algorithm of SR node N i
j

Input: αij
[
1 : 2j

]
, S;

Output: β̂ij
[
1 : 2j

]
;

// Step 1: Soft message computation
for l ∈ {1, . . . , |S|} do

Calculate αErl according to (11).
end
// Step 2: Decoding of source node NE

r

for l ∈ {1, . . . , |S|} do
if SNT=Rate-C then

Decode source node NE
r using αErl to get β̂Erl .

else
β̂Erl [k] = h

(
αErl [k]

)
, k ∈ {1, . . . , 2r}.

if SNT 6= Rate-1 then
Perform parity check and bit flipping on β̂Erl

using αErl .
end

end
end
// Step 3: Comparison and selection

l̂ = argmax
l∈{1,...,|S|}

2r∑

k=1

∣∣αErl [k]
∣∣ . (13)

Return β̂ijl̂ to parent node according to (9).

The decoding algorithm of an SR node N i
j is described

in Algorithm 1. The algorithm first calculates αErl to obtain
the soft messages that go into the source node for the lth

repetition sequence sl, l ∈ {1, . . . , |S|}. αErl , β̂Erl , and β̂ijl
are the soft and hard messages associated with sl. Then, the
source node is decoded under the rule of the SC decoding.
If the source node is a special node, a hard decision is made
directly. Parity check and bit flipping will be performed further
using Wagner decoding if SNT 6= Rate-1. Finally, the index
of the optimal repetition sequence can be selected according
to the comparison in (13) and the decoding result is obtained
according to (9). Based on Algorithm 1, the SR node-based
fast-SSC (SRFSC) decoding algorithm is proposed. It follows
the SC decoding algorithm schedule until an SR node is
encountered where Algorithm 1 is executed.

IV. ARCHITECTURE OF SRFSC DECODER

The top-level architecture of the proposed SRFSC decoder is
shown in Fig. 3. When decoding starts, the instructions for the
polar code that is being decoded are fetched by the controller
and the channel LLRs are loaded into memory. The controller
decodes the instructions to get the node schedule and updates
the decoding stage parameters accordingly. The updates in
the controller follow the principle of SC decoding until an
instruction corresponding to an SR node is reached, where the
SR module is activated to process the LLRs. The estimation
results from both the SR module and processing module are
routed into the partial sum network (PSN) module, from
where the estimated codeword is also output when decoding

4

Controller

Memory

Repetition Sequence

SR

PSNPE1 PEP

Instructions

Estimate

Channel

Fig. 3. Top-level architecture of the proposed SRFSC decoder.

SRstage SourceStage FroNum SeqNum NodeType

 2 2log 1 log P  2 2log 1 log P 2log
2

 
 
 

P 2
2

log
log

2

 
 
 

P
  2log , ,NT N P

Fig. 4. Instruction structure of the proposed SRFSC decoder.

terminates. In the following, the architecture of the various
individual modules is discussed in detail.

A. Memory, Processing, and PSN Modules

The architectures of these three modules are identical with
those presented in [13] and we thus only describe them on a
high level. The memory module stores all soft messages α. The
update of hard estimates β is in the partial sum network (PSN)
module. A set of P processing elements (PEs) is instantiated in
the processing module to process up to 2P LLRs in parallel. A
PE implements both the f and the g function using sign-and-
magnitude representation and the appropriate output is selected
according to the current decoding stage.

B. Controller Module

The operation in the controller module follows the standard
SC decoding schedule until an instruction that indicates an SR
node is found. When this occurs, the 2P LLRs will be routed
to the SR module instead of the processing module to perform
the decoding of SR node in Algorithm 1. The required number
of clock cycles to decode the SR node by the SR module is pre-
calculated and a counter is initialized to this value. All updates
in the controller are suspended until the counter reaches zero.
Then, the decoding bit index is added the length of the SR
node and the updates resume. Although the Rate-0 and Rate-1
nodes can also be represented as special cases of SR nodes, the
controller will bypass the SR module and signal the processing
module to execute immediate decoding for these two nodes so
that there is no additional latency.

The structure of the instructions used in the controller is
shown in Fig. 4. The instructions contain all the required
information to decode an SR node and they are stored in

memory according to the visiting order in the decoding tree.
The elements SRstage, SourceStage, FroNum, SeqNum
and NodeType in the instruction represent the stage of SR
node, the stage of source node, the number of frozen bits in
source node, the base 2 logarithm of the number of repetition
sequences and the node type, respectively.1 Moreover, the
vector v is replaced with SRstage, SeqNum and NodeType
since these three elements can be used directly in the decoder,
so that additional calculations (e.g., (10)) can be avoided.
NodeType is in fact a pointer to the memory of repetition
sequences. As only nodes with SeqNum > 0 have non-
zero repetition sequences that need to be stored, NodeType
refers to these node types and is used as pointer to find their
corresponding repetition sequences in the memory.

The different repetition sequences in the SR node are
processed in parallel. Since a maximum of 2P LLRs are input
to the SR module each time, we have the constraint

2SRstage+SeqNum ≤ 2P. (14)

All SR nodes that meet this constraint can be handled, while
others are divided into smaller nodes. Therefore, SRstage
and SourceStage always have values between 0 and
1 + log2 P . FroNum can be calculated according to (7) and
thus have values between 0 and P/2. Consider source node
with a minimum length of 2. Then, the maximum value of
SeqNum is constrained by 21+2SeqNum ≤ 2P . Thus, SeqNum
has values between 0 and 1

2 log2 P . As for NodeType, it
has values between 0 and NT (N, A, P), where NT is a
function of N , A and P , which depends on the polar code
being decoded.

As an example, we consider a set of 5G polar codes [14] of
length N = 1024 and rates R = 1/2, R = 1/4, and R = 3/4.
For a code length of N = 1024, P = 64 is shown to be
a reasonable choice [11]. With these parameters, in Fig. 4,
SRstage and SourceStage take values in {0, 1, . . . , 7},
FroNum takes values in {0, 1, . . . , 3}, and SeqNum takes
values in {0, 1, 2}. The three considered codes contain a total
of six SR nodes with SeqNum > 0. As such, NodeType takes
values in {0, 1, . . . , 6}. Specifically, when NodeType = 0,
the node only has an all-zero repetition sequence and the re-
maining values represent the six SR nodes with SeqNum > 0.
From the above analysis, the size of each instruction for the
considered example is 13 bits.

C. SR Module

The ranges of some elements in the instructions are variable
and depend on the set of supported polar codes. Thus, some
of the data widths in the SR module are also variable and it
is difficult to give a fully generic explanation of our proposed
architecture. For this reason, we consider the previous example
of N = 1024, R ∈ {1/2, 1/4, 3/4}, and P = 64. The
architecture of the SR module for this example is shown
in Fig. 5. The submodules with red, blue, and green color
correspond to the operations in Step 1, Step 2, and Step 3 in

1Note that we use FroNum instead of SNT because no SR node with a
Rate-C node as its source node is found for the code length (N = 1024) and
rates (R = 1/2, 1/4, 3/4) that we consider in Section V

5

4-layer

adder tree

7-layer CS

tree

7-layer

adder tree

2-layer CS

tree

Repetition

Sequence
XOR

Cmd1

16Q

2P Q

4Q
Cmd2

Cmd3

2P Q

Cmd4

4Q

4 7bits

2-layer

adder tree

0

Parity Check
SR bits

generation

Repetition

Sequence

0

2PCmd1

Cmd2

Cmd3

Cmd4

Step 1

Step 2

Step 3

2P

Fig. 5. Example of the SR module architecture for N = 1024, R ∈ {1/2, 1/4, 3/4}, and P = 64.

Algorithm 1, respectively, and are explained in more detail in
the sequel.

Step 1: This part of the SR decoder is used to calcu-
late the input LLRs into the source node if SRstage 6=
SourceStage. In the XOR submodule, the first 2SRstage

LLRs in the 2P inputs are repeated 2SeqNum times so that
the decoding for different repetition sequences can be han-
dled in parallel. The repetition sequences are obtained us-
ing NodeType. They will be XORed with the sign bit of
the 2SeqNum input repetitions according to (11). The XOR
result of different repetition sequences are concatenated and
expanded into a vector of length 2P by appending zeros
if 2SRstage+SeqNum < 2P . Then, the LLR vector enters
a (1 + log2 P)-layer adder tree that performs the addition
of LLRs in (11). The command signal Cmd1 = 7 −
(SRstage− SourceStage) is pre-calculated in the control
module and it is used in the adder tree to decide the addition
result of which layer will be output by a multiplexer. Those
outputs from the adder tree are the input LLRs of the source
node for different repetition sequences. In the considered
example, there exist 2SourceStage+SeqNum ≤ 16 for SR node
whose SRstage 6= SourceStage. Moreover, all LLRs are
quantized using Q bits. Thus, the data width of the adder tree
output is 16Q bits.

Step 2: This part of the SR node is used to perform
the parity-check and bit-flipping steps for the source node.
The LLRs of the source node first enter a (1 + log2 P)-layer
compare-select (CS) tree. Processing units in the CS tree exe-
cute the f function to decode SPC node. There are two cases
where more than one SPC nodes will be decoded in parallel
in our design: 1) when FroNum = 1 and SeqNum > 0,
there are 2SeqNum SPC nodes which correspond to different
repetition sequences and are decoded simultaneously, and 2)
when FroNum = 2 and FroNum = 3, the decoding of source
node can be viewed as a parallel decoding of 2 and 4 SPC
nodes, respectively [1]. The length of the SPC node decides
the layer from which the index of the least reliable input and
the f function result are selected. As the length of the SPC
node can be calculated as 2SourceStage+1−FroNum, the output

layer selection signal Cmd4 has the following representation

Cmd4 =

{
7, FroNum = 0,

6− SourceStage+ FroNum, otherwise.
(15)

Since the maximum number of parallel SPC nodes in our
example is 4, the output indices and LLRs have a data width
of 4× 7 and 4Q bits, respectively. Note that the output LLRs
goes both to the parity check module and a 2-layer adder tree.
This is because all SPC nodes have an even parity constraint
except when FroNum = 3, where SPC nodes can have an
even or odd parity constraint which is calculated according
to [1, (16)] and implemented by a 2-layer adder tree.

The parity constraint type, the output indices, and LLRs are
then input into the parity-check submodule to do the parity
check and bit flipping on these SPC nodes using [1, (13)].
Then, the estimated bits of these SPC nodes are concatenated
to form the estimated bits of source node and they are XORed
with the repetition sequence to generate the estimated bits of
SR node in the SR bits generation submodule according to (9).
Finally, the SR bits corresponding to the repetition sequence
with the index value from Step 3 are selected as the output.

Step 3: This part of the SR decoder is
executed in parallel with Step 2 to evaluate (13)
using a (SourceStage+ SeqNum)max-layer
adder tree and SeqNummax-layer CS tree, where
(SourceStage+ SeqNum)max is the maximum value
of (SourceStage+ SeqNum) for all SR nodes with
SeqNum > 0 and SeqNummax denotes the maximum
value of SeqNum. As only magnitudes of LLRs are used
for addition in (13), all inputs are positive. As a result,
the processing unit in the 4-layer adder tree is simpler
than that in the 7-layer adder tree in Step 1 because it
does not need to compare magnitudes. The output of the
adder tree is selected by the output layer selection signal
Cmd2 = 4 − SourceStage and has a bit-width of 4Q as
there are at most 4 repetition sequences in the considered
example. The four sums are then input into the 2-layer CS
tree to find the index of the maximum using selection signal
Cmd3 = 2 − SeqNum. Finally, the index is obtained from a

6

1 2 3 4

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

FE
R

1 2 3 4

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

B
E

R

floating point [5], Q (6, 4, 1)

This work, Q (6, 4, 0)

Fig. 6. Floating-point and fixed-point FER and BER performance for SRFSC
decoding of 5G polar codes P (1024, 512) [14].

multiplexer and the value is 0 if SeqNum = 0 and the output
from the CS tree otherwise.

V. IMPLEMENTATION RESULTS

The proposed decoder has been implemented using VHDL
and targeting an Altera Stratix IV EP4SGX530KH40C2 FPGA
device. Channel LLRs are generated by transmitting random
codewords through an additive white Gaussian noise (AWGN)
channel after binary phase-shift keying (BPSK) modulation.
A quantization scheme Q (6, 4, 0) has been used, where
Q (Qi, Qc, Qf) are the quantization bit size for internal
LLRs, channel LLRs, and fraction bit size for both internal
and channel LLRs, respectively. This scheme leads to an error-
correcting performance that is very close to that of the floating-
point implementation, as shown in Fig. 6.

Table I compares the proposed decoder with other state-
of-the-art works. As can be seen, the proposed SRFSC de-
coder provides a 17.9% and 31.7% throughput improvement
compared to the architectures presented in [11] and [5],
respectively. This is mainly due to a 9.9% and 22.4% higher
fmax with respect to [5] and [11]. The number of CLKs in our
work is slightly higher than that in [11]. This is because of the
insertion of some registers to decrease certain critical paths and
because we have not merged f ad g operations as was done
in [11]. In addition, a total of 186, 200 CLKs are required at
rates 1/4, 3/4, respectively. In terms of the used LUTs, this
work requires an increase of 23.2% and 187.5% compared
to [11] and [5], respectively. As far as the memory size is
concerned, although our decoder uses fewer RAM bits, the
required number of registers is about 8 times higher compared
to [5], [11]. The big difference in registers can be mostly
attributed to the separate storage of channel and internal LLRs
in synthesis. Internal LLRs are stored in RAM and channel
LLRs are arranged in registers, while in other works both are
stored in RAM.

TABLE I
FPGA IMPLEMENTATION RESULTS FOR P (1024, 512).

[5] [11] This Work

Quantization Q (6, 4, 1) Q (6, 4, 1) Q (6, 4, 0)

P 64 64 64
LUTs 6126 14300 17615

Registers 1223 1216 10505
RAM (bits) 23592 18350 16128

Instruction size 5 bits 6 bits 13 bits
of Instruction 209 157 41
of CLKs 266 214 222
fmax (MHz) 99.8 89.6 109.6
T/P (Mps) 384 428.6 505.6

VI. CONCLUSION

In this paper, we presented the first FPGA implementation
of the SRFSC decoder for polar codes. To this end, we
designed a dedicated architecture for the SR node processor.
For a 5G polar code with length 1024, code rate 1/2 and
P = 64 processing units, we obtained a 17.9% improvement
in throughput over the previous work.

REFERENCES

[1] H. Zheng, S. A. Hashemi, A. Balatsoukas-Stimming, Z. Cao, A. M. J.
Koonen, J. Cioffi, and A. Goldsmith, “Threshold-based fast successive-
cancellation decoding of polar codes,” arXiv:2005.04394, 2020.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[3] T. Koonen, K. A. Mekonnen, F. Huijskens, Q. Pham, Z. Cao, and
E. Tangdiongga, “Fully passive user localization for beam-steered high-
capacity optical wireless communication system,” J. Lightw. Technol.,
pp. 1–1, Mar. 2020.

[4] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, Dec. 2011.

[5] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar
decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 946–957, May. 2014.

[6] M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of
polar codes: identification and decoding of new nodes,” IEEE Commun.
Lett., vol. 21, no. 11, pp. 2360–2363, Nov. 2017.

[7] C. Condo, V. Bioglio, and I. Land, “Generalized fast decoding of polar
codes,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec.
2018, pp. 1–6.

[8] H. Gamage, V. Ranasinghe, N. Rajatheva, and M. Latva-aho, “Low
latency decoder for short blocklength polar codes,” arXiv:1911.03201,
2019.

[9] P. Giard, G. Sarkis, C. Thibeault, and W. J. Gross, “A 638 Mbps low-
complexity rate 1/2 polar decoder on FPGAs,” in IEEE Int. Workshop
on Sig. Proc. Systems (SiPS), Oct. 2015, pp. 1–6.

[10] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J.
Gross, “Fast low-complexity decoders for low-rate polar codes,” J. Sign.
Process. Syst., vol. 90, no. 5, pp. 675–685, May. 2018.

[11] F. Ercan, C. Condo, and W. J. Gross, “Reduced-memory high-throughput
fast-SSC polar code decoder architecture,” in IEEE Int. Workshop on Sig.
Proc. Systems (SiPS), Oct. 2017, pp. 1–6.

[12] G. Sarkis and W. J. Gross, “Increasing the throughput of polar decoders,”
IEEE Commun. Lett., vol. 17, no. 4, pp. 725–728, Apr. 2013.

[13] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[14] 3GPP, “3GPP TS RAN 38.212 v1.2.1,” Dec. 2017. [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/38 series/38.212/38212-f30.zip.

http://www.3gpp.org/ftp/Specs/archive/38_series/38.212/38212-f30.zip.

	I Introduction
	II Background
	II-A Polar Codes
	II-B SC and Fast-SSC Decoding
	II-B1 Algorithm
	II-B2 Fast-SSC Decoder Hardware Architectures

	III Fast-SSC Decoding with Sequence Repetition Nodes
	III-A Sequence Repetition Node
	III-B Repetition Sequence
	III-C Decoding of SR Nodes

	IV Architecture of SRFSC decoder
	IV-A Memory, Processing, and PSN Modules
	IV-B Controller Module
	IV-C SR Module

	V Implementation Results
	VI Conclusion
	References

