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Abstract—Structured pruning is a popular method to reduce
the cost of convolutional neural networks, that are the state of
the art in many computer vision tasks. However, depending on
the architecture, pruning introduces dimensional discrepancies
which prevent the actual reduction of pruned networks. To tackle
this problem, we propose a method that is able to take any
structured pruning mask and generate a network that does not
encounter any of these problems and can be leveraged efficiently.
We provide an accurate description of our solution and show
results of gains, in energy consumption and inference time on
embedded hardware, of pruned convolutional neural networks.

Index Terms—Deep Learning, Compression, Pruning, Energy,
Inference, GPU

I. INTRODUCTION

Deep neural networks are at the state of the art in many

domains, such as computer vision. For instance, convolutional

neural networks are used to tackle different tasks such as

classification [17] or semantic segmentation [16]. However,

their cost in energy, memory and latency is prohibitive on

embedded hardware, and this is why many works focus on

reducing their cost to fit targets with limited resources [1].

The field of deep neural networks compression counts multi-

ple types of method, such as quantization [3] or distillation [9].

The one we focus on in this article is pruning [5], that involves

removing unnecessary weights from a network. Pruning is a

popular technique that presents many challenges, including

that of finding the most adequate type of sparsity to be

leveraged on hardware [13].

To focus on the theoretical approach of studying the impact

of removing weights from the network’s function on its accu-

racy, many papers only remove weights by putting their value

to zero. However, this does not reduce the cost of networks

and only provides a rough estimate of network compression in

terms of memory. Leveraging pruning to get gains on hardware

is actually not a trivial task. Pruning isolated weights [5]

(“non-structured pruning”) produces sparse matrices, that are

difficult to accelerate [13]. Pruning entire convolution filters

(a.k.a. “structured pruning”) is more easily exploitable, but the

input and output dimensions of layers are altered, which can

induce many problems in networks, especially those including

long-range dependencies between layers [6]. The solution to

this problem is, almost always, either not mentioned, or cir-

cumvented by constraining pruning into targeting only layers

that do not induce problems [11]. However, these constraints

are expected to reduce the efficiency of pruning.

In this paper we propose a solution to reduce effectively the

size of networks using structured pruning, that were applied

a mask using structured pruning. Our method is generic,

automatic and reliably produces an effectively pruned network.

We demonstrate its ability to operate on networks of any

complexity by applying it on both a standard classification

network [6] on the ImageNet ILSVRC2012 dataset [17] and on

a more complex semantic segmentation network [18] trained

on CityScapes [2]. We show that our solution allows gains

in energy consumption and inference time on embedded hard-

ware such as the NVIDIA Jetson AGX Xavier embedded GPU,

providing an actual estimate of how structured pruning can be

leveraged to reduce energy and latency footprints on a real

hardware target.

II. RELATED WORKS

Originally designed to improve generalization of neural

networks [10], pruning is now a popular method to reduce their

memory or computational footprints. The most basic form of

pruning involves masking out weights of least magnitude in

a non-structured way [5]. This method does not reduce the

size of the parameters’ tensors, but instead the introduced

zeroes help compressing the network weights through encoded

schemes [4]. However, getting any type of speed-up out of this

method is difficult on most hardware [13].

To better leverage pruning on hardware, many methods

instead apply “structured pruning”, that usually involves prun-

ing whole neurons, i.e. filters in the case of convolution

layers [11]. Other types of structured pruning exist, such as

“filter shape pruning” [21] and this is why we will favor

the “filter pruning” denomination to avoid ambiguity. Weight

pruning and filter pruning are the two most popular types of

pruning structures.

When pruning any type of structure, two aspects have to be

tackled: 1) how to identify elements to prune and 2) how to

prune them. The first issue can be solved using various types

of pruning criteria. In the case of non-structured pruning, the

magnitude of weights [5] or their gradient [15] are two popular

criteria. When pruning filters, these criteria can be extended to

either their norm over a filter [11] or a proxy that accounts for

the whole filter’s importance, for example the multiplicative

http://arxiv.org/abs/2206.06247v1
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Fig. 1: Illustration of the difficulties when pruning filters in convolutional neural networks. Convolution layers are made of

filters, each one outputing a channel (or “feature map”). Greyed out elements symbolise pruned filters and the kernels to

remove to fit the dimensions of inputs (Problem 1). At the end of every residual block, the output of the last layer is summed

with the input of the block. If the two tensors are pruned differently (Problem 3), what was an addition is now a mixture of

additions (+), concatenations (C) or bypasses (dashed circles) that we call the indexation-addition operator (Section III-D).

The consequence is that the final number of channels cannot be predicted solely from a particular layer in the network, but

must be deduced by taking into account all the dependencies (Problem 2).

learned weight included in batch-normalization layers [12].

These criteria can be applied in two different ways: either they

are used to identify the same (or a pre-determined) amount of

weights/filters to remove in all layers (local pruning) or the

target is set globally and the criterion is applied to all layers

at the same time (global pruning).

Concerning the second issue, many popular methods apply

a simple framework [4]: training the network, pruning a given

proportion of weights by masking them away, fine-tuning the

network and repeating the last two steps multiple times until

a target pruning rate is reached. Other methods can involve a

more progressive approach [7] that can include a regrowing

mechanism [14]. Some techniques propose a more continuous

way to prune weights, for example by applying them a penalty

during training [20].

III. METHOD

A. Consequences of Structured Pruning

In Section II, we explained what is structured pruning. In

order to present the problems it can induce, as well as the

solutions we propose, we need to introduce some notations.

Let N be a convolutional neural network. For the sake

of convenience, we will consider that it is only made of

convolutional layers li, whose input and output dimensions are

f i
in and f i

out. Each convolution contains f i
out× f i

in × kih× kiw
weights w

i (with kih × kiw the size of the layer’s kernel) and

f i
out biases b

i. A filter corresponds to the f i
in × kih × kiw

weights and one bias that produce one of the f i
out channels

in the output feature maps. Each of these layers operates on

feature maps of size f i
in×hi×wi with hi×wi the resolution of

the feature maps. In the case of networks such as ResNet [6]

or HRNet [18], different layers can take the same feature

maps as an input and multiple feature maps can be summed

together. This simplified presentation is sufficient to expose

the problems induced by global pruning.

a) Problem 1: Pruning filters reduces the output dimen-

sion fout of a layer. Therefore, the dimension of its output

is different and the input dimension fin of the following

layers must be adapted. This problem is well-known in the

literature [11] and easy to solve in simple networks.

b) Problem 2: Residual connections [6] can introduce

long-range dependencies and, therefore, identifying all the lay-

ers impacted by the change in dimension can be difficult. This

problem is usually solved by avoiding pruning layers involved

in such dependencies [11], but this solution is suboptimal.

c) Problem 3: Residual connections [6] usually involve

summing together feature maps, that must therefore be of

same dimensions, which is not the case anymore after global

pruning. In the case of local pruning, feature maps are of

the same dimensions, but the same mask may not have

been applied on both feature maps, and summing together

channels that are meant to be summed together produces a

tensor of higher dimensions. This problem is less discussed

in the literature and mostly solved using custom operations to

manually adapt dimensions of feature maps [8].

These three problems, illustrated in Figure 1, are either

eluded or not solved in the literature, even though most

papers deal with ResNet-based architectures that are causing

all of the three. Some expertise allows manually figuring out

dependencies in such networks, but the complexity can get out

of hand in the case of networks such as HRNets [18]. Indeed,

missing any of these problems makes the networks impossible

either to run efficiently or to run at all on hardware. This is the

reason why we propose a method that can automatically and

reliably produce pruned networks that can be ran efficiently

on hardware.

B. Generalizing Operators to Handle a Subset of Channels
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Fig. 2: Illustration of the proposed method to identify discon-

nected weights, with the original network on the left and the

modified version on the right. (A) Input tensors are uniform to

avoid unwanted null values, (B) weights of layers are replaced

with their mask, therefore (C) the output only contain null

values if a filter is pruned. (D) Normalization and biases are

removed to keep null values null and (E) activation functions

are removed not to add extra ones. The final output (F) allows

deducing which filters are pruned.

The first step of our method is to make sure a given network

is robust to pruning. Indeed, networks such as ResNets or

HRNets contain operations that are applied to outputs of

multiple layers. In such cases, the involved tensors must be of

the same dimension, which may not be the case anymore after

pruning. In the case of ResNets and HRNets, all operations

of these types are additions of two tensors, such as those at

the end of every residual connection. This means that we can

tackle this problem by replacing additions with a generalized

operator able to handle missing filters in any of its inputs.

To this mean, we replace additions with a new indexation-

addition operation, with a and b the tensors to sum, that

contain respectively na and nb channels, ia and i
b two lists

of indices and the output tensor c, that contains nc channels,

defined in Equation (1):

∀k ∈ J1;ncK, ck =

{

aia
k
, if iak ∈ J1;naK

∅, otherwise
(1)

+

{

bib
k

, if ibk ∈ J1;nbK

∅, otherwise

If na = nb, i
a = [1, 2, . . . , na] and i

b =
[

1, 2, . . . , nb
]

,

this indexation-addition operation is purely equivalent to an

element-wise addition. Properly parameterized by adequate

i
a and i

b, this operation allows leveraging any type of filter

pruning. It is however necessary to find the right ia and i
b and

we provide a solution in Section III-D. Figure 1 illustrates how

our solution relates to the problems mentioned in Section III-A

and provides a simple way to view how it can behave like a

mix of additions and concatenations.

C. Automatic Adaptation of Networks

Once the network is prepared for pruning by the intro-

duction of this new indexation-addition operation to fit any

distribution of the sparsity induced by pruning, the next step

of the method is to identify automatically all dependencies

between filters, kernels, biases or any sort of weights in the

network. In summary, it is necessary to search for all the parts

of the network that are disconnected when removing filters.

To identify all parameters whose contribution in a network’s

function is null, one can use its gradient over, for example, a

mini-batch from the training data. Indeed, provided this mini-

batch is a satisfying approximation of the network’s domain

of definition, a null gradient means that the network’s function

is null relatively to the involved weights, or at least constant

in the case of biases. However, for our use-case, this is insuffi-

cient: not only does it not allow removing disconnected biases

that still produce constant outputs that somehow contribute to

the function, but it may also identify some isolated weights

as pruned in a non-structured way, while it is not possible to

leverage them.

This is why we instead operate on an architectural abstrac-

tion of the network, which is a copy of it that received three

modifications that are illustrated in Figure 2:

• Its biases are removed to prevent them from adding a

constant output that makes some disconnected/useless

weights downstream have a non-null gradient.

• Its activation functions, and other non-linear operations

such as normalization, are removed, so that a non-null

input of a layer cannot produce a null output and gradient.

• The value of its weights are replaced by the value of the

mask, made either of zeros or ones, so that, when fed with

an input filled with non-null values of the same sign, the

output cannot contain null values if it is not because of

null, masked out weights.

Because of these modifications, a single input filled with

non-null values of the same sign is enough to identify all



disconnected weights. Indeed, this network behaves like a

purely linear and positive function and any null gradient in

its parameters can only be due to a null function that can

be removed. Weights, identified as disconnected in this copy

network, are then removed from the original network.

D. Automatic Indexation

To deduce automatically the right i
a and i

b defined in

Section III-B, we add another modification to the copy network

described in Section III-C: we apply an identity convolution

to the two tensors before summing them together. This identity

convolution has weights of shape n × n × 1 × 1 (with n the

number of channels in the input tensor) whose values equates

that of an identity matrix.

The gradient of the weights of this identity convolution

allows deducing the corresponding list of indices. Indeed, once

the null rows and columns of its weights are removed, the

output dimensions are the same for both tensors to be summed

while the input dimension matches that of the input tensors

after pruning. The zero and non-zero remaining coefficient

allows deducing how to map the input and output channels.

E. Summary of the Method

Here are all the steps to follow to apply our method:

Algorithm 1 Summary of the Method

1: train the network N
2: generate the pruning mask m that masks out filters

3: create a copy N ′ of the network

4: remove all biases b from N ′

5: remove all activation functions and normalization from N ′

6: replace the weights w of N ′ by m

7: insert the identity convolutions where needed in N ′

8: generate an input tensor x, of adequate size, filled with

ones and run N ′(x)
9: compute dN ′

dw
(x)

10: generate the new pruning mask m
′ that masks away all

weights whose gradient is null in N ′

11: apply m
′ to N and mask away biases whose weights are

pruned

12: deduce from the mask of the identity convolutions the right

i
a and i

b to replace additions with indexation-addition

operations where needed

The method, summed up in Algorithm 1, solves all problems

presented in Section III-A. It allows pruning a network and

then generating its nearest equivalent whose dimensions are

consistent and that can be leveraged on hardware. Since our

method not only removes weights of null contribution but also

biases whose gradient is constant, the function of the network

is not preserved. However, the impact on accuracy is negligible

and detailed in our experiments in Section IV-B.

IV. EXPERIMENTS

In our experiments, we will first detail the impact of

our method on both the accuracy of the network and the

evaluation of its compression rate. Then we will demon-

strate how the networks, whose type of sparsity usually

prevents running inference, can be leveraged efficiently

on resource-limited hardware. Our source code is avail-

able at: https://github.com/HugoTessier-lab/Neural-Network-

Shrinking.git

A. Training conditions

a) ImageNet: We trained ResNet-50 [6] on the ImageNet

ILSVRC2012 image classification dataset [17] for 90 epochs

with a batch-size of 170 and a learning rate of 0.01 reduced by

10 every 30 epochs. We used the SGD optimizer with weight

decay set to 1 · 10−4 and momentum set to 0.9.

b) Cityscapes: We trained the HRNet-48 network [18]

on the Cityscapes semantic segmentation dataset [2] for 200

epochs with a batch size of 10 and a learning rate of 0.01

reduced by (1 − current epoch
epochs

)2 at each epoch. We used the

RMI loss [22] and the SGD optimizer with weight decay set

to 5 · 10−4 and momentum set to 0.9. During training, images

are randomly cropped and resized, with a scale of [0.5, 2],
to 3× 512× 1024. Data augmentation involves random flips,

random Gaussian blur and color jittering.

c) Pruning: We prune networks following the method

of Liu et al. [12]: pruning is divided in three iterations, with

a linearly growing proportion of removed filters until the

final pruning rate is matched. At each iteration, filters are

masked out depending on the magnitude of the weight of

their batch-normalization layer. After each iteration, ResNet-

50 fine-tuned during 10 epochs and HRNet-48 during 20

epochs. The method of Liu et al. [12] also implies penalizing

weights of batch-normalization layers with a smooth-L1 norm,

with an importance factor of λ = 10−5 for ResNet-50 and

λ = 10−6 for HRNet-48.

B. Impact on Accuracy and Compression Rate
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Fig. 3: For ResNet-50 on ImageNet (left) or HRNet-48 on

Cityscapes (right): accuracy depending on pruning rate, either

in terms of proportion of pruned filters (blue) or remaining

parameters after application of our method (red).

In our experiments, we reported mostly no difference in

accuracy before and after applying our method, as it can be

seen in Figure 3. This implies that the parameters removed by



our method, that did not have a null contribution to the func-

tion, such as the remaining biases mentioned in Section III-C,

might have had a negligible impact on the network’s accuracy.

The only outliers are points where accuracy is already severely

decreased, for example the accuracy of ResNet-50 pruned at

60% that goes from 66.05% to 63.478%, while the baseline

is at 75.7%.

In Figure 3 we also show the trade-off between accuracy

and two types of pruning rate: one defined as the proportion

of removed filters, which is a widespread target criterion in

the literature, and one defined as the exact count of remaining

parameters in the network once our method has been applied.

We see that using the percentage of removed filter is not

faithful to the actual compression rate of the network. The

actual trade-off is more advantageous once our method has

been applied to both purge the network from useless weights

and get a faithful estimation of all eliminated weights.
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Fig. 4: For ResNet-50 on ImageNet (left) or HRNet-48 on

Cityscapes (right): relation between the estimated compression

rate in terms of pruned filters (x-axis) and remaining param-

eters after reducing the network using our method (y-axis).

In Figure 4, we compare the compression rate (i.e.
100%

100%−pruning rate%
) in terms of removed filters or removed

parameters, i.e. before and after our method. The relationship

between the two measures seem to depend on the involved

architecture and we expect it to depend on the pruning

criterion too.

C. Impact on Hardware

To measure the inference time and energetic consumption

of pruned networks on NVIDIA Jetson AGX Xavier in the

“30W All” mode, we first converted our networks to ONNX,

that is a format that can be handled by many frameworks

on most hardware. The indexation-addition operations were

implemented using ScatterND and transpose operators. Scat-

terND allows operating on slices in tensors and transpositions

allow operating specifically on channels, while Scatter is

element-wise and requires storing a cumbersome array of

indices. Before summation, both tensors need to be scattered

into a temporary tensor, that is instantiated dynamically. We

used the JetPack SDK 5.0, with CUDA 11.4.14, cuDNN 8.3.2,

TensorRT 8.4.0 EA and ONNX Runtime 1.12.0. Energetic

consumption was given using the tegrastats utility. Inference

on ResNet-50 is run with an input of size (1× 3× 224× 224)
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Fig. 5: Energetic consumption and inference time of ResNet-

50 and HRNet-48, depending on the pruning rate in terms

of parameters, on NVIDIA Jetson AGX Xavier in the “30W

All” mode, using JetPack SDK 5.0 and ONNX Runtime

1.12.0 running with the TensorRT execution provider. Re-

sults are averaged over 10k inferences with inputs of size

(1 × 3 × 224 × 224) after 1k runs of warm-up for ResNet-

50 and 1k inferences with inputs of size (1× 3× 512× 1024)
after 100 runs of warm-up for HRNet-48.

and HRNet-48 with one of size (1× 3× 512× 1024). ONNX

Runtime was used with the TensorRT execution provider, that

turned out to be the one that gave the best inference time.

Figure 5 provides results for ResNet-50 on ImageNet and

HRNet-48 on Cityscapes. Both show similar tendencies: at

first, the extra cost of indexation-addition operations takes a

toll on the efficiency of pruning, but after that initial jump,

the cost of networks, either in terms of energy consumption

or inference time, decreases significantly. This shows that,

although a better implementation of the indexation-addition

operations would be beneficial, our current solution is enough

for free and unconstrained structured pruning to be cost

effective. Therefore, we can say that it is possible to leverage

efficiently any type of filter pruning in even complex deep

convolutional neural networks.

V. DISCUSSION

Three observations can be drawn from our experiments: 1)

our method allows a more reliable measurement of the count

of remaining parameters in the network, as can be seen in

Figure 3, 2) the relation between this accurate pruning rate and

inference time or energy consumption is non-linear and 3) the

cost introduced by our custom operators is not negligible and



makes the least pruned networks cost more than non-pruned

ones, as can be seen in Figure 5.

The first two observations show that our method is a useful

tool to better study the efficiency of unconstrained filter prun-

ing. Indeed, it produces a network in which the vast majority

of remaining parameters are guaranteed to contribute to the

function, with the marginal exception of some isolated weights

that may be inactive by accident. Therefore, it is now possible

to directly measure the accuracy-to-energy or accuracy-to-

latency trade-off, which provide a more relevant insight into

the impact of pruning on hardware than a more theoretical

accuracy-to-parameters trade-off. Since this is not the focus of

this article, we did not provide such an analysis and did not

choose the pruning method that gave the absolute best possible

performance. This will be the focus of future contributions.

This ability to provide a more faithful compression rate than

the naive rate of removed filters also allows better controlling

the growth of pruning rate between pruning iterations. This is

likely to help improving performance and avoiding to remove

entire layers by accident, which is called layer collapse [19].

Concerning the last observation, finding the best implemen-

tation of the custom operators, necessary to run pruned net-

works, obviously requires further investigation. Using trtexec,

we did the profiling of the operators of the HRNet-48, with

10% of the filters pruned and 6.26% of removed parameters,

which is the HRNet-48 with the highest inference time. It

turned out that the “Foreign Nodes” generated by TensorRT,

that contain the ScatterND we used for our indexation-addition

operations, are responsible for 14.8% of the total inference

time. When substracting the cost of these nodes from the

network’s total average time of 369.8ms according to trtexec,

the remaining inference time is of 314.3ms, which is actually

lower than that of the non-pruned network, which is of

318.7ms. This means that if an optimized implementation of

the operators allowed their cost to be negligible, it would make

pruning a lot more beneficial, even at low pruning rates.

VI. CONCLUSION

We have proposed an efficient and generic way to lever-

age any type of filter pruning in deep convolutional neural

networks. Indeed, even though removing filters in a network

can trigger a certain array of problems that can even prevent

running its inference, our solution is able to tackle them

and generates functional pruned networks that can be run

efficiently on hardware. Our experiments, even though they

show that our current ONNX implementation has a non-

negligible cost, demonstrate that unconstrained filter pruning

can be cost-effective.
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