
2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

A HYBRID PARTICLE SWARM/ANT COLONY ALGORITHM FOR THE
CLASSIFICATION OF HIERARCHICAL BIOLOGICAL DATA

Nicholas Holden

Computing Laboratory, University of Kent
Canterbury, CT2 7NF, UK

nh56@kent.ac.uk

Alex A. Freitas

Computing Laboratory, University of Kent
Canterbury, CT2 7NF, UK
A.A.Freitas@kent.ac.uk

ABSTRACT

This paper proposes a hybrid PSO/ACO algorithm for
hierarchical classification, where the classes to be
predicted are arranged in a tree-like hierarchy. The
performance of the algorithm is evaluated on a
challenging biological data set, involving the hierarchical
functional classification of enzymes. The proposed
algorithm is compared with an existing PSO for
classification, which was also adapted for hierarchical
classification.

1. INTRODUCTION

The discovery of a new protein and its function was once
deemed worthy of a paper in its own right. Now with the
automation of the processes involved with the discovery
of new proteins it is almost viewed as common place.
Due to the large amount of new proteins being
discovered, automated processes are also needed to find
what purpose a protein might have within a biological
system. This paper deals with the hierarchical functional
classification of enzymes (a sub set of proteins).
Enzymes are nature’s catalysts and usually are more
effective at catalysing reactions than their non-biological
counterparts. An example of such effective enzymes are
those found in biological washing powder.

We propose a new hybrid PSO (Particle Swarm
Optimization)/ACO (Ant Colony Optimization)
classification algorithm tailored to this challenge. More
specifically to cope with the extremely large number of
attributes and classes, and the categorical (nominal, non-
numerical) data often associated with the problem. We
hope this paper will serve as an introduction into the
complex and challenging realm of hierarchical
classification of biological data sets. In any case, it
should be noted that the proposed hybrid PSO/ACO
algorithm is generic enough to be applied to other
challenging classification problems.

The basic motivation for designing the hybrid algorithm
was to make PSO more effective in coping with
categorical attributes using the pheromone-based
mechanism of ACO, as will be discussed later. The
proposed hybrid PSO/ACO algorithm is compared with

an existing PSO for classification, which was also adapted
for hierarchical classification. Both algorithms follow the
top-down approach for hierarchical classification, using the
predictions of higher-level classes to guide the search for
rules predicting lower-level classes.

2. PROTEINS AND ENZYMES

Proteins are the active building blocks of all life and carry
out most of the functions involved with it (there are always
exceptions in biology). Enzymes are a sub set of proteins;
they are catalysts which are used to speed up and make
possible many of the chemical reactions that take part within
the cell, without being altered themselves. Enzymes are
assigned EC codes (enzyme commission numbers), which
are 4 digit numbers that represent the type of chemical
reaction the enzyme in question catalyses [6]. Each digit
corresponds to a level in the hierarchy. For instance, EC
3.1.4.1 is an enzyme with class value 3 in the first level,
class value 1 in the second level, etc.

Proteins are formed from a number of amino acids chained
together. There are 20 different amino acids that occur
naturally, and a linear sequence of these amino acids is
known as the primary structure. The secondary structures
seen in proteins are the 3D shapes that form locally in each
protein and may be repeated throughout it. They also may be
common to multiple proteins. These common patterns and
domains include helixes, sheets, active sites which catalyse
reactions in enzymes (a sub set of proteins), various sites
which allow functions of a protein to be turned on and off
etc. From a data mining point of view these regions are very
interesting as they work together to produce the behaviour
observed in proteins and so must produce patterns that can
be analysed. A number of databases of these common
structures have been created, including the Prosite database
[7], which is used in this work. This database contains
unique “fingerprint” style entries which are designed to be
used to identify the function of unknown proteins.

The tertiary structure can be described as the overall shape
formed when the chemically attracted portions cause the
protein to fold. These individual attractions are quite weak,
but because there are so many of them the resulting protein
can be structurally very strong, although when heat is
applied they tend to unfold or denature. (This happens, e.g.,

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

when eggs are cooked). The quaternary structure is where
proteins join together to form more complicated
structures, such as cell walls or spiders silk.

3. HIERARCHICAL CLASSIFICATION

Data mining consists of a set of concepts and techniques
used to find useful patterns within a set of data [4], [5]. In
this project the discovered knowledge is represented as
classification rules. A rule consists of an antecedent (a set
of attribute values) and a consequent (class):

IF <attrib = value> AND ... AND <attrib = value>
THEN <class>

The consequent of the rule is the class predicted by the
rule for the records (examples) where the predictor
attributes hold. An example rule might be IF <Salary =
high> AND <Mortgage = No> THEN <Good Credit>.
This kind of knowledge representation has the advantage
of being intuitively comprehensible to the user. This is
important, because the general goal of data mining is to
discover knowledge that is not only accurate, but also
comprehensible [4][5].

In this project the classes are arranged in a tree structure
where each node (class) has only one parent. Hierarchical
class datasets present new challenges when compared to
flat class datasets. The main challenge comes from the
extra complexity associated with such datasets, the fact
that many (depending on the depth) more classes must be
assigned to the examples, and the prediction of a class
becomes increasingly difficult as deeper levels are
considered, due to the smaller number of examples per
class. Note that although the functional classification of
enzymes is an important bioinformatics problem,
previous applications of data mining to this problem
typically ignore the class hierarchy, focusing on
predicting classes in just one level of that hierarchy
[9][10].

The simplest way to deal with hierarchical classification
is to ignore the hierarchy completely and so only predict
classes at the bottom most level, indirectly predicting the
classes at higher levels. This approach avoids the
aforementioned extra complexity at the expense of not
discovering simpler knowledge expressed by higher level
rules (based on a larger number of examples). It
discovers only lowest level rules based on a small
number of examples, and so those rules tend to be
inaccurate.

The second approach is to again ignore the fact that the
classes are in a hierarchy at the training stage and classify
each node separately. It can be argued that this will
produce the most complete set of rules, and so if this is

taken into account at classification (on the test set) there is a
higher chance of making an accurate prediction. However
the knowledge found is overly complex and so harder to
comprehend, also this approach is more computationally
expensive.

The third approach (which is used in this project) uses the
divide and conquer principle [1]. If class 1.X.X.X (where X
denotes any digit) is predicted at the first level and node 1
has only the child nodes 1.1.X.X and 1.2.X.X, only these
two nodes should be considered and not the children
belonging to node 2.X.X.X. This holds both during training
and test set classification. It does however create problems
of misclassification; if an example is misclassified at a
higher node then it has no chance of being correctly
classified at lower nodes. However, it has the advantages of
producing a more complete set of rules than the first
approach without it being needlessly (as with the second
approach) complex, while also using the nature of the
hierarchical structure of the data to optimise performance.

4. THE HYBRID PSO/ACO ALGORITHM

Although PSO and ACO algorithms have been developed
for the classification task we do not feel that either of the
current algorithms is ideally suited for this problem, for the
following reasons stated.

Although the ACO classification algorithm has already been
shown [12] at least competitive with the industrial standard
C5.0 algorithm, the unusually large amount of attributes and
classes associated with this problem mean an extremely large
amount of computation time is required. This is because a
computationally expensive rule pruning procedure is
required at every inner iteration of the standard ACO
algorithm. Also for the algorithm to work with continuous
attributes they have to be previously discretised, which can
decrease classification accuracy and increase computational
time at this pre-processing step.

A PSO algorithm has also been developed for classification
[11], however we believe it can be improved by hybridising
it with ACO. The classification task usually involves a
mixing of both continuous and categorical (nominal, non-
numerical) attribute values. Although a “standard”
binary/discrete PSO algorithm exists [14], it does not deal
with categorical values in a natural fashion when compared
to ACO. In particular, the standard PSO for coping with
binary attributes represents a particle by a bitstring, where
each binary value such as true or false is encoded as 1 or 0.
The usual notion of “velocity” (a core concept in a PSO for
coping with continuous variables) is replaced by the notion
of “predisposition of taking the value 1 (rather than 0)”. This
approach was designed to cope with binary
attributes/decisions, but not explicitly designed to cope with

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

multi-valued (i.e, having more than two values)
categorical attributes.

Sousa et al. extended the standard binary PSO to cope
with multi-valued categorical attributes [11], developing
a Discrete PSO (DPSO) algorithm for discovering
classification rules. In essence, in DPSO each value for a
categorical attribute is assigned an index number. This
number is then converted into a binary string. An extra
bit is also added for each attribute to decide if that
attribute is to be included in the resulting rule. Once a
categorical attribute has been converted into a binary
string, the standard binary PSO can then be applied.

However, this encoding approach introduces some
problems. In particular, due to the conversion to binary,
the bits of the string to be optimised by the algorithm
interact with each other to form the index number. This
interaction is adds an extra layer of complexity and
confusion for the algorithm, because PSO works by
trying to find the optimal value of each bit individually.
I.e., each bit is a “dimension” from the point of view of
PSO, and the “velocity” of a bit – its propensity of taking
the value 1 – is computed independent from other bits
that are part of the encoding of the same attribute,
ignoring important bit interactions.

Another (related) problem is that the numerical index
assigned to a categorical value and the subsequent binary
encoding scheme will affect the result of any particle
interaction. For instance, consider the categorical
attribute Marital Status with the following four nominal
values: single, married, divorced, widowed. There are 24
different ways of mapping these nominal values into
numerical indices in the range 0 to 3 and subsequent
convert them into two binary digits. (Each permutation of
the nominal values corresponds to a different mapping,
and the number of permutations is 4! = 24.) The choice
of a mapping is arbitrary, but it affects particle
interactions. For instance, single and widowed might be
converted to 00 and 11, in which case the two nominal
values would be totally different in their binary
representation, or they might be converted to 00 and 01,
in which case they would be just partially different in
their binary representation. This affects the computation
of the “velocities” of individual bits, since those
velocities depend on the differences between bit values
of the current particle and bit values in the particle’s best
past position and best neighbour. As there is no ordering
in categorical data, ideally an encoding scheme should be
chosen where all bit strings are equally pairwise similar
(i.e., every pair of bit strings has the same Hamming
distance), which is not possible in general, as shown in
the above example.

Another major problem with the current DPSO classification
algorithm, in the context of large and complex data sets, is
that the population is initialised randomly. This is acceptable
with a low number of attributes, as there is a large
probability of randomly producing a particle with a non-zero
fitness. However it becomes a major problem in
classification problems when large numbers of attributes are
present, as many or all of the particles may have zero
finesses in the population. The rules that particles represent
may also be needlessly long, increasing fitness evaluation
time and decreasing the comprehensibility of the resulting
rule. If all or most of the particles have zero finesses then the
convergence time will be significantly increased while the
particles randomly search to find a position with a non-zero
fitness, or they may converge to a bad position simply
because there are only a few non-zero positions “known” in
the population.

The hybrid algorithm addresses these issues by combining
characteristics of PSO and ACO algorithms. ACO has been
shown good at solving classification problems with
categorical data [13], as it does not introduce any artificial
ordering among attribute values and features none of the
encoding problems of DPSO previously mentioned. PSO has
been shown good at solving optimisation problems with
continuous values, which are often present in data mining.
The original ACO algorithm for classification, Ant-Miner
[12], requires that every rule be pruned right after the rule is
created. This is due to the way the rules are constructed
(incrementally, one-condition-at-a-time) and the way the
problem is represented in terms of pheromone. Ant-Miner’s
rule pruning tends to be effective in improving a rule, but it
is very computationally expensive when the rule has many
attributes, which is a serious limitation in the context of the
data set mined in this project. The hybrid algorithm does not
require such pruning because of the addition of an
indifference entry in the pheromone matrices (pruning is still
carried out on the final best rule generated by the
population) and the fact that a separate matrix is used for
each attribute. The overall effect is to produce a “swarm of
ant colonies”.

4.1 SEQUENTIAL RULE DISCOVERY AND
PARTICLE REPRESENTATION

The algorithm uses a sequential covering approach [4] to
discover one-classification-rule-at-a-time, as shown in
Pseudocode 1. It starts by initialising the rule set (RS) with
the empty set. Then, for each hierarchical class level and for
each of the classes to be predicted, the algorithm performs a
WHILE loop. Each iteration of this loop performs one run of
the PSO/ACO algorithm, returning the best discovered rule
predicting examples of the current class (C). This rule is
added to the rule set, and the examples correctly covered by
that rule are removed from the sub training set (TS). An
example is said to be correctly covered by a rule if that

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

example satisfies all the terms (attribute-value pairs) in
the rule antecedent (“IF part”) and it has the class
predicted by the rule. This WHILE loop is performed as
long as the number of uncovered examples of the class C
is greater than a user-defined threshold, the maximum
number of uncovered examples per class
(MaxUncovExampPerClass). After discovering rules for
all classes at all levels, the algorithm returns RS, the
discovered rule set. To apply this algorithm to the
hierarchical classification problem the training set TS is a
sub set of the entire training set available. TS contains all
the examples from classes with the same parent class as
C. Class C is the “positive class” and its sibling classes
are the “negative classes”. So if classes 1.1.X.X, 1.2.X.X
and 2.1.X.X exist and class C is 1.1.X.X, then examples
from 1.1.X.X and 1.2.X.X would be used as positive and
negative examples in TS, respectively, whereas examples
from class 2.1.X.X would be ignored. At the top most
level the entire training set is used as TS. The training
examples that have been removed right after the
discovery of a rule are replaced in TS when the algorithm
starts creating rules for a new class.

RS = ∅ /* initially, Rule Set is empty */
FOR EACH LEVEL L
 FOR EACH class C at L
 TS = {all training examples belonging to classes at
 level L with the same parent as C}
 WHILE (number of uncovered training examples
 of class C > MaxUncovExampPerClass)
 Run the PSO/ACO algorithm to discover the
 best rule predicting class C, called BestRule
 RS = RS ∪ BestRule
 TS = TS – {training examples correctly
 covered by discovered rule}
 END WHILE
 END FOR
END FOR

Pseudocode 1: Sequential covering approach used by the
hybrid PSO/ACO algorithm

Each particle represents the antecedent of a candidate
classification rule. The rule’s class is fixed for all the
particles in each run of the algorithm, since – as shown in
Pseudocode 1 – each run of the algorithm aims at
discovering the best rule for a fixed class. This approach
has the advantage of avoiding the problem of having
different particles predicting different classes in the same
population, which would hinder the effective exploitation
of the PSO principle of “imitating the best neighbour”.

Although not dealt with in this paper the algorithm can
easily be extended to cope with continuous (real-valued)
attributes. Standard particle swarm optimisation is
particularly well suited to this problem and so a

continuous value can be directly represented as a component
of the vector associated with a particle and processed using
the standard formulas for PSO [14]. A simple approach
would be to define upper and lower bounds for the
continuous attribute in the rule, an example might be IF 21 ≤
age ≤ 35 THEN wage = medium.

On the other hand, for the reasons discussed earlier,
categorical (nominal) attributes are handled in a special way,
as follows. A particle contains a number of pheromone
matrices equal to number of categorical attributes in the data
set. Each pheromone matrix contains values for pheromones
for each possible value that that attribute can take [12] plus a
flag value (the indifference flag) indicating whether or not
the attribute (ProSite pattern) is selected to occur in the
decoded rule. The particle representation for categorical
attributes is shown in graphical form in Figure 1, where each
attribute value and the indifference flag are represented as
slots in a roulette wheel. This analogy is appropriate for
explaining the process of moving the particles with respect
to categorical attributes, as discussed in the next section.

Figure 1: Particle representation considering categorical
attributes only

4.2 MOVING THE PARTICLE WITH RESPECT

TO CATEGORICAL (NOMINAL,
NON-NUMERIC) ATTRIBUTES

At each iteration, each categorical attribute in the rule
antecedent represented by each particle has its value chosen,
in order to give a particle a fixed position and so quality.
This is the decoding process. An attribute value is chosen
with probability proportional to its pheromone value. This
fixed position and so quality is used to update the particle’s
pheromone matrices in the next iteration. If the new position
has a higher quality than any position the particle has ever
occupied then it is set as the particle’s past best position. To
update the values in the pheromone matrices of the current
particle, the past best, current and its best neighbour’s
positions are used. The quality of these three positions,
multiplied by individual random learning factors as usual in
PSO, are added to the values in the appropriate entries in the
pheromone matrices of the current particle. For instance,
suppose that one of these positions (corresponding to a
decoded classification rule), say the rule decoded from the
particle’s best neighbour, does not contain any values for a

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

given attribute, i.e., the decoded rule has indifference flag
set to off in that given attribute. Then the pheromone
value associated with the indifference flag (the “off” slot
in Figure 1) of that attribute of the current particle will be
updated by adding, to the current pheromone value, an
amount which is equal to the quality of the best
neighbour rule multiplied by a random number. As
another general example, suppose the rule from the
particle’s best past position includes a value equal to yes
for the i-th attribute. Then the pheromone value
associated with the value yes of the i-th attribute of the
current particle will be updated by adding, to the current
pheromone value, the product of the best past position
rule times a random number. After the qualities of the
three decoded rules (from best past position, current
position, and best neighbour position) have been added to
the corresponding pheromone values of the current
position), the pheromone matrix is normalised to
simulate evaporation on unused attribute values, in the
same style of the pheromone evaporation procedure used
in [12]. More precisely, the formulas for updating a
particle’s pheromone (the probabilities of choosing
attribute values) are as follows:

∑ +

=

=

∈∀+=

∈∀+=

∈∀+=

1a

1j cij

cij
cij

l3cijcij

p2cijcij

c1cijcij

i
τ

τ
(4) τ

ij),Q*(τ(3) τ

ij),Q*(τ(2) τ

ij),Q*(τ(1) τ

ϕ
ϕ
ϕ

Where cijτ is the amount of pheromone in the current

particle c, for attribute i, for value j. cQ is the quality of

the rule represented by the current position of the current

particle, pQ is the quality for the rule represented by the

best past position of the current particle andlQ is the

quality of the rule represented by the best local
neighbour’s position.ϕ is a random learning factor in the

range 0..1. We stress that in Equations (2) and (3), for
each attribute i, its value j belonging to the best past or
best neighbour rule can be different from the value of
attribute i in the current rule. For instance, in the best
local neighbour rule the attribute i could have, say, the
value j = yes, whereas in the current rule the attribute i
could have the value no. In this case, a fraction of the

quality of the best local neighbour rule (i.e., ϕ3 * Ql)
would be added to the pheromone entry for j = yes (rather
than j = no) in the current rule. This increase of
pheromone for value yes of attribute i would be
increasing the probability that the value yes will be
chosen the next time that the particle is decoded into a
rule, i.e., in the next iteration of the algorithm. Therefore,

the mechanism of increasing the pheromone of a given
attribute value in the hybrid PSO/ACO corresponds to the
mechanism of moving a particle towards that attribute value
in conventional PSO. It is also important to bear in mind that
in Equations (1)–(3) the index j can refer to any of the values
of the attribute i, including the indifference flag “off” – see
Figure 1. Equation (4) normalises the pheromone matrices.
In that equation ai denotes the number of values belonging to
the domain of attribute i, and the summation is over ai + 1
(rather than just ai) terms in order to consider the “off” state.

Note that Equations (1)–(3) are quite different from the
particle movement equations from conventional PSOs in two
important ways. First, in conventional PSOs the measure of
particle quality (goodness) is used to determine the best past
position of a particle and its best neighbour, but the actual
value of particle quality is not used to compute velocity. By
contrast, in Equations (1)–(3) the actual values of particle
quality (Qc, Qp, Ql) are directly used to update the position
of the current particle. This characteristic was inherited from
ACO principles. Second, in conventional PSO the
movement of the current particle is attracted by its best past
position and its best neighbour’s position. By contrast, in the
hybrid PSO/ACO the movement of the current particle is
attracted not only by those two positions – Equations (2),(3),
but also by the current particle’s own position – Equation
(1). There is no counterpart to Equation (1) in conventional
PSO, but this formula is justified in the hybrid PSO/ACO
because the formulas for particle movement are based not
only on particle positions, but also on particle qualities. The
higher the quality of the current particle, the higher the
increase in the amount of pheromone associated with the
attribute values belonging to the current rule, and so the
larger the tendency for the particle to stay in its current
position.

4.3 PARTICLE FITNESS (RULE QUALITY)

The fitness of a given particle is based on the rule it
represents, and is given by the following measure of
predictive accuracy [12]: Rule Quality = Sensitivity *
Specificity, where Sensitivity = TP / (TP + FN) and
Specificity = TN (TN + FP), where:

TP (True Positives) is the number of cases that match the
rule antecedent (attribute values) and also match the rule
consequent (class). These are desirable correct predictions.
FP (False Positives) is the number of cases that match the
rule antecedent but do not match the rule consequent. These
are undesirable incorrect predictions.
FN (False Negatives) is the number of cases that do not
match the rule antecedent but do match the rule consequent.
These are undesirable uncovered cases and are caused by an
overly specific rule.
TN (True Negatives) is the number of cases that do not
match the rule antecedent and do not match the rule

leBestPastRu

uleBestLocalR

eCurrentRul

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

consequent. These are desirable and are caused by a
rule’s antecedent being specific to its consequent class.

4.4 SEEDING AND PRUNING

If a rule was initialised at random, it might have a quality
of 0, if the rule does not cover any example of its
predicted class. Our rule initialisation procedure avoids
that. The population is initialised in positions with non-
zero qualities, and so this is each particle’s respective
initial past best position. This is achieved by taking an
example (record) from the class to be predicted and using
its terms (attribute values) as the rule antecedent. This
creates an extremely specific rule, covering only the
“seed” example. Then to improve the initial quality of the
particle, a pruning procedure is applied, as described
below. This reduces the time it takes the population to
converge and tends to make it converge to a rule of
higher quality. We found this procedure is very important
when dealing with large numbers of attributes.

Rule pruning simplifies and generalises the rule. It
generalises the rule by removing the most irrelevant
terms and so increasing the number of examples covered
by the rule. It simplifies the rule by removing terms
which make the rule overly specific, or which do not
affect the quality of the rule. We experimented with two
kinds of rule pruning procedures for seeding purposes. In
both procedures, the first step is to compute the “quality”
of each term (attribute-value pair) occurring in the
current rule. As a measure of term quality we use the
same formula “Sensitivity * Specificity” explained in
section 4.3, with the difference that now, when
computing the values of TP, FP, FN and TN for a given
term, we try to match each training example with just
that term, rather than matching the example with all the
terms in the entire rule antecedent. The positive class is,
of course, the class predicted by the rule. Hence, term
quality is a value in the range 0..1. The larger the value
the better the quality of the term. We emphasize that term
quality is computed for one-term-at-a-time, ignoring term
interactions in the rule, and so it is not a perfect estimator
of the term’s true predictive power in the rule. However,
the computation of this term quality measure is quite fast,
so that this rule pruning procedure is much faster than the
rule pruning procedure of Ant-Miner, the ACO for
discovering classification rules described in [12].

Once the quality of each term in the rule has been
computed, one of the following two alternative rule
pruning procedures was tried:
1) Selecting a fixed number K of relevant terms, where K
is a parameter. To achieve greater diversity of selected
terms across different rules (i.e. to avoid that the same
top-quality terms be selected in all the rules where they
appear) each term had its quality re-computed, by

multiplying the original quality value by a random number
in the range 0..1. Finally, the updated term quality value was
then used to sort the terms using merge sort and only the top
K terms were kept “turned on” in the pruned rule. The other
terms were “turned off”, by setting the corresponding
attribute value to the state “off” in the particle
representation.
2) Selecting a variable number of terms, in proportion to the
quality of the terms. For instance, if the quality of a rule
term (i.e., its normalised value in the range 0..1) was 0.6,
then that term was preserved in the rule with a probability of
0.6, and therefore removed from the rule with the
complementary probability of 0.4.

The above rule pruning procedures were alternatively used
only to prune the rules resulting from the initial stage of
seeding i.e. for the first iteration of the algorithm. Although
only a number of rules equal to the size of the population
need to be pruned, these rule pruning procedures were
designed to be fast – at the price of ignoring term
interactions, as mentioned above. This kind of fast pruning
is important because right after seeding each rule is
extremely long, having a number of terms equal to the total
number of attributes in the data – since initially all terms are
“turned on”. However, at the end of the algorithm run, when
the best rule is returned by the algorithm, it makes sense to
prune that rule using a more sophisticated approach. At this
point computational time is not a serious issue, since just
one rule has to be pruned and the length of the rule should
have been reduced by the rule optimisation process. Also the
quality of the best rule found by the algorithm is a very
serious issue, since this is a rule that will be used to classify
new data later. Hence, we used the more sophisticated Ant-
Miner’s rule pruning procedure [12] for the final rule
produced by each run of the hybrid PSO/ACO algorithm.

5 COMPUTATIONAL RESULTS

5.1 EXPERIMENTAL SETUP

The classes to be predicted in this project are 4 digit EC
numbers (enzyme commission number), and the predictor
attributes are Prosite [7] patterns – as discussed earlier. This
data being mined (33079 examples, 854 attributes with
boolean values representing the absence or presence of a
ProSite pattern) was harvested from the UniProt [8] and
Prosite databases. As a pre-processing step, classes with a
number of records less than 10 were merged with their most
similar sibling, since in principle there is not enough data to
make a reliable prediction of those classes. The similarity
between two classes was measured simply as the average
number of matching attribute values between all records in
either class. The total number of classes after this process
was 850, with 6 classes at the first level, 52 at the second,
138 at the third and 654 at the fourth. During previous
experiments it was found that, when using pruning

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

procedure (1), pruning the seeding rule to 50 terms
produced the best results in terms of accuracy and
comprehensibility and accuracy, and so this threshold
value was used in the results reported in this paper.

5.2 RESULTS AND DISCUSSION

Table 1 reports the classification accuracy obtained by
the proposed PSO/ACO and by our adapted version of
the existing DPSO [11] – which was modified to use the
same seeding and rule pruning procedure as the
PSO/ACO algorithm. This adaptation was done in order
to focus the comparison of the algorithms on the different
ways that they represent and manipulate categorical
values. DPSO was also adapted for hierarchical
classification with the same top-down approach used by
PSO/ACO. In addition, DPSO uses the same rule quality
(particle fitness) formula as PSO/ACO, which is also the
rule quality of Ant-Miner [12]. For each algorithm, Table
1 reports the accuracy of the two above-mentioned
versions of the pruning procedure applied right after
seeding, i.e. pruning preserving the top-50 terms and
pruning preserving a variable number of terms. The
classification accuracy on the test set (separated from
training) was measured by a 5-fold cross-validation
procedure [4], and the numbers after the symbol
“±”denote standard deviations.

Table 1: Accuracy (%) of PSO/ACO and DPSO

 PSO/ACO DPSO
EC
level

top-50
terms

var. No.
of terms

top-50
terms

var. No.
of terms

1 96.5±0.3 97.7±0.8 94.7±4.2 95.1±5.3
2 91.8±1.9 89.5±2.8 86.2±4.7 79.4±6.1
3 66.7±3.1 68.2±3.2 68.1±1.5 65.7±2.0
4 43.6±2.8 38.3±2.1 45.1±1.0 33.9±1.6

As can be seen from the results the accuracy of the
predictions decreases with every level. This is expected
for two reasons. First, the number of classes per level
increases at deeper levels, with a corresponding decrease
in the number of examples per class, making an accurate
prediction at deeper levels more unlikely. Second, it is an
inevitable result of using a divide and conquer type
algorithm, as once an incorrect prediction has been made
at a higher level it cannot be rectified, this leads to the
accuracy being at best the same as the level above.

In any case, the classification accuracies at the first two
levels are high. In particular, the accuracy at the first
level – containing 6 classes – is above 96% for
PSO/ACO. This is a very significant improvement over
the baseline accuracy (the relative frequency of the
majority class) at the first level. This baseline accuracy is
the probability of predicting the correct class without

using any classification algorithm, and rather just assigning
the largest class to all examples in the test set. For the first
level, the baseline accuracy is computed as the number of
enzymes with class 2 (the majority class) in the training set,
7,764, divided by the total number of enzymes in the
training set, 26,500, resulting in 29.3%. Although the
accuracy values at the third and fourth level are relatively
low, they are still much higher than the baseline accuracy for
those levels, which are very low, given the very large
number of classes at those deeper levels.

Let us now compare the results of PSO/ACO and DPSO in
Table 1, for each kind of pruning. For the top-50 terms
version of pruning, PSO/ACO outperformed DPSO at levels
1 and 2, whereas the opposite was true at levels 3 and 4.
However, the differences in accuracies are not significant,
taking into account the standard deviations.

For the pruning producing a variable number of terms,
PSO/ACO outperformed DPSO at all levels, and the
difference is significant at levels 2 and 4. This points
towards the fact that PSO/ACO benefits more from the
varied lengths of rules produced in that seeding process. The
hybrid algorithm more quickly discards terms that none of
the particles have found good, when compared to DPSO.
This is demonstrated by the greater convergence times
observed in the DPSO algorithm and the longer rules
produced with DPSO, suggesting that a wider search is
being performed. This may be a useful feature in other data
sets but, due to the very large amount of attributes in the
Enzyme data set, the more focused search of the PSO/ACO
algorithm wins out.

Table 2: No. of rules generated per class level
 PSO/ACO DPSO
EC
level

top-50
terms

var. No.
of terms

top-50
terms

var. No.
of terms

1 7.3±
0.2

8.0
±0.0

9.2
±0.6

8.0
±0.0

2 54.3±
0.8

56.5
±0.7

56.8
±1.2

57.0
±1.0

3 109.0±
0.9

112.3
±0.7

110.3
±1.1

110.7
±1.3

4 477.0±
7.6

474.3
±10.4

486.4
±9.6

465.0
±0.6

Table 3: Average No. of terms per rule per class level
 PSO/ACO DPSO
EC
level

top-50
terms

var. No.
of terms

top-50
terms

var. No.
of terms

1 3.7±0.6 4.6±0.8 12.9±1.5 11.5±0.8
2 9.6±0.6 5.1±0.4 21.8±0.6 7.4±0.3
3 2.4±0.1 2.0±0.1 20.7±0.5 6.0±0.2
4 5.1±0.2 2.5±0.1 25.3±0.2 2.9±0.1

2005 IEEE Swarm Intelligence Symposium, 8-10 June, Pasadena, California, USA

Let us now turn to the comprehensibility of the
discovered rule set, which is measured by its size
(number of rules and number of terms per rule), as usual
in the data mining literature. Table 2 shows the number
of rules generated by hybrid PSO/ACO and DPSO for
each class level, whereas Table 3 shows the average
number of terms per rule for these two algorithms per
class level.

In general the number of rules discovered by PSO/ACO
and DPSO is similar, for each kind of pruning. In
addition, for each algorithm the kind of pruning used
makes little difference in the number of rules. As
expected, the number of rules increases at deeper levels
of the class hierarchy, due to the corresponding increase
in the number of classes. However, as shown in Table 3,
the average number of terms in the rules discovered by
PSO/ACO is much smaller than in the rules discovered
by DPSO. To summarize, both algorithms discover about
the same number of rules, but the rules discovered by
PSO/ACO are much shorter, and so easier to be
interpreted by the user.

6. CONCLUSIONS AND FUTURE RESEARCH

The paper has introduced a new hybrid PSO/ACO
algorithm for hierarchical classification, and applied it to
the classification of a challenging biological data set. The
results were compared with an adapted version of an
existing PSO algorithm. Overall the hybrid PSO/ACO
obtained somewhat better results with respect to
classification accuracy, and much better results with
respect to comprehensibility of the discovered rule set.

Although in this paper the hybrid PSO/ACO was applied
only to a biological data set, it is generic enough to be
applied to other hierarchical classification data sets. So, a
future research direction would be to evaluate the
algorithm on other kinds of data sets. Also, the core idea
of the hybrid algorithm, using an ACO-style pheromone-
based mechanism for coping with categorical values, is
independent of hierarchical classification, so it would be
interesting to apply the algorithm even to other problems
that do not involve data mining, but involve some kind of
categorical (nominal, non-numeric) attributes. In
addition, a lot of hierarchical data sets are also multi-
label – i.e., there are several class attributes to be
predicted. This scenario obviously add a lot of
complexity and scope for optimisation to the problem in
future research.

REFERENCES

[1] A. Sun and E.-P. Lim, Hierarchical Text

Classification and Evaluation, Proc. 2001 IEEE ICDM
(Int. Conf. on Data Mining), pp. 521-528, 2001

[2] H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramon, and
J. Struyf, Hierarchical Multi-Classification. SIGKDD
Workshop on Multi-Relational Data Mining (MRDM-
2002), pp. 21—35, 2002.

[3] M. Sasaki and K. Kita, Rule-based text categorization
using hierarchical categories, In Proc. of the IEEE Int.
Conf. On Systems, Man, and Cybernetics, pp. 2827-2830,
1998.

[4] I.H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools with Java Implementations,
Morgan Kaufmann Publications, 2000.

[5] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smyth. From
data mining to knowledge discovery: an overview,
Advances in Knowledge Discovery and Data Mining,
AAAI/MIT, pp. 1-34, 1996.

[6] I. Shah L. Hunter, Visualization based on the Enzyme
Commission nomenclature, Pacific Symposium on
Biocomputing 3, pp. 142-152, 1998.

[7] ProSite, http://us.expasy.org/prosite/, Visited on Jan.
2005.

[8] UniProt, http://www.ebi.uniprot.org/, Visited on Jan.
2005.

[9] W. Tian1, A. K. Arakaki1 and J. Skolnick, EFICAz: a
comprehensive approach for accurate Genome-Scale
Enzyme Function Inference, Nucleic Acids Research, Vol.
32, No. 21, 2004.

[10] A. Ben-Hur and D. Brutlag, Protein sequence motifs:
Highly predictive features of protein function, Technical
Report, International Computer Science Institute,
Berkeley, April 2004.

[11] T. Sousa, A. Silva, A. Neves, Particle Swarm based
Data Mining Algorithms for classification tasks, Parallel
Computing 30, pp. 767–783, 2004.

[12] R.S. Parpinelli, H.S. Lopes and A.A. Freitas. Data
Mining with an Ant Colony Optimization Algorithm,
IEEE Trans. on Evolutionary Computation, special
issue on Ant Colony algorithms, 6(4), pp. 321-332,
Aug. 2002.

[13] M. Dorigo and T. Stuetzle. Ant Colony Optimization.
MIT Press, 2004.

[14] J. Kennedy and R. C. Eberhart, with Y. Shi. Swarm
Intelligence, San Francisco: Morgan Kaufmann/
Academic Press, 2001.

