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ABSTRACT 

 
This paper proposes a hybrid PSO/ACO algorithm for 
hierarchical classification, where the classes to be 
predicted are arranged in a tree-like hierarchy. The 
performance of the algorithm is evaluated on a 
challenging biological data set, involving the hierarchical 
functional classification of enzymes. The proposed 
algorithm is compared with an existing PSO for 
classification, which was also adapted for hierarchical 
classification. 
 

1. INTRODUCTION 
 
The discovery of a new protein and its function was once 
deemed worthy of a paper in its own right. Now with the 
automation of the processes involved with the discovery 
of new proteins it is almost viewed as common place. 
Due to the large amount of new proteins being 
discovered, automated processes are also needed to find 
what purpose a protein might have within a biological 
system. This paper deals with the hierarchical functional 
classification of enzymes (a sub set of proteins). 
Enzymes are nature’s catalysts and usually are more 
effective at catalysing reactions than their non-biological 
counterparts. An example of such effective enzymes are 
those found in biological washing powder.  
 
We propose a new hybrid PSO (Particle Swarm 
Optimization)/ACO (Ant Colony Optimization) 
classification algorithm tailored to this challenge. More 
specifically to cope with the extremely large number of 
attributes and classes, and the categorical (nominal, non-
numerical) data often associated with the problem. We 
hope this paper will serve as an introduction into the 
complex and challenging realm of hierarchical 
classification of biological data sets. In any case, it 
should be noted that the proposed hybrid PSO/ACO 
algorithm is generic enough to be applied to other 
challenging classification problems. 
 
The basic motivation for designing the hybrid algorithm 
was to make PSO more effective in coping with 
categorical attributes using the pheromone-based 
mechanism of ACO, as will be discussed later. The 
proposed hybrid PSO/ACO algorithm is compared with 

an existing PSO for classification, which was also adapted 
for hierarchical classification. Both algorithms follow the 
top-down approach for hierarchical classification, using the 
predictions of higher-level classes to guide the search for 
rules predicting lower-level classes.  
 

2. PROTEINS AND ENZYMES 
 
Proteins are the active building blocks of all life and carry 
out most of the functions involved with it (there are always 
exceptions in biology). Enzymes are a sub set of proteins; 
they are catalysts which are used to speed up and make 
possible many of the chemical reactions that take part within 
the cell, without being altered themselves. Enzymes are 
assigned EC codes (enzyme commission numbers), which 
are 4 digit numbers that represent the type of chemical 
reaction the enzyme in question catalyses [6]. Each digit 
corresponds to a level in the hierarchy. For instance, EC 
3.1.4.1 is an enzyme with class value 3 in the first level, 
class value 1 in the second level, etc. 
 
Proteins are formed from a number of amino acids chained 
together. There are 20 different amino acids that occur 
naturally, and a linear sequence of these amino acids is 
known as the primary structure. The secondary structures 
seen in proteins are the 3D shapes that form locally in each 
protein and may be repeated throughout it. They also may be 
common to multiple proteins. These common patterns and 
domains include helixes, sheets, active sites which catalyse 
reactions in enzymes (a sub set of proteins), various sites 
which allow functions of a protein to be turned on and off 
etc. From a data mining point of view these regions are very 
interesting as they work together to produce the behaviour 
observed in proteins and so must produce patterns that can 
be analysed. A number of databases of these common 
structures have been created, including the Prosite database 
[7], which is used in this work. This database contains 
unique “fingerprint” style entries which are designed to be 
used to identify the function of unknown proteins. 
 
The tertiary structure can be described as the overall shape 
formed when the chemically attracted portions cause the 
protein to fold. These individual attractions are quite weak, 
but because there are so many of them the resulting protein 
can be structurally very strong, although when heat is 
applied they tend to unfold or denature. (This happens, e.g., 
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when eggs are cooked). The quaternary structure is where 
proteins join together to form more complicated 
structures, such as cell walls or spiders silk. 
 

3. HIERARCHICAL CLASSIFICATION 
 
Data mining consists of a set of concepts and techniques 
used to find useful patterns within a set of data [4], [5]. In 
this project the discovered knowledge is represented as 
classification rules. A rule consists of an antecedent (a set 
of attribute values) and a consequent (class): 
 

IF <attrib = value> AND ... AND <attrib = value>  
THEN <class> 

 
The consequent of the rule is the class predicted by the 
rule for the records (examples) where the predictor 
attributes hold. An example rule might be IF <Salary = 
high> AND <Mortgage = No> THEN <Good Credit>. 
This kind of knowledge representation has the advantage 
of being intuitively comprehensible to the user. This is 
important, because the general goal of data mining is to 
discover knowledge that is not only accurate, but also 
comprehensible [4][5].  
 
In this project the classes are arranged in a tree structure 
where each node (class) has only one parent. Hierarchical 
class datasets present new challenges when compared to 
flat class datasets. The main challenge comes from the 
extra complexity associated with such datasets, the fact 
that many (depending on the depth) more classes must be 
assigned to the examples, and the prediction of a class 
becomes increasingly difficult as deeper levels are 
considered, due to the smaller number of examples per 
class. Note that although the functional classification of 
enzymes is an important bioinformatics problem, 
previous applications of data mining to this problem 
typically ignore the class hierarchy, focusing on 
predicting classes in just one level of that hierarchy 
[9][10]. 
 
The simplest way to deal with hierarchical classification 
is to ignore the hierarchy completely and so only predict 
classes at the bottom most level, indirectly predicting the 
classes at higher levels. This approach avoids the 
aforementioned extra complexity at the expense of not 
discovering simpler knowledge expressed by higher level 
rules (based on a larger number of examples). It 
discovers only lowest level rules based on a small 
number of examples, and so those rules tend to be 
inaccurate. 
 
The second approach is to again ignore the fact that the 
classes are in a hierarchy at the training stage and classify 
each node separately. It can be argued that this will 
produce the most complete set of rules, and so if this is 

taken into account at classification (on the test set) there is a 
higher chance of making an accurate prediction. However 
the knowledge found is overly complex and so harder to 
comprehend, also this approach is more computationally 
expensive.  
 
The third approach (which is used in this project) uses the 
divide and conquer principle [1]. If class 1.X.X.X (where X 
denotes any digit) is predicted at the first level and node 1 
has only the child nodes 1.1.X.X and 1.2.X.X, only these 
two nodes should be considered and not the children 
belonging to node 2.X.X.X. This holds both during training 
and test set classification. It does however create problems 
of misclassification; if an example is misclassified at a 
higher node then it has no chance of being correctly 
classified at lower nodes. However, it has the advantages of 
producing a more complete set of rules than the first 
approach without it being needlessly (as with the second 
approach) complex, while also using the nature of the 
hierarchical structure of the data to optimise performance. 
 

4. THE HYBRID PSO/ACO ALGORITHM 
 
Although PSO and ACO algorithms have been developed 
for the classification task we do not feel that either of the 
current algorithms is ideally suited for this problem, for the 
following reasons stated. 
 
Although the ACO classification algorithm has already been 
shown [12] at least competitive with the industrial standard 
C5.0 algorithm, the unusually large amount of attributes and 
classes associated with this problem mean an extremely large 
amount of computation time is required. This is because a 
computationally expensive rule pruning procedure is 
required at every inner iteration of the standard ACO 
algorithm. Also for the algorithm to work with continuous 
attributes they have to be previously discretised, which can 
decrease classification accuracy and increase computational 
time at this pre-processing step.  
 
A PSO algorithm has also been developed for classification 
[11], however we believe it can be improved by hybridising 
it with ACO. The classification task usually involves a 
mixing of both continuous and categorical (nominal, non-
numerical) attribute values. Although a “standard” 
binary/discrete PSO algorithm exists [14], it does not deal 
with categorical values in a natural fashion when compared 
to ACO. In particular, the standard PSO for coping with 
binary attributes represents a particle by a bitstring, where 
each binary value such as true or false is encoded as 1 or 0. 
The usual notion of “velocity” (a core concept in a PSO for 
coping with continuous variables) is replaced by the notion 
of “predisposition of taking the value 1 (rather than 0)”. This 
approach was designed to cope with binary 
attributes/decisions, but not explicitly designed to cope with 
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multi-valued (i.e, having more than two values) 
categorical attributes.  
 
Sousa et al. extended the standard binary PSO to cope 
with multi-valued categorical attributes [11], developing 
a Discrete PSO (DPSO) algorithm for discovering 
classification rules. In essence, in DPSO each value for a 
categorical attribute is assigned an index number. This 
number is then converted into a binary string. An extra 
bit is also added for each attribute to decide if that 
attribute is to be included in the resulting rule. Once a 
categorical attribute has been converted into a binary 
string, the standard binary PSO can then be applied.  
 
However, this encoding approach introduces some 
problems. In particular, due to the conversion to binary, 
the bits of the string to be optimised by the algorithm 
interact with each other to form the index number. This 
interaction is adds an extra layer of complexity and 
confusion for the algorithm, because PSO works by 
trying to find the optimal value of each bit individually. 
I.e., each bit is a “dimension” from the point of view of 
PSO, and the “velocity” of a bit – its propensity of taking 
the value 1 – is computed independent from other bits 
that are part of the encoding of the same attribute, 
ignoring important bit interactions. 
 
Another (related) problem is that the numerical index 
assigned to a categorical value and the subsequent binary 
encoding scheme will affect the result of any particle 
interaction. For instance, consider the categorical 
attribute Marital Status with the following four nominal 
values: single, married, divorced, widowed. There are 24 
different ways of mapping these nominal values into 
numerical indices in the range 0 to 3 and subsequent 
convert them into two binary digits. (Each permutation of 
the nominal values corresponds to a different mapping, 
and the number of permutations is 4! = 24.) The choice 
of a mapping is arbitrary, but it affects particle 
interactions. For instance, single and widowed might be 
converted to 00 and 11, in which case the two nominal 
values would be totally different in their binary 
representation, or they might be converted to 00 and 01, 
in which case they would be just partially different in 
their binary representation. This affects the computation 
of the “velocities” of individual bits, since those 
velocities depend on the differences between bit values 
of the current particle and bit values in the particle’s best 
past position and best neighbour. As there is no ordering 
in categorical data, ideally an encoding scheme should be 
chosen where all bit strings are equally pairwise similar 
(i.e., every pair of bit strings has the same Hamming 
distance), which is not possible in general, as shown in 
the above example. 
 

Another major problem with the current DPSO classification 
algorithm, in the context of large and complex data sets, is 
that the population is initialised randomly. This is acceptable 
with a low number of attributes, as there is a large 
probability of randomly producing a particle with a non-zero 
fitness. However it becomes a major problem in 
classification problems when large numbers of attributes are 
present, as many or all of the particles may have zero 
finesses in the population. The rules that particles represent 
may also be needlessly long, increasing fitness evaluation 
time and decreasing the comprehensibility of the resulting 
rule. If all or most of the particles have zero finesses then the 
convergence time will be significantly increased while the 
particles randomly search to find a position with a non-zero 
fitness, or they may converge to a bad position simply 
because there are only a few non-zero positions “known” in 
the population. 
 
The hybrid algorithm addresses these issues by combining 
characteristics of PSO and ACO algorithms. ACO has been 
shown good at solving classification problems with 
categorical data [13], as it does not introduce any artificial 
ordering among attribute values and features none of the 
encoding problems of DPSO previously mentioned. PSO has 
been shown good at solving optimisation problems with 
continuous values, which are often present in data mining. 
The original ACO algorithm for classification, Ant-Miner 
[12], requires that every rule be pruned right after the rule is 
created. This is due to the way the rules are constructed 
(incrementally, one-condition-at-a-time) and the way the 
problem is represented in terms of pheromone. Ant-Miner’s 
rule pruning tends to be effective in improving a rule, but it 
is very computationally expensive when the rule has many 
attributes, which is a serious limitation in the context of the 
data set mined in this project. The hybrid algorithm does not 
require such pruning because of the addition of an 
indifference entry in the pheromone matrices (pruning is still 
carried out on the final best rule generated by the 
population) and the fact that a separate matrix is used for 
each attribute. The overall effect is to produce a “swarm of 
ant colonies”. 
 

4.1 SEQUENTIAL RULE DISCOVERY AND 
PARTICLE REPRESENTATION 

 
The algorithm uses a sequential covering approach [4] to 
discover one-classification-rule-at-a-time, as shown in 
Pseudocode 1. It starts by initialising the rule set (RS) with 
the empty set. Then, for each hierarchical class level and for 
each of the classes to be predicted, the algorithm performs a 
WHILE loop. Each iteration of this loop performs one run of 
the PSO/ACO algorithm, returning the best discovered rule 
predicting examples of the current class (C). This rule is 
added to the rule set, and the examples correctly covered by 
that rule are removed from the sub training set (TS). An 
example is said to be correctly covered by a rule if that 
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example satisfies all the terms (attribute-value pairs) in 
the rule antecedent (“IF part”) and it has the class 
predicted by the rule. This WHILE loop is performed as 
long as the number of uncovered examples of the class C 
is greater than a user-defined threshold, the maximum 
number of uncovered examples per class 
(MaxUncovExampPerClass). After discovering rules for 
all classes at all levels, the algorithm returns RS, the 
discovered rule set. To apply this algorithm to the 
hierarchical classification problem the training set TS is a 
sub set of the entire training set available. TS contains all 
the examples from classes with the same parent class as 
C. Class C is the “positive class” and its sibling classes 
are the “negative classes”. So if classes 1.1.X.X, 1.2.X.X 
and 2.1.X.X exist and class C is 1.1.X.X, then examples 
from 1.1.X.X and 1.2.X.X would be used as positive and 
negative examples in TS, respectively, whereas examples 
from class 2.1.X.X would be ignored. At the top most 
level the entire training set is used as TS. The training 
examples that have been removed right after the 
discovery of a rule are replaced in TS when the algorithm 
starts creating rules for a new class. 
 
RS = ∅   /* initially, Rule Set is empty */ 
FOR EACH LEVEL L 
     FOR EACH class C at L 
          TS = {all training examples belonging to classes at 
                     level L with the same parent as C} 
          WHILE (number of uncovered training examples 
                        of class C > MaxUncovExampPerClass) 
                 Run the PSO/ACO algorithm to discover the  
                 best rule predicting class C, called BestRule 
               RS = RS ∪ BestRule 
               TS = TS – {training examples correctly 
                                    covered by discovered rule} 
          END WHILE 
     END FOR 
END FOR 
 
Pseudocode 1: Sequential covering approach used by the 
hybrid PSO/ACO algorithm 
 
Each particle represents the antecedent of a candidate 
classification rule. The rule’s class is fixed for all the 
particles in each run of the algorithm, since – as shown in 
Pseudocode 1 – each run of the algorithm aims at 
discovering the best rule for a fixed class. This approach 
has the advantage of avoiding the problem of having 
different particles predicting different classes in the same 
population, which would hinder the effective exploitation 
of the PSO principle of “imitating the best neighbour”.  
 
Although not dealt with in this paper the algorithm can 
easily be extended to cope with continuous (real-valued) 
attributes. Standard particle swarm optimisation is 
particularly well suited to this problem and so a 

continuous value can be directly represented as a component 
of the vector associated with a particle and processed using 
the standard formulas for PSO [14]. A simple approach 
would be to define upper and lower bounds for the 
continuous attribute in the rule, an example might be IF 21 ≤ 
age ≤ 35 THEN wage = medium.  
 
On the other hand, for the reasons discussed earlier, 
categorical (nominal) attributes are handled in a special way, 
as follows. A particle contains a number of pheromone 
matrices equal to number of categorical attributes in the data 
set. Each pheromone matrix contains values for pheromones 
for each possible value that that attribute can take [12] plus a 
flag value (the indifference flag) indicating whether or not 
the attribute (ProSite pattern) is selected to occur in the 
decoded rule. The particle representation for categorical 
attributes is shown in graphical form in Figure 1, where each 
attribute value and the indifference flag are represented as 
slots in a roulette wheel. This analogy is appropriate for 
explaining the process of moving the particles with respect 
to categorical attributes, as discussed in the next section. 

 
Figure 1: Particle representation considering categorical 
attributes only 
 
4.2 MOVING THE PARTICLE WITH RESPECT 

TO CATEGORICAL (NOMINAL, 
NON-NUMERIC) ATTRIBUTES 

 
At each iteration, each categorical attribute in the rule 
antecedent represented by each particle has its value chosen, 
in order to give a particle a fixed position and so quality. 
This is the decoding process. An attribute value is chosen 
with probability proportional to its pheromone value. This 
fixed position and so quality is used to update the particle’s 
pheromone matrices in the next iteration. If the new position 
has a higher quality than any position the particle has ever 
occupied then it is set as the particle’s past best position. To 
update the values in the pheromone matrices of the current 
particle, the past best, current and its best neighbour’s 
positions are used. The quality of these three positions, 
multiplied by individual random learning factors as usual in 
PSO, are added to the values in the appropriate entries in the 
pheromone matrices of the current particle. For instance, 
suppose that one of these positions (corresponding to a 
decoded classification rule), say the rule decoded from the 
particle’s best neighbour, does not contain any values for a 
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given attribute, i.e., the decoded rule has indifference flag 
set to off in that given attribute. Then the pheromone 
value associated with the indifference flag (the “off” slot 
in Figure 1) of that attribute of the current particle will be 
updated by adding, to the current pheromone value, an 
amount which is equal to the quality of the best 
neighbour rule multiplied by a random number. As 
another general example, suppose the rule from the 
particle’s best past position includes a value equal to yes 
for the i-th attribute. Then the pheromone value 
associated with the value yes of the i-th attribute of the 
current particle will be updated by adding, to the current 
pheromone value, the product of the best past position 
rule times a random number. After the qualities of the 
three decoded rules (from best past position, current 
position, and best neighbour position) have been added to 
the corresponding pheromone values of the current 
position), the pheromone matrix is normalised to 
simulate evaporation on unused attribute values, in the 
same style of the pheromone evaporation procedure used 
in [12]. More precisely, the formulas for updating a 
particle’s pheromone (the probabilities of choosing 
attribute values) are as follows: 
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Where cijτ is the amount of pheromone in the current 

particle c, for attribute i, for value j. cQ is the quality of 

the rule represented by the current position of the current 

particle, pQ is the quality for the rule represented by the 

best past position of the current particle andlQ is the 

quality of the rule represented by the best local 
neighbour’s position.ϕ  is a random learning factor in the 

range 0..1. We stress that in Equations (2) and (3), for 
each attribute i, its value j belonging to the best past or 
best neighbour rule can be different from the value of 
attribute i in the current rule. For instance, in the best 
local neighbour rule the attribute i could have, say, the 
value j = yes, whereas in the current rule the attribute i 
could have the value no. In this case, a fraction of the 

quality of the best local neighbour rule (i.e., ϕ3 * Ql)  
would be added to the pheromone entry for j = yes (rather 
than j = no) in the current rule. This increase of 
pheromone for value yes of attribute i would be 
increasing the probability that the value yes will be 
chosen the next time that the particle is decoded into a 
rule, i.e., in the next iteration of the algorithm. Therefore, 

the mechanism of increasing the pheromone of a given 
attribute value in the hybrid PSO/ACO corresponds to the 
mechanism of moving a particle towards that attribute value 
in conventional PSO. It is also important to bear in mind that 
in Equations (1)–(3) the index j can refer to any of the values 
of the attribute i, including the indifference flag “off” – see 
Figure 1. Equation (4) normalises the pheromone matrices. 
In that equation ai denotes the number of values belonging to 
the domain of attribute i, and the summation is over ai + 1 
(rather than just ai) terms in order to consider the “off” state.  
 
Note that Equations (1)–(3) are quite different from the 
particle movement equations from conventional PSOs in two 
important ways. First, in conventional PSOs the measure of 
particle quality (goodness) is used to determine the best past 
position of a particle and its best neighbour, but the actual 
value of particle quality is not used to compute velocity. By 
contrast, in Equations (1)–(3) the actual values of particle 
quality (Qc, Qp, Ql) are directly used to update the position 
of the current particle. This characteristic was inherited from 
ACO principles. Second, in conventional PSO the 
movement of the current particle is attracted by its best past 
position and its best neighbour’s position. By contrast, in the 
hybrid PSO/ACO the movement of the current particle is 
attracted not only by those two positions – Equations (2),(3), 
but also by the current particle’s own position – Equation 
(1). There is no counterpart to Equation (1) in conventional 
PSO, but this formula is justified in the hybrid PSO/ACO 
because the formulas for particle movement are based not 
only on particle positions, but also on particle qualities. The 
higher the quality of the current particle, the higher the 
increase in the amount of pheromone associated with the 
attribute values belonging to the current rule, and so the 
larger the tendency for the particle to stay in its current 
position. 
 

4.3 PARTICLE FITNESS (RULE QUALITY) 
 
The fitness of a given particle is based on the rule it 
represents, and is given by the following measure of 
predictive accuracy [12]:  Rule Quality = Sensitivity * 
Specificity, where Sensitivity = TP / (TP + FN) and 
Specificity = TN (TN + FP), where: 
 
TP (True Positives) is the number of cases that match the 
rule antecedent (attribute values) and also match the rule 
consequent (class). These are desirable correct predictions.  
FP (False Positives) is the number of cases that match the 
rule antecedent but do not match the rule consequent. These 
are undesirable incorrect predictions. 
FN (False Negatives) is the number of cases that do not 
match the rule antecedent but do match the rule consequent. 
These are undesirable uncovered cases and are caused by an 
overly specific rule. 
TN (True Negatives) is the number of cases that do not 
match the rule antecedent and do not match the rule 

leBestPastRu

uleBestLocalR

eCurrentRul
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consequent. These are desirable and are caused by a 
rule’s antecedent being specific to its consequent class. 
 

4.4 SEEDING AND PRUNING 
 
If a rule was initialised at random, it might have a quality 
of 0, if the rule does not cover any example of its 
predicted class. Our rule initialisation procedure avoids 
that. The population is initialised in positions with non-
zero qualities, and so this is each particle’s respective 
initial past best position. This is achieved by taking an 
example (record) from the class to be predicted and using 
its terms (attribute values) as the rule antecedent. This 
creates an extremely specific rule, covering only the 
“seed” example. Then to improve the initial quality of the 
particle, a pruning procedure is applied, as described 
below. This reduces the time it takes the population to 
converge and tends to make it converge to a rule of 
higher quality. We found this procedure is very important 
when dealing with large numbers of attributes. 
 
Rule pruning simplifies and generalises the rule. It 
generalises the rule by removing the most irrelevant 
terms and so increasing the number of examples covered 
by the rule. It simplifies the rule by removing terms 
which make the rule overly specific, or which do not 
affect the quality of the rule. We experimented with two 
kinds of rule pruning procedures for seeding purposes. In 
both procedures, the first step is to compute the “quality” 
of each term (attribute-value pair) occurring in the 
current rule. As a measure of term quality we use the 
same formula “Sensitivity * Specificity” explained in 
section 4.3, with the difference that now, when 
computing the values of TP, FP, FN and TN for a given 
term, we try to match each training example with just 
that term, rather than matching the example with all the 
terms in the entire rule antecedent. The positive class is, 
of course, the class predicted by the rule. Hence, term 
quality is a value in the range 0..1. The larger the value 
the better the quality of the term. We emphasize that term 
quality is computed for one-term-at-a-time, ignoring term 
interactions in the rule, and so it is not a perfect estimator 
of the term’s true predictive power in the rule. However, 
the computation of this term quality measure is quite fast, 
so that this rule pruning procedure is much faster than the 
rule pruning procedure of Ant-Miner, the ACO for 
discovering classification rules described in [12]. 
 
Once the quality of each term in the rule has been 
computed, one of the following two alternative rule 
pruning procedures was tried:  
1) Selecting a fixed number K of relevant terms, where K 
is a parameter. To achieve greater diversity of selected 
terms across different rules (i.e. to avoid that the same 
top-quality terms be selected in all the rules where they 
appear) each term had its quality re-computed, by 

multiplying the original quality value by a random number 
in the range 0..1. Finally, the updated term quality value was 
then used to sort the terms using merge sort and only the top 
K terms were kept “turned on” in the pruned rule. The other 
terms were “turned off”, by setting the corresponding 
attribute value to the state “off” in the particle 
representation. 
2) Selecting a variable number of terms, in proportion to the 
quality of the terms. For instance, if the quality of a rule 
term (i.e., its normalised value in the range 0..1) was 0.6, 
then that term was preserved in the rule with a probability of 
0.6, and therefore removed from the rule with the 
complementary probability of 0.4.  
 
The above rule pruning procedures were alternatively used 
only to prune the rules resulting from the initial stage of 
seeding i.e. for the first iteration of the algorithm. Although 
only a number of rules equal to the size of the population 
need to be pruned, these rule pruning procedures were 
designed to be fast – at the price of ignoring term 
interactions, as mentioned above. This kind of fast pruning 
is important because right after seeding each rule is 
extremely long, having a number of terms equal to the total 
number of attributes in the data – since initially all terms are 
“turned on”. However, at the end of the algorithm run, when 
the best rule is returned by the algorithm, it makes sense to 
prune that rule using a more sophisticated approach. At this 
point computational time is not a serious issue, since just 
one rule has to be pruned and the length of the rule should 
have been reduced by the rule optimisation process. Also the 
quality of the best rule found by the algorithm is a very 
serious issue, since this is a rule that will be used to classify 
new data later. Hence, we used the more sophisticated Ant-
Miner’s rule pruning procedure [12] for the final rule 
produced by each run of the hybrid PSO/ACO algorithm. 
 

5 COMPUTATIONAL RESULTS 
 

5.1 EXPERIMENTAL SETUP 
 
The classes to be predicted in this project are 4 digit EC 
numbers (enzyme commission number), and the predictor 
attributes are Prosite [7] patterns – as discussed earlier. This 
data being mined (33079 examples, 854 attributes with 
boolean values representing the absence or presence of a 
ProSite pattern) was harvested from the UniProt [8] and 
Prosite databases. As a pre-processing step, classes with a 
number of records less than 10 were merged with their most 
similar sibling, since in principle there is not enough data to 
make a reliable prediction of those classes. The similarity 
between two classes was measured simply as the average 
number of matching attribute values between all records in 
either class. The total number of classes after this process 
was 850, with 6 classes at the first level, 52 at the second, 
138 at the third and 654 at the fourth. During previous 
experiments it was found that, when using pruning 
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procedure (1), pruning the seeding rule to 50 terms 
produced the best results in terms of accuracy and 
comprehensibility and accuracy, and so this threshold 
value was used in the results reported in this paper. 
 

5.2 RESULTS AND DISCUSSION 
 
Table 1 reports the classification accuracy obtained by 
the proposed PSO/ACO and by our adapted version of 
the existing DPSO [11] – which was modified to use the 
same seeding and rule pruning procedure as the 
PSO/ACO algorithm.  This adaptation was done in order 
to focus the comparison of the algorithms on the different 
ways that they represent and manipulate categorical 
values. DPSO was also adapted for hierarchical 
classification with the same top-down approach used by 
PSO/ACO. In addition, DPSO uses the same rule quality 
(particle fitness) formula as PSO/ACO, which is also the 
rule quality of Ant-Miner [12]. For each algorithm, Table 
1 reports the accuracy of the two above-mentioned 
versions of the pruning procedure applied right after 
seeding, i.e. pruning preserving the top-50 terms and 
pruning preserving a variable number of terms. The 
classification accuracy on the test set (separated from 
training) was measured by a 5-fold cross-validation 
procedure [4], and the numbers after the symbol 
“±”denote standard deviations. 
 
Table 1: Accuracy (%) of PSO/ACO and DPSO 

 PSO/ACO DPSO 
EC 
level 

top-50 
terms 

var. No. 
of terms 

top-50 
terms 

var. No. 
of terms 

1 96.5±0.3 97.7±0.8 94.7±4.2 95.1±5.3 
2 91.8±1.9 89.5±2.8 86.2±4.7 79.4±6.1 
3 66.7±3.1 68.2±3.2 68.1±1.5 65.7±2.0 
4 43.6±2.8 38.3±2.1 45.1±1.0 33.9±1.6 

 
As can be seen from the results the accuracy of the 
predictions decreases with every level. This is expected 
for two reasons. First, the number of classes per level 
increases at deeper levels, with a corresponding decrease 
in the number of examples per class, making an accurate 
prediction at deeper levels more unlikely. Second, it is an 
inevitable result of using a divide and conquer type 
algorithm, as once an incorrect prediction has been made 
at a higher level it cannot be rectified, this leads to the 
accuracy being at best the same as the level above.  
 
In any case, the classification accuracies at the first two 
levels are high. In particular, the accuracy at the first 
level – containing 6 classes – is above 96% for 
PSO/ACO. This is a very significant improvement over 
the baseline accuracy (the relative frequency of the 
majority class) at the first level. This baseline accuracy is 
the probability of predicting the correct class without 

using any classification algorithm, and rather just assigning 
the largest class to all examples in the test set. For the first 
level, the baseline accuracy is computed as the number of 
enzymes with class 2 (the majority class) in the training set, 
7,764, divided by the total number of enzymes in the 
training set, 26,500, resulting in 29.3%. Although the 
accuracy values at the third and fourth level are relatively 
low, they are still much higher than the baseline accuracy for 
those levels, which are very low, given the very large 
number of classes at those deeper levels. 
 
Let us now compare the results of PSO/ACO and DPSO in 
Table 1, for each kind of pruning. For the top-50 terms 
version of pruning, PSO/ACO outperformed DPSO at levels 
1 and 2, whereas the opposite was true at levels 3 and 4. 
However, the differences in accuracies are not significant, 
taking into account the standard deviations.  
 
For the pruning producing a variable number of terms, 
PSO/ACO outperformed DPSO at all levels, and the 
difference is significant at levels 2 and 4. This points 
towards the fact that PSO/ACO benefits more from the 
varied lengths of rules produced in that seeding process. The 
hybrid algorithm more quickly discards terms that none of 
the particles have found good, when compared to DPSO. 
This is demonstrated by the greater convergence times 
observed in the DPSO algorithm and the longer rules 
produced with DPSO, suggesting that a wider search is 
being performed. This may be a useful feature in other data 
sets but, due to the very large amount of attributes in the 
Enzyme data set, the more focused search of the PSO/ACO 
algorithm wins out. 
 
Table 2: No. of rules generated per class level 
 PSO/ACO DPSO 
EC 
level 

top-50 
terms 

var. No. 
of terms 

top-50 
terms 

var. No. 
of terms 

1 7.3± 
0.2 

8.0 
±0.0 

9.2 
±0.6 

8.0 
±0.0 

2 54.3± 
0.8 

56.5 
±0.7 

56.8 
±1.2 

57.0 
±1.0 

3 109.0± 
0.9 

112.3 
±0.7 

110.3 
±1.1 

110.7 
±1.3 

4 477.0± 
7.6 

474.3 
±10.4 

486.4 
±9.6 

465.0 
±0.6 

 
Table 3: Average No. of terms per rule per class level 
 PSO/ACO DPSO 
EC 
level 

top-50 
terms 

var. No. 
of terms 

top-50 
terms 

var. No. 
of terms 

1 3.7±0.6 4.6±0.8 12.9±1.5 11.5±0.8 
2 9.6±0.6 5.1±0.4 21.8±0.6 7.4±0.3 
3 2.4±0.1 2.0±0.1 20.7±0.5 6.0±0.2 
4 5.1±0.2 2.5±0.1 25.3±0.2 2.9±0.1 
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Let us now turn to the comprehensibility of the 
discovered rule set, which is measured by its size 
(number of rules and number of terms per rule), as usual 
in the data mining literature. Table 2 shows the number 
of rules generated by hybrid PSO/ACO and DPSO for 
each class level, whereas Table 3 shows the average 
number of terms per rule for these two algorithms per 
class level.  
 
In general the number of rules discovered by PSO/ACO 
and DPSO is similar, for each kind of pruning. In 
addition, for each algorithm the kind of pruning used 
makes little difference in the number of rules. As 
expected, the number of rules increases at deeper levels 
of the class hierarchy, due to the corresponding increase 
in the number of classes. However, as shown in Table 3, 
the average number of terms in the rules discovered by 
PSO/ACO is much smaller than in the rules discovered 
by DPSO. To summarize, both algorithms discover about 
the same number of rules, but the rules discovered by 
PSO/ACO are much shorter, and so easier to be 
interpreted by the user. 
 
6. CONCLUSIONS AND FUTURE RESEARCH 
 
The paper has introduced a new hybrid PSO/ACO 
algorithm for hierarchical classification, and applied it to 
the classification of a challenging biological data set. The 
results were compared with an adapted version of an 
existing PSO algorithm. Overall the hybrid PSO/ACO 
obtained somewhat better results with respect to 
classification accuracy, and much better results with 
respect to comprehensibility of the discovered rule set. 
 
Although in this paper the hybrid PSO/ACO was applied 
only to a biological data set, it is generic enough to be 
applied to other hierarchical classification data sets. So, a 
future research direction would be to evaluate the 
algorithm on other kinds of data sets. Also, the core idea 
of the hybrid algorithm, using an ACO-style pheromone-
based mechanism for coping with categorical values, is 
independent of hierarchical classification, so it would be 
interesting to apply the algorithm even to other problems 
that do not involve data mining, but involve some kind of 
categorical (nominal, non-numeric) attributes. In 
addition, a lot of hierarchical data sets are also multi-
label – i.e., there are several class attributes to be 
predicted. This scenario obviously add a lot of 
complexity and scope for optimisation to the problem in 
future research. 
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