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Efficient Neuromorphic Signal Processing with Loihi 2

Garrick Orchard, E. Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn,
Sumit Bam Shrestha, Friedrich T. Sommer, and Mike Davies

The biologically inspired spiking neurons used in neuromorphic computing are nonlinear filters with dynamic state variables—very
different from the stateless neuron models used in deep learning. The next version of Intel’s neuromorphic research processor, Loihi 2,
supports a wide range of stateful spiking neuron models with fully programmable dynamics. Here we showcase advanced spiking
neuron models that can be used to efficiently process streaming data in simulation experiments on emulated Loihi 2 hardware.
In one example, Resonate-and-Fire (RF) neurons are used to compute the Short Time Fourier Transform (STFT) with similar
computational complexity but 47x less output bandwidth than the conventional STFT. In another example, we describe an algorithm
for optical flow estimation using spatiotemporal RF neurons that requires over 90x fewer operations than a conventional DNN-based
solution. We also demonstrate promising preliminary results using backpropagation to train RF neurons for audio classification
tasks. Finally, we show that a cascade of Hopf resonators—a variant of the RF neuron—replicates novel properties of the cochlea
and motivates an efficient spike-based spectrogram encoder.

Index Terms—Edge Computing, Neuromorphic computing, Resonance computing, Resonator filters, Spiking neural networks.

I. INTRODUCTION

IN the language of signal processing, biological neurons
are nonlinear time-varying filters that give rise to remark-

able intelligence, energy efficiency, and computational speed
when interconnected in great numbers. While traditional signal
processing has perfected the design and analysis of linear
time-invariant systems, computing with nonlinear time-varying
systems is far less mature.

The great successes of deep neural networks hint at the
potential power of neural networks for nonlinear signal pro-
cessing, but today’s DNNs were not developed for that purpose
and their characteristics have diverged far from biological
principles. Conventional artificial neuron models are vastly
simplified compared to biology, replacing rich temporal dy-
namics with a point nonlinearity, such as ReLU. While time
series processing can be supported by deep artificial neural
networks, either with iterative matrix multiplication (RNNs
and LSTMs) or by repeatedly processing sliding windows
of vectorized data samples (CNNs and transformers), these
approaches incur extra cost compared to assembling networks
with units that each operate as a causal, online filter.

Neuromorphic chips such as Intel’s Loihi [1] implement
temporal neuron models with dynamical behavior more similar
to biological neurons, and their sparse communication and
connectivity features support efficient scaling to high dimen-
sional processing. Loihi’s basic neuron model is a two-stage
cascaded first order discrete time IIR filter producing output
impulses (spikes) when sufficiently activated. This simple
filter, when interconnected to thousands of other such filters,
supports a rich space of nonlinear dynamics that can solve
a wide range of problems, including graph search, similarity
search, LASSO regression, and combinatorial optimization. In
many cases, Loihi provides orders of magnitude gains in speed
and energy compared to conventional solutions [2].

Submitted 30 June 2021.
All authors are with Intel Labs, Intel Corporation, Santa Clara, CA, 95054

USA e-mail: mike.davies@intel.com.

Today the value of neuromorphic networks as signal pro-
cessors remains underappreciated and underexplored. With
Loihi 2, we have augmented Loihi with enhancements aimed
at expanding the breadth of signal processing problems the
architecture supports. A full description of the architecture
will follow in a future paper. This paper discusses some of
the enhancements and shares early examples that showcase
the value of Loihi 2’s richer spiking neural network feature
set for intelligent and efficient signal processing applications.

After introducing Loihi 2 in the next section, we demon-
strate its richer feature set in simulation experiments following
constraints of the hardware. By implementing Resonate and
Fire (RF) neurons with oscillatory dynamics, we show how
these neurons efficiently approximate the Short-Time Fourier
Transform on audio signals. We then show how RF neurons
can be used in vision to estimate optical flow on event-data
more accurately and efficiently than the standard EV-FlowNet
model. We further demonstrate how networks of RF neurons
can be trained with backpropagation and present early results
on the NTIDIGITS and Google Speech Commands datasets.
Finally, we tweak the RF neuron model to create a Hopf
Resonator and describe its use in cochlea modelling.

II. LOIHI ARCHITECTURE

Spiking neurons have been modelled as first order differ-
ential equations since Hodgkin and Huxley. Early Neuromor-
phic Engineers mimicked the dynamics of biological spiking
neurons in silicon using analog circuit dynamics [3]. More re-
cently, there has been a shift towards digital implementations,
both in software and in silicon, which naturally gives rise to a
discrete time formulation of the internal neuron dynamics Both
Loihi and its successor, Loihi 2, use this digital approach.

Loihi implements the discrete Leaky Integrate and Fire
(LIF) neuron model

ai[t] =
∑
j

wijsj [t− 1] (1)

ui[t] = λuui[t− 1] + ai[t] (2)
vi[t] = λvvi[t− 1] + ui[t] (3)
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Fig. 1: Response of neuron models used in this paper to an impulse (spike) at time 0. a) A Leaky Integrate and Fire model
which spikes whenever voltage exceeds threshold. b) A complex valued Resonate and Fire model used for spatiotemporal
filtering, which spikes whenever z crosses the real axis and real(z) is greater than threshold. c) A complex valued Resonate
and Fire model with reset used in deep networks. d) A complex valued Hopf Resonator with a stable limit cycle.

Fig. 2: Block diagrams of the discrete computation for the
LIF neuron, and RF and Hopf resonators. The Hopf Resonator
shows an implementation of the Euler method, but in practice
we use a 4th order Runge-Kutta.

where ai[t] is the accumulated synaptic activation for timestep
t, ui and vi represent the ith neuron’s current and voltage
respectively, and λu and λv are the current and voltage decay.
Whenever vi[t] exceeds threshold, a spike is generated (si[t] =
1) and the voltage variable is reset to zero (vi[t] = 0). All
states and parameters use fixed precision.

Loihi 2 introduces a more flexible microcode programmable
neural engine. Users can allocate variables and execute a wide
range of instructions organized as short programs using an
assembly language. These programs have access to neural
state memory, the accumulated synaptic input ai for the
present timestep, random bits for stochastic models, and a
timestep counter for time-gated computation. The instruction
set supports conditional branching, bitwise logic, and fixed-
point arithmetic backed by hardware multipliers.

Within a core, memory limits the number of different
neurons which can be implemented. By using lower precision
neuron models, more neurons can be implemented within
the same memory footprint, up to a maximum of 8192 per
core. More complicated neurons can be implemented as longer
programs which access multiple memory addresses for neural

Fig. 3: The Loihi 2 chip plot (right) and processing flow for
a single core (left). Incoming spikes are mapped to lists of
synapse weights which are accumulated for consumption in the
next timestep. Meanwhile, neurons update using the previous
timestep’s accumulated activation and generate spikes which
are routed to other cores by the Output Axon stage.

state and synaptic input, and pass information to each other
through the persistent thread state.

In addition to allowing much richer internal neuron dynam-
ics, the neural engine allows user-defined output nonlinearities
and reset mechanisms, and can generate 32-bit graded spikes.
These are all new features in Loihi 2 which we make use of
in this paper. Fig. 1 shows the impulse (spike) response of
the different Loihi 2 neuron models described in this paper,
including their spiking output and reset behavior. Fig. 2 shows
the computation associated with these neuron models. While
the LIF model uses a two stage cascade of filters, the RF
and Hopf Resonator models use two cross-coupled filters to
generate the real and imaginary components.

Loihi 2 further provides richer connectivity features than
its predecessor. Synaptic activations can be computed from
graded spikes, support for convolutional connections has been
optimized, and new features allow procedural generation of
stochastic synapses and separable synaptic matrices.

III. APPLICATIONS

A. Resonate-and-Fire Neurons for Spectral Analysis

The Resonate-and-Fire (RF) neuron is an extension of the
standard LIF model, newly enabled in Loihi 2. The RF neuron
is a damped harmonic oscillator with a spiking mechanism.
Each neuron has a resonant frequency ω, a complex-valued
state z = u+iv, and a decay factor λ ∈ (0, 1), with dynamics
defined by

zk[t] = λeiω∆tzk[t− 1] + ak[t] (4)
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Fig. 4: Using simulated RF neurons compatible with Loihi 2 to approximate the STFT of an audio chirp and reconstructing
the input signal from the spike responses. A: The input chirp. B: Real component of the internal dynamics of two RF neurons
with different resonant frequencies. C: Spike raster showing the output timing for all 100 neurons in response to the stimulus.
D: Reconstruction (orange) of the original signal (blue) E: Comparison to the STFT.

where the last term is the synaptic input and λeiω∆t defines
the oscillation kernel. When starting from an initial condition
of zk[t] = 0 and assuming no reset mechanism, the equation
can be rewritten in the form

zk[t] =
∑
n

einω∆tλnak[t− n] (5)

which is recognizable as the term for frequency ω of the
discrete Short-Time Fourier Transform (STFT) of ak[t] with an
exponential window. By integrating input on each RF neuron,
the exponentially decaying sliding window naturally arises
without needing to store a history of input samples. A bank
of RF neurons at different frequencies can then be used to
estimate the STFT.

A key distinguishing feature between a spiking neuron and
a digital IIR filter is the neuron’s temporally sparse pulsed
output. For RF neurons, a typical spiking mechanism generates
spikes at zero crossings of the imaginary part and if the real
part surpasses a given threshold (Fig. 1b). With binary spikes,
this neuron model can be used in conjunction with spike-
timing codes to perform complex matrix algebra as shown
in [4]. More generally, we may use graded spikes in Loihi 2
to transmit the magnitude |z|, which conveniently equals the
real component Re(z) when z crosses the real axis.

By encoding a signal’s spectrum in a sparse, event-driven
manner with spikes, the communication bandwidth is au-
tomatically compressed without increasing latency. In the
example shown in Fig. 4, the RF implementation reduces
output bandwidth by 47x compared to a conventional STFT
producing a spectrogram vector on each time step.

We used RF neurons to produce STFTs for several examples
in the Google Speech Commands dataset. The Spiking STFT
produced by the RF neurons can be inverted by convolving
the spikes with the neuron’s oscillation kernel and integrating
across the population. We varied the spiking threshold of
the RF neurons and measured the reconstruction correlation
as a function of spikes produced. We compared this to the
conventional STFT by excluding the smallest coefficients
and performed inverse STFT to measure the reconstruction
correlation. Reconstructions from the RF-generated spikes
saturate to 94% correlation with only five thousand spikes. A
conventional STFT computation generates over 3 million com-
plex values over the same period. Computing a reconstruction
from only the largest 500K nonzero coefficients maintains a

Fig. 5: Spiking STFT for google speech command (top).
Conventional STFT is shown compared to RF based STFT
(middle). Reconstruction algorithm reproduces original signal
(bottom). Reconstruction efficiency of RF model (cyan) is
compared to thresholded conventional STFT (black).

high reconstruction correlation of 98%, but the reconstruction
correlation drops to ∼63% if only the largest 5,000 values are
preserved. This shows that the RF implementation uses spike
timing to encode the STFT information more efficiently than
the conventional STFT.

B. Resonate-and-Fire Neurons for Estimating Optical Flow

While the membrane dynamics of a spiking neuron can
implement a temporal filter, the synapses to a neuron can
implement a spatial filter. By combining the two we can
implement separable spatiotemporal filters. The accumulated
synaptic activation ai in (1) holds the result of the spatial
filtering and can be shared in Loihi 2 between multiple neurons
with different resonant temporal frequencies, allowing a single
spatial filtering result to be re-used in multiple filters.



4

Fig. 6: The original Adelson and Bergen Opponent Energy
model (left) consisting of separable spatial f() and temporal
h() components with orange filters out of phase with the
blue filters. The equivalent model implemented using complex
(purple) spatial and temporal filters.

Spatiotemporal filtering of this type is especially efficient
when processing sparse spiking data produced by other spiking
neurons, or by Dynamic Vision Sensors [5]. Here we demon-
strate how RF filters can be used to estimate optical flow using
motion energy models [6]. Recent work [7] proposes a similar
energy based approached based on LIF neurons.

Fig. 6 left shows the opponent energy model from [6],
consisting of separate spatial f() and temporal h() filters, each
with either even (blue) or odd (orange) symmetry, which can
also be represented using real and imaginary filter components.
Fig. 6 right shows an equivalent complex model using RF
neurons which can operate on either conventional image
frames or sparse event-based DVS data. In the case of frames,
a separate graded spike is used to represent the intensity of
each pixel. For DVS data the spikes are used directly.

Spikes, s, feed into a layer of complex synapses which
result in a complex accumulated synaptic activation a for
every timestep. The activation a and its conjugate ā feed
into two identical RF neurons which output the magnitude of
their activation once per oscillation using the graded spiking
mechanism described in Section III-A. The spike mechanism
guarantees that the imaginary component is at or near 0 and
can be ignored, so only the real components need to be squared
and summed to compute the opponent energy. A single Loihi 2
neuron program can implement both neurons as well as the
square and summation to directly output the opponent energy
as a graded spike.

The model in Fig. 6 only computes the opponent energy E
for one combination of orientation θ, spatial frequency ωx, and
temporal frequency ωt. The opponent energies from multiple
filters of different frequencies and orientations must be com-
bined in post-processing off-chip to arrive at an optical flow
estimate. Each neuron with spatial frequency ωx, temporal
frequency ωt and orientation θ has a preferred input velocity
v ∈ R2, which is orthogonal to the orientation of the neuron’s

TABLE I: Optical flow model parameters

Parameter Units Symbol Count Values
Receptive Field Size pix - - (64, 64)
Timestep Duration sec ∆t - 0.032
Spatial Frequency rad/pix ωx nx = 1 ωx = 6π

256
Temporal Frequency rad/sec ωt nt = 5 ωtk = 4πk

Orientations rad θ nθ = 4 θk = kπ
nθ

TABLE II: Average Endpoint Error on MVSEC

Indoor
Flying 1

Indoor
Flying 2

Indoor
Flying 3

AEE % outlier AEE % outlier AEE % outlier
EV-FlowNet2R 1.03 2.2 1.72 15.1 1.53 11.9
OursDENSE 0.91 0.35 1.28 5.83 1.04 2.88
OursSPIKES 0.83 0.68 1.22 5.42 0.97 2.65

spatial receptive field.

vωx,ωt,θ =
[ ωt
ωx

cos θ, ωt
ωx

sin θ
]

(6)

Stimuli moving at the neuron’s preferred velocity yield
the highest magnitude inner product with its spatiotemporal
receptive field. To estimate the optical flow f ∈ R2 at a given
pixel location, the neurons’ preferred velocities are weighted
by their normalized opponent energy at that pixel location.

f =

∑
ωx,ωt,θ

vωx,ωt,θEωx,ωt,θ∑
ωx,ωt,θ

Eωx,ωt,θ
(7)

We implement spatiotemporal filters with Gabor shaped
receptive fields of different orientations using the parameters
in Table I to estimate optical flow from event data. We evaluate
our model on the Multi View Stereo Event Camera (MVSEC)
dataset [8] and compare our results to those obtained by EV-
FlowNet, a state-of-the-art model for estimating optical flow
from event data. EV-FlowNet is a deep stateless neural net-
work trained under self-supervision. Our model, by contrast,
requires no training data, and processes event data timestep
by timestep instead of buffering input data and presenting it
statically as voxels to a deep network.

We compare to the 2R variant of EV-FlowNet, as it achieves
the best performance across the test sequences in [8]. We
evaluate the models using the methods described in [8],
calculating the Average Endpoint Error (AEE) and outlier
percentage (percentage of flow vectors with AEE > 3 pixels).

Table II compares results for two versions of our model.
The dense version estimates flow directly from the neuron’s
internal state. The spikes version uses the most recently
received graded spike value from the neuron as its activation
when estimating optical flow. Across the three indoor flying
sequences from [8], our models achieves better performance
than EV-FlowNet on these two metrics. Fig. 7 illustrates a
single representative frame.

Compared to EV-FlowNet, our model has less than half the
neurons, although each RF neuron update is more expensive
(4 MACs versus 1 ReLU). However, computation in EV-
FlowNet is dominated by synops, which outnumber the neuron
updates by 2000x. Our model has over 10x fewer synapses,
our synops are cheaper (a complex AC versus a MAC), and
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Ground Truth Flow Ours EV-FlowNet

Fig. 7: Ground truth optical flow from the MVSEC dataset
(left) compared to our method (middle) and EV-FlowNet
(right).

sparse synapse activation results in 93x fewer synops on the
MVSEC sequences tested.

To compute optical flow from the neuron state, the neuron
must square its magnitude to compute the opponent energy
(Fig. 6), and the energies must be combined in post-processing
off-chip. Off-chip post-processing (6) introduces another 2
MACs per neuron and one inversion per pixel, which is still
dwarfed by the synaptic ops. For comparison, readout neurons
in EV-FlowNet require computing tanh twice per pixel.

The RF optical flow model benefits from two key properties.
The event-based operation exploits sparsity of the input spike
data to reduce synaptic ops, and an overlapping region between
two subsequent temporal windows only needs to be processed
once, saving further ops.

C. Using Backpropagation to Train RF Neurons

The success of deep learning comes from its ability to
train large networks end-to-end with data, thereby avoiding
laborious hand engineering. To that end, we have extended
the Spike Layer Error Reassignment (SLAYER) tool [9] that
was used to train LIF neural networks for Loihi to handle
complex and oscillatory models with graded spikes, including
the RF neuron, for Loihi 2.

The extension to SLAYER tackles the temporal error credit
assignment problem by redistributing the error by applying
the decaying rotation operator λe−iω∆t back in time. For deep
networks, we introduce a different output linearity for the RF
neuron. Following the model proposed in [10], the RF neuron
generates a unary spike whenever its imaginary component
exceeds threshold, following which the real component is
reset to 0 (Fig. 1c). Approximation of the derivative of the
spike function follows the relaxation of the derivative of spike
threshold mechanism using nascent delta approximation.

Using SLAYER we trained a hybrid MLP of RF and LIF
neurons (64-256RF-256RF-242LIF) on the spiking NTIDIG-
ITS [11] audio dataset. The model, with 226K parameters,
predicts digit utterances with an accuracy of 92.14 ± 0.24%.

1.5 2 2.5 3 3.5 4 4.5
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90

95

# model parameters
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y

DNN[14]
LMU[15]
SRNN[16]

SLAYER-LIF
SLAYER-RF

SLAYER-RF-CNN

Fig. 8: Performance comparison on Google Speech Commands
10+2 subset task.

In contrast, the best-known conventional solution using LSTM
units (643K parameters) achieves an accuracy of 91.25% [11].

We also tackled the more challenging Google Speech Com-
mands dataset [12] (10+2 subset) with both MLP and convo-
lutional architectures by first converting the dataset to spikes
using a publically available cochlea model [13]. The MLP
architecture (64-256RF-256RF-288LIF) has 238K parameters
and achieves an accuracy of 88.97%. An equivalent LIF only
architecture with 156K parameters achieved an accuracy of
88.03%. A hybrid CNN architecture with five RF convolution
layers followed by two LIF dense layers, achieves 91.74%.

The performance of SLAYER trained networks with other
existing streaming models is shown in Fig. 8. All of our
SLAYER models are trained taking the fixed precision of
Loihi 2 into account. The LMU [15] and DNN datapoints
use more conventional dense matrix vector arithmetic than the
SLAYER model which naturally exploits and generates sparse
data. The LMU and SRNN [16] datapoints are also recurrent
architectures whereas the SLAYER trained models presented
here are feed-forward networks. To our knowledge, this is
the first time backpropagation training has been demonstrated
on a complex network of RF neurons to solve standard
benchmarked problems, and we expect results to improve as
we continue to explore novel and recurrent architectures.

D. Extension to Cascaded Hopf Resonators
A second-order nonlinearity added to the RF membrane

dynamics results in a Hopf resonator, which is also supported
by Loihi 2’s programmable architecture. Its name comes from
the Hopf bifurcation, which is a critical point at which a
periodic solution to the differential equation arises because
the system stability switches (Fig. 1d). The distance to the
critical point is adjusted by input strength a, which offers self-
adjusting gain and bandwidth control.

The Hopf dynamics have wide-ranging signal processing
applications, a classical one being regenerative receivers,
which have recently seen a revival in low-power wireless
applications [17]. Another prominent role of Hopf resonators
is as active elements in models of the auditory pathway up
to the auditory nerve [18], [19], which provides a class of
biologically inspired methods of audio pre-processing. We find
the approach based on Hopf resonators particularly convenient
because of its simplicity, compactness and the many emerging
properties it highlights.
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Fig. 9: Amplitude normalization using a cascade of Hopf
resonators. Peak output amplitude (y-axis) for a cascade of
Hopf resonators plotted against input stimulus frequency (x-
axis) for different input amplitudes (A). Increasing the number
of sections per octave from 2 (left) to 6 (right) increases the
sharpness of the normalization tuning.

The basal membrane in the cochlea oscillates, selectively
amplifying audio frequency (ordered from base to apex - HF to
LF) components. In cochlea models [18], membrane sections
for different frequencies are modeled by a cascade of Hopf
resonators. Specifically, each membrane section provides a
band-passed filtered version of its input to the following lower
frequency section, and so on.

We model a cochlea section using the continuous formula-
tion

ż = ω0((λ− |z|2 + i)z + a), (8)

where z ∈ C is the resonator response, and ω0, λ ∈ R
are, respectively, the characteristic frequency of the cochlear
section and the distance from the resonating actual frequency
at which the system diverges, while a ∈ C is the external input
to the resonator. In this model we do not use a spiking output.
The choice of ω0 to scale the differential equation is more
stable over the human tuning response characteristics and more
conveniently requires normalized units of the forcing input and
the λ parameter [19]. On Loihi (8) is discretized using a 4th
order Runge-Kutta method (Fig. 1d).

Following [19], each cochlear section is modeled by com-
bining a Hopf resonator (8) with a 6-th order butterworth low
pass filter with cutoff at 1.05ω0. We have explored different
densities of sections per octave (Fig. 9) and demonstrate that,
at higher densities, the cascading provides a self-normalizing
gain control. Any signal amplitude across several orders of
magnitude of frequency range is normalized to a narrow
dynamic range (-3dB, 0dB). This self-normalizing gain control
is a novel observation, an emergent property of cascading Hopf
nonlinearities at certain densities. On Loihi 2, this cascade
of resonators, projected onto a LIF downstream neuron, can
provide a highly efficient spike encoder invariant to input peak
amplitudes.

IV. CONCLUSION

Loihi 2’s generalized feature set, including a programmable
neuron engine, provides far greater flexibility than Loihi for
exploring novel spiking neural network models. In this paper
we have shown how Loihi 2 can implement complex-valued
oscillatory neurons, a natural first step beyond the much-
studied leaky-integrate-and-fire model. We showed that these

neurons can be used to approximate the STFT of a signal and
compute the optical flow of visual data with significant savings
in computational cost compared to conventional approaches.
We have shown that these networks can be trained to recog-
nize speech commands and can replicate the emergent signal
processing features of the cochlea, highlighting promising
directions for future research. These represent a new class of
computational tools for optimizing the energy, latency, and
model sizes of intelligent signal processing applications when
mapped to a neuromorphic architecture such as Loihi 2.
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