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Abstract—This paper describes a scalable, highly portable, and
energy-efficient generator for massive multiple-input multiple-
output (MIMO) baseband processing systems. This generator is
written in Chisel and produces hardware instances for a scalable
massive MIMO system employing distributed processing. The gen-
erator is parameterized in both the MIMO system and hardware
datapath elements. Coupled with a Python-based system simulator,
the generator can be adapted to implement other baseband
processing algorithms. To demonstrate the adaptability, several
generator instances with different parameter values are evaluated
by FPGA emulation. In addition, a beamspace calibration and
channel denoising algorithm are applied to further improve the
channel estimation performance. With those algorithms, the error
vector magnitude can be reduced by up 9.2%.

Index Terms—massive MIMO, generator, beamforming,
beamspace, FPGA-emulation

I. INTRODUCTION

Innovations in capacity-achieving codes and efficient modula-
tion techniques have brought the spectral efficiency of wireless
point-to-point systems close to the theoretical Shannon limit [1].
By increasing the spatial resolution with hundreds to thousands
of antennas at the base station (BS), massive MIMO can
support numerous users in the same time-frequency resource by
providing each user with their interference-free, high-capacity
link to the BS [2]. For this reason, massive MIMO can be widely
considered as the energy-efficient, secure, and robust approach
to increase the channel capacity and reduce interference [3],
[4].

While the massive MIMO concept is attractive, implementing
the system in a cost-efficient and energy-efficient way is
challenging. Centralized processing architectures, which collect
the data from all front-ends and process them centrally, highly
depend on interconnection bandwidth and require complex router
designs. GPU-based software-defined radio (SDR) solutions
have been explored for algorithm development, but they are
not energy-efficient for large-scale deployment. One way to
achieve energy efficiency is hardware specialization. To reduce
the design cost, improve energy efficiency [5], [6], and enable
hardware design reusability across FPGA and ASIC solutions,
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Fig. 1. The scalable massive MIMO BS architecture for uplink.

especially for signal processing tasks [5], [7], modular and
highly parameterizable hardware generators should be used.

Our prior work proposed a generator for massive MIMO
baseband processing systems to improve the scalability, cost-
efficiency, and energy-efficiency [8]. The generator is imple-
mented with the maximum-ratio-combining (MRC) beamform-
ing algorithm. However, to adapt the existing architecture
to other signal processing algorithms, such as beamspace
domain algorithms to improve performance, modular design
is needed. Due to the modular design of the generator, other
algorithms can be applied with a modest effort. This work
showcases the modular design of the generator through a low-
overhead implementation of the beamspace channel estimation
(BEACHES), a beamspace-domain channel denoiser.

The paper is organized as follows. Section II gives an overview
of the scalable massive MIMO uplink baseband processing
system, the calibration and the BEACHES algorithms, and
the Spine generator design. Section III details the “golden”
model simulator integrated with the calibration and BEACHES
algorithms, and FPGA emulation setup for the generator
evaluation. The performance is demonstrated and analyzed in
Section IV.

II. SYSTEM OVERVIEW

Fig. 1 shows the system architecture. The BS is assembled
from three types of modules. Head modules are the mm-wave
(or radio frequency) front-ends. Spine modules are the MRC
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Fig. 2. Signal packet format.

beamformers for sub-arrays and are connected in a daisy chain
architecture. The Tail module performs frequency-selective
decorrelation to remove inter-symbol and inter-user interference.

A. Two-stage beamforming

To perform energy-efficiency signal processing, a two-stage
beamforming algorithm has been proposed [9]. The first stage
is the frequency-flat MRC beamformer to maximize the output
signal-to-noise-ratio (SNR). The frequency-flat channel matrix
is estimated from user-transmitted time-interleaved Golay pilots.
The MRC beamformer can be split into subarrays of antennas;
then, each subarray’s locally-beamformed results are summed
via the daisy chain.

Assume that a multi-user MIMO (MU-MIMO) system con-
tains K users and M antennas at the BS; let H ∈ CM×K be
the channel matrix, and y ∈ CM be the signal received at the
BS. Let ỹMRC ∈ CK be the MRC beamformed signal at the
BS. Let N equal to the number of sub-arrays, Bi ∈ CM/N×K

where 0 < i < N , H = [BH
1 BH

2 ... BH
N ]H , and yi ∈ CM/N is

the received signal at i-th sub-array. Then

ỹMRC =

N∑
i=1

ỹi,MRC =

N∑
i=1

BH
i yi. (1)

In the second frequency-selective decorrelation stage, zero-
forcing is performed for each narrow subcarrier within the
wideband channel. This is estimated from user-transmitted time-
interleaved orthogonal frequency division multiplexing (OFDM)
pilots, sent after the Golay pilots. This two-stage beamforming
method removes the inter-user interference and increases the
signal-to-interference-plus-noise ratio (SINR) in a distributed
fashion.

Quadrature amplitude modulated (QAM) payloads are sent
from all users simultaneously, following the OFDM pilots. To
synchronize the BS and users, a beacon signal is propagated to
all users from the BS at the beginning of each packet to work
as a time reference. Fig. 2 shows the signal packet format.

B. In-situ calibration

The channel matrix estimate from Golay pilots embeds
array nonidealities, such as receiver gain and phase offsets,
which inhibits beamspace algorithms because the resulting
beamspace-domain channel vectors are not necessarily sparse.
By leveraging the sparsity of the mm-wave channel by using
compressive techniques, these array offsets can be de-embedded
and calibrated out [10].

This proposed method estimates the spatial frequency differ-
ence between different pairs of sources in the line of sight
(LoS) paths. After rotating all channel-user pairs to align
the LoS components, the strongest common direction can be
observed using spectral decomposition, yielding the calibration
coefficients.

C. BEACHES algorithm

After calibration, the calibration coefficients are multiplied by
the MRC beamformer coefficients to leverage the sparsity. The
BEACHES algorithm [11] is then used to denoise the calibrated
MRC channel matrix. For the estimated channel vector h of each
user, BEACHES first converts the channel into the beamspace
using a discrete Fourier transform (DFT) to obtain h̄ = Fh,
where F is the M ×M DFT matrix. Then it performs soft-
thresholding on the entries of beamspace channel vector h̄. To
find a MSE-optimal threshold τ?, BEACHES relies on Stein’s
unbiased risk estimator (SURE) as a proxy for the actual MSE
between the denoised channel estimate and the ground-truth
channel. After soft-thresholding the magnitudes of entries of h̄
by τ?, BEACHES converts the denoised channel vector back
to the antenna domain using an inverse DFT.

For the denoised MRC beamforming, the calibration coeffi-
cients are removed from the denoised channel matrix because
the Spine system has already included the channel synchro-
nization in time domain. Then the denoised MRC beamformer
coefficients are sent to the beamformer.

D. The Spine Generator

Generators are modular, highly parameterizable register-
transfer level (RTL) hardware designs implemented in a higher-
level programming language to enable parametrization and de-
sign reuse via generator extension. The Spine generator is written
in Chisel [12], a hardware construction language that facilitates
parameterized circuit generation for both ASIC and FPGA
digital logic designs. The Spine generator is parameterized in the
number of channels per Spine, the number of users in the system,
the oversampling rate, the number of root-raised cosine (RRC)
filter taps, the Golay pilot design, the Lagrange polynomial
order, the datapath bitwidth, and the datapath parallelization.
The Spine datapath is shown in Figure 3. This paper extends
the Spine generator to enable signal processing associated with
beamspace algorithms.

The inputs are M channels of 2x oversampled in-phase and
quadrature (IQ) signals, which the degree of parallelism deter-
mined at the configuration time. First, a few signal correction
modules, which include the RRC filter, IQ synchronizer and DC
cancellation, correct some frontend impairments. Then, a set
of channel estimators controlled by a sequencing controller
correlate the pilot sequences to extract the channel matrix
and channel delays, which are then synchronized for the next
packet. These synchronized channels are then beamformed in
the MRC beamformer, which is a systolic array based matrix
multiplier. After beamforming, each user’s delay is estimated
then tuned out by using a fine delay synchronizer and a
downsampling phase selector. The final outputs are the K users’
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MRC beamformed signals summed with the signal coming
from the previous neighboring Spine in the daisy chain, sent
to the next neighboring Spine. The parameters of each module
generator are shown in the light blue boxes.

III. EVALUATION

A. Simulator

A Python-based simulator is built to model the end-to-end
massive MIMO system. The simulator encompases both the BS
and the terminals, and includes the packet generation, various
channel models, front-end impairments, and the modular signal
processing. The simulator can wrap around any instance from
the Chisel generator described in Section II by generating
raw samples and post-processing the results. The calibration
and BEACHES algorithms are implemented in MATLAB, but

integrated into the simulator via a MATLAB-to-Python API,
Matlab Engine API for Python [13]. After the MRC channel
estimation, the simulator calls the calibration and BEACHES
functions from MATLAB to denoise the channel matrix. This
simulator is treated as the “golden” model against which the
generator is verified.

The system data flow is shown in Fig. 4, where the solid rect-
angles represent Python functions, and the dash-dot rectangles
represent MATLAB functions. In Python, user signal packets are
generated according to the system parameters. Besides the flat
independently and identically distributed (i.i.d) channel model,
the line-of-sight (LoS) channel model, and the Rician channel
model, all of which already exist in the Python simulator, we
also include the QuaDRiGa mmMAGIC urban micro line-of-
sight (QuadMMLoS) channel model implemented in MATLAB.
QuaDRiGa channel model is an enhancement of the WINNER
model following a geometry based, stochastic channel modelling
approach for MIMO [14]. Compared with the LoS channel
model, the QuadMMLoS includes the gain difference between
users. QuadMMLoS channel matrix generation is called from
Python through the API if the channel model is set to be
QuadMMLoS in the system parameters; Otherwise, the channel
matrix is generated in Python. Channel simulation includes
transceiver frontend simulation and Gaussian noise addition.

For FPGA emulation, the Python simulator generates control
and configuration Tcl files and calls Xilinx Vivado to build
the FPGA image. Details will be discussed in the next section.
For the simulation, Golay pilots received at the BS are used to
perform the channel estimation for the MRC beamformer. If
BEACHES is selected at configuration time, the calibration and
BEACHES MATLAB functions are called from Python through
the API, and the denoised channel matrix is then returned back to
Python. Then the MRC beamforming and the frequency-selective
decorrelation stage are applied in the Python simulator. After
the two-stage beamforming, the Python simulator calculates the
bit error rate (BER), the signal-to-interference-plus-noise ratio
(SINR), and the error vector magnitude (EVM).
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TABLE I
FPGA EMULATION SYSTEM PARAMETER.

Parameter Value

System
parameter

MIMO system parameter 32 channels, 4 users
Signal bandwidth 200MHz
Oversampling rate 2
Golay pilot length 64
Modulation scheme QPSK
Channel model LoS, QuadMMLoS

FPGA
parameter

FPGA Type Xilinx VCU 118
Number of channels per Spine 4
Datapath bitwidth 8
Datapath parallelization 8
Baseband clock freq 50MHz

B. FPGA Emulation

The Spine generator is implemented on a Xilinx VCU118.
The FPGA contains a Spine digital signal processing (DSP)
core, the memory system, and the clock generators for the two
clock domains. A server connects to the FPGA via JTAG to
transfer data and configure the DSP core and memory system.
The emulated BS instance contains 32 channels and 4 users.
The FPGA emulation system architecture is shown in Fig. 5.

In the emulation, the Python simulator generates the Tcl files
to configure and control the FPGA and converts the data from
floating point to fixed point data format. Then the simulation
data are transmitted to the on-board DDR4 memory. The Spine
DSP core loads the data from memory and stores back to the
memory while data are being processed, which is a streaming
operation. After signal processing, the beamformed data are
sent back to the server and are converted to the floating point
format. At the same time, the estimated MRC beamforming
channel matrix is also sent from the FPGA to the server.

To evaluate the system, the SINR of the Spine generator
with both LoS channel and QuadMMLoS channel models
are measured with a QPSK payload. The channel estimation
performance evaluation with and without the calibration and
BEACHES algorithms uses the following steps: 1) extracting
the FPGA emulated channel estimation results; 2) running the
beamspace denoising algorithm and getting the denoised channel
matrix; 3) rerunning the Python simulation but using the FPGA
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emulated channel matrix and the denoised channel matrix from
1) and 2).

IV. RESULTS

A. Performance

In [8], the Spine generator performance has been evaluated
under the flat i.i.d channel and Rician channel models with
2 users in the massive MIMO system. In this paper, the
performance of the Spine generator is further evaluated under
LoS and QuadMMLoS channel models with 4 users in the
system. The Spine DSP core with a different system setting
can be easily generated by just changing the parameters in the
generator. The MRC beamforming stage is performed on the
FPGA without the calibration and BEACHES algorithms, while
the frequency selective decorrelation stage is performed in the
Python simulator.

Fig. 6 shows the SINR vs. SNR under different channel
models. Inset a) shows the SINR under the LoS channel, while
inset b) shows the SINR under the QuadMMLoS channel.
The solid lines represent the the Python simulation result,
while the dashes represent the FPGA emulation result. The
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figure shows that for both channel models, the SINR changes
linearly with respect to the change of the SNR. The result
demonstrates the functionality of the system under LoS and
QuadMMLoS channel models, validating the chosen generator
parameters. In addition, the emulation results are very close
to the corresponding simulation results. The maximum SINR
differences between simulation and emulation are 0.17dB for
the LoS channel and 0.16dB for the QuadMMLoS channel.

B. Channel estimation performance

Fig. 7 shows the MRC channel estimation normalized mean
square error (MSE) with and without the calibration and
BEACHES algorithms with respect to SNR using the LoS and
QuadMMLoS channel models. The MSE measures the error
between the estimated channel matrix and the ground-truth
channel matrix generated from the simulator. The Golay pilot
length for the channel estimation is chosen to be 64 due to its
good performance [8]. The dashed lines represent the FPGA-
emulated channel matrix MSE, and the solid lines represent the
denoised FPGA emulated channel matrix MSE for both insets.

For the LoS channel, the normalized MSE of the channel
estimation with and without the calibration and BEACHES
algorithms begins to increase when the SNR is lower than 20dB.
When the SNR is higher than 17dB, the MSEs are almost the

same with and without the beamspace algorithms. When the
SNR is lower than 17dB, the normalized MSE of the denoised
channel matrix becomes lower than the one without BEACHES
applied. For the QuadMMLoS channel, the normalized MSE
of the channel estimation for both algorithms begin to increase
when the SNR is lower than 18dB. When the SNR is lower
than 16dB, the MSE of the denoised channel matrix is lower
than that of the one without BEACHES applied.

Fig. 8 shows the decrease of the normalized MSE vs SNR for
both channel models. The SNR ranges from 12dB to 22dB. The
figure shows that with the decrease of the SNR, the percentage
of the decrease in the MSE increases by using the BEACHES
algorithm, demonstrating its efficacy in improving the channel
estimation performance in the SNR range of interest. With the
calibration and BEACHES algorithms, the channel estimation
MSE can be improved by up to 11.7% for the LoS channel
model and 10.9% for the QuadMMLoS channel model.

C. EVM

The normalized root-mean-square (RMS) EVM measurement
is done in the Python simulator with the following steps: 1)
extract the FPGA emulated channel estimation results; 2) run the
BEACHES algorithm and get the denoised channel matrix; 3)
rerun the Python simulation with the FPGA emulated channel
matrix and the denoised channel matrix from 1) and 2); 4)
calculate the RMS EVM.

Fig. 9 shows the EVM vs. SNR with and without the
calibration and BEACHES algorithm for both channel models.
For both models, the EVM decreases after applying the
BEACHES algorithm. For SNR higher than 16dB, the EVM
with and without the BEACHES algorithm are almost same;
while when the SNR is lower than 16dB, the EVM decreases
notably by applying the BEACHES algorithm, especially for
QuadMMLoS channel model. This difference is because the
QuadMMLoS channel model also models different gains for
different users, which makes it more sensitive to the channel
estimation errors. The improvement of the EVM after the
calibration and BEACHES algorithms can be up to 9.2%.

D. Summary

Table II summarizes our work and some state-of-the-art
massive MIMO BS implementations. Compared with [15] and
[16], our work is highly portable and parameterizable, and can
be easily implemented on custom hardware platforms, such
as FPGAs and ASICs. The distributed architecture makes our
system scalable and the modular design enables its extension to
implement emerging algorithms. Compared with our previous
work [8], this work has been tested with a larger number of
users in the massive MIMO system and more complex channel
models.

V. CONCLUSION

This paper presents the design and the emulation results of the
scalable, highly portable, and power-efficient Spine generator
with the beamspace channel estimation. The Spine generator is
parameterized across a range of MIMO system and the datapath



TABLE II
COMPARISON

This work Prev. work [8] LuMaMi [15] RIVF’19 [16]
Platform FPGA/ASIC FPGA/ASIC FPGA FPGA
Portable Yes Yes No No
Adaptability High High - -
# Users 4 2 100 16
Modulation QAM QAM OFDM QAM
Distributed Yes Yes No No
Bandwidth 200MHz1 200MHz 20MHz 935MHz2

Method Two-stage BF
w/ BEACHES

Two-stage BF MRC/ZF/RZF SOR

CHEST3 Yes Yes Yes No
1 The signal bandwidth is the FPGA implementation bandwidth. The power estimation are
based on the FPGA implementation of a single Spine with parameters shown in Table I.
2 This is the maximum FPGA implementation clock frequency, not the signal bandwidth.
The signal bandwidth isn’t given.
3 Short for channel estimation.

hardware parameters, and specific instances were emulated on
an FPGA. The SINR, the normalized MSE of the channel
estimation, and the EVM, under different channels, with and
without two beamspace algorithms, are evaluated. The results
show the improvement of the channel estimation with the
beamspace calibration and denoising algoritms. The successful
integration of the beamspace channel estimation algorithms also
proves the high adaptability of our work. The next step for this
work involves hardware integration of the beamspace channel
estimator, and continued evaluation under different scenarios.
In addition, the performance of the channel estimator needs to
be evaluated in beamspace domain in order to support the full
beamspace-domain algorithms.
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