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ABSTRACT an existing PSO for classification, which was astapted

for hierarchical classification. Both algorithmslidev the

This paper proposes a hybrid PSO/ACO algorithm for top-o_loyvn approz_;lch for hierarchical classi_ficatiueing the
hierarchical classification, where the classes ® b Predictions of higher-level classes to guide tharce for
predicted are arranged in a tree-like hierarchye Th "ules predicting lower-level classes.

performance of the algorithm is evaluated on a

challenging biological data set, involving the hi@hical 2. PROTEINSAND ENZYMES

functional classification of enzymes. The proposed

a|gorithm is Compared with an existing PSO for Proteins are the active bulldlng blocks of all l#ad carry

classification, which was also adapted for hiermath ~ out most of the functions involved with it (therealways
classification. exceptions in biology). Enzymes are a sub set ofeprs;

they are catalysts which are used to speed up aade m
1. INTRODUCTION possible many of the.chemical reactions that talce within
the cell, without being altered themselves. Enzyraes
assigned EC codes (enzyme commission numbers)hwhic
are 4 digit numbers that represent the type of otem
reaction the enzyme in question catalyses [6]. Edigit
corresponds to a level in the hierarchy. For insarEC
3.1.4.1 is an enzyme with class value 3 in the f&sel,
class value 1 in the second level, etc.

The discovery of a new protein and its function wase
deemed worthy of a paper in its own right. Now vile
automation of the processes involved with the discp

of new proteins it is almost viewed as common place
Due to the large amount of new proteins being
discovered, automated processes are also needigd to
what purpose a protein might have within a biolagic
system. This paper deals with the hierarchical tional
classification of enzymes (a sub set of proteins).
Enzymes are nature’s catalysts and usually are mor
effective at catalysing reactions than their nasldgical
counterparts. An example of such effective enzyares
those found in biological washing powder.

Proteins are formed from a number of amino acidsned
together. There are 20 different amino acids thatuo
naturally, and a linear sequence of these amindsais
%nown as the primary structure. The secondary sires
seen in proteins are the 3D shapes that form logaleach
protein and may be repeated throughout it. They miay be
common to multiple proteins. These common pattemd
domains include helixes, sheets, active sites wbathlyse
reactions in enzymes (a sub set of proteins), variites
which allow functions of a protein to be turned amd off
etc. From a data mining point of view these regiaresvery
interesting as they work together to produce theabi@ur
observed in proteins and so must produce patthatscan
be analysed. A number of databases of these common
structures have been created, including the Prdsitabase
[7], which is used in this work. This database eorg
unique “fingerprint” style entries which are desgnto be
used to identify the function of unknown proteins.

We propose a new hybrid PSO (Particle Swarm
Optimization)/ACO  (Ant  Colony  Optimization)
classification algorithm tailored to this challendéore
specifically to cope with the extremely large humbé
attributes and classes, and the categorical (ndymioa-
numerical) data often associated with the probléve.
hope this paper will serve as an introduction ittie
complex and challenging realm of hierarchical
classification of biological data sets. In any caie
should be noted that the proposed hybrid PSO/ACO
algorithm is generic enough to be applied to other

challenging classification problems. The tertiary structure can be described as theativenape

formed when the chemically attracted portions catlse
ST . .. protein to fold. These individual attractions argte weak,
was to make PSO more effective in coping with e
. . . but because there are so many of them the resyitistgin
categorical attributes using the pheromone—basedCan be structurally very strona. althouah when hisat
mechanism of ACO, as will be discussed later. The y y 9 9

proposed hybrid PSO/ACO algorithm is compared with applied they tend to unfold or denature. (This leasp e.g.,

The basic motivation for designing the hybrid aitjon
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when eggs are cooked). The quaternary structurbese taken into account at classification (on the tes} there is a
proteins join together to form more complicated higher chance of making an accurate prediction. él@wv

structures, such as cell walls or spiders silk. the knowledge found is overly complex and so hatder
comprehend, also this approach is more computdiyona
3. HIERARCHICAL CLASSIFICATION expensive.

Data mining consists of a set of concepts and fques ~ The third approach (which is used in this projectps the
used to find useful patterns within a set of ddfa[p]. In  divide and conquer principle [1]. If class 1.X.X(Where X
this project the discovered knowledge is represeate  denotes any digit) is predicted at the first lezetl node 1
classification rules. A rule consists of an anteceda set  has only the child nodes 1.1.X.X and 1.2.X.X, oftgse

of attribute values) and a consequent (class): two nodes should be considered and not the children
belonging to node 2.X.X.X. This holds both durimgiting
IF <attrib = value> AND ... AND <attrib = value> and test set classification. It does however crpabblems
THEN <class> of misclassification; if an example is misclasdlfiat a

higher node then it has no chance of being coyectl

The consequent of the rule is the class pred|cjethb classified at lower nodes. However, it has the adigias of
rule for the records (examples) where the predictorProducing a more complete set of rules than thst fir
attributes hold. An example rule might be IF <Salar ~ approach without it being needlessly (as with teeosd
high> AND <Mortgage = No> THEN <Good Credit>. approach) complex, while also using the nature hu t
This kind of knowledge representation has the aggn  hierarchical structure of the data to optimise gerniance.

of being intuitively comprehensible to the userisTis

important, because the general goal of data miisirtg 4. THE HYBRID PSO/ACO ALGORITHM
discover knowledge that is not only accurate, Hab a
comprehensible [4][5]. Although PSO and ACO algorithms have been developed

for the classification task we do not feel thateitof the
In this project the classes are arranged in astreeture current algorithms is ideally suited for this pretol, for the
where each node (class) has only one parent. idiecat  following reasons stated.
class datasets present new challenges when comimared
flat class datasets. The main challenge comes fhem  Although the ACO classification algorithm has attgdeen
extra complexity associated with such datasets fabe shown [12] at least competitive with the industs&ndard
that many (depending on the depth) more classesbeus C5.0 algorithm, the unusually large amount of bittiés and
assigned to the examples, and the prediction dagsc classes associated with this problem meaexaemely large
becomes increasingly difficult as deeper levels areamount of computation time is required. This iscise a
considered, due to the smaller number of exampées p computationally expensive rule pruning procedure is
class. Note that although the functional clasdificaof required at every inner iteration of the standar@QCA
enzymes is an important bioinformatics problem, algorithm. Also for the algorithm to work with camious
previous applications of data mining to this proble attributes they have to be previously discretiseoich can
typically ignore the class hierarchy, focusing on decrease classification accuracy and increase datiymal
predicting classes in just one level of that highmgr  time at this pre-processing step.
[9][10].

A PSO algorithm has also been developed for claasifn
The simplest way to deal with hierarchical classifion [11], however we believe it can be improved by ligising
is to ignore the hierarchy completely and so ombdjct it with ACO. The classification task usually invelv a
classes at the bottom most level, indirectly priéaicthe ~ mixing of both continuous and categorical (nomiren-
classes at higher levels. This approach avoids thenumerical) attribute values. Although a “standard”
aforementioned extra complexity at the expenseatf n binary/discrete PSO algorithm exists [14], it doeg deal
discovering simpler knowledge expressed by higinegll  with categorical values in a natural fashion whempared
rules (based on a larger number of examples). Itto ACO. In particular, the standard PSO for copimigh
discovers only lowest level rules based on a smallbinary attributes represents a particle by a bigtrwhere
number of examples, and so those rules tend to beeach binary value such as true or false is encadetor 0.
inaccurate. The usual notion of “velocity” (a core concept ifP&0 for

coping with continuous variables) is replaced by tiotion
The second approach is to again ignore the fatttttea  of “predisposition of taking the value 1 (ratheartt0)”. This
classes are in a hierarchy at the training stagecassify ~ approach was designed to cope with  binary
each node separately. It can be argued that this wi attributes/decisions, but not explicitly designectbpe with
produce the most complete set of rules, and daisfis
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multi-valued (i.e, having more
categorical attributes.

than two values)

Sousa et al. extended the standard binary PSOpe co
with multi-valued categorical attributes [11], deng

a Discrete PSO (DPSO) algorithm for discovering
classification rules. In essence, in DPSO eachevirlua
categorical attribute is assigned an index numibhis
number is then converted into a binary string. Atrae
bit is also added for each attribute to decidehitt
attribute is to be included in the resulting rulnce a
categorical attribute has been converted into arin
string, the standard binary PSO can then be applied

However, this encoding approach
problems. In particular, due to the conversion itaty,
the bits of the string to be optimised by the atton
interact with each other to form the index numiJéris
interaction is adds an extra layer of complexityd an

Another major problem with the current DPSO clasaifon
algorithm, in the context of large and complex dsaés, is
that the population is initialised randomly. Thésaicceptable
with a low number of attributes, as there is a darg
probability of randomly producing a particle witman-zero
fitness. However it becomes a major problem
classification problems when large numbers oflaitas are
present, as many or all of the particles may hase z
finesses in the population. The rules that pagicépresent
may also be needlessly long, increasing fitnessuatian
time and decreasing the comprehensibility of trsulteng
rule. If all or most of the particles have zeraefiges then the
convergence time will be significantly increasediletthe
particles randomly search to find a position witham-zero

in

introduces somefitness, or they may converge to a bad positionpsim

because there are only a few non-zero positionevikri in
the population.

The hybrid algorithm addresses these issues by ioamgb

confusion for the algorithm, because PSO works by characteristics of PSO and ACO algorithms. ACO Iteen

trying to find the optimal value of each bit indivally.
l.e., each hit is a “dimension” from the point oéw of
PSO, and the “velocity” of a bit — its propensifytaking
the value 1 — is computed independent from othex bi

shown good at solving classification problems with
categorical data [13], as it does not introduce artificial
ordering among attribute values and features ndntheo
encoding problems of DPSO previously mentioned. R8©

that are part of the encoding of the same attrijbute been shown good at solving optimisation problemsh wi

ignoring important bit interactions.

Another (related) problem is that the numericalexd
assigned to a categorical value and the subsegirary

encoding scheme will affect the result of any ot
interaction. For instance, consider
attribute Marital Satus with the following four nominal
values:single, married, divorced, widowed. There are 24

continuous values, which are often present in daitgng.
The original ACO algorithm for classification, AMiner
[12], requires that every rule be pruned rightratite rule is
created. This is due to the way the rules are oactsd
(incrementally, one-condition-at-a-time) and theywthe

the categorical problem is represented in terms of pheromone. Ameks

rule pruning tends to be effective in improvinguter but it
is very computationally expensive when the rule sy

different ways of mapping these nominal values into attributes, which is a serious limitation in thentaxt of the
numerical indices in the range 0 to 3 and subsdquendata set mined in this project. The hybrid alganittioes not

convert them into two binary digits. (Each permiotabf
the nominal values corresponds to a different mappi
and the number of permutations is 4! = 24.) Theiagho
of a mapping is arbitrary, but it affects particle
interactions. For instancsingle and widowed might be
converted to 00 and 11, in which case the two namin
values would be totally different in their binary
representation, or they might be converted to a0 @i

in which case they would be just partially differen
their binary representation. This affects the cotaiion
of the *“velocities” of individual bits, since those
velocities depend on the differences between Hilesma
of the current particle and bit values in the pets best
past position and best neighbour. As there is derarg

in categorical data, ideally an encoding schemelghue
chosen where all bit strings are equally pairwiseilar
(i.e., every pair of bit strings has the same Hamgmi
distance), which is not possible in general, asvshim
the above example.

require such pruning because of the addition of an
indifference entry in the pheromone matrices (prgns still
carried out on the final best rule generated by the
population) and the fact that a separate matrixsisd for
each attribute. The overall effect is to producswearm of

ant colonies”.

4.1 SEQUENTIAL RULE DISCOVERY AND
PARTICLE REPRESENTATION

The algorithm uses a sequential covering approd¢ho]
discover one-classification-rule-at-a-time, as shown
Pseudocode 1. It starts by initialising the rule (&S) with
the empty set. Then, for each hierarchical clagsl lend for
each of the classes to be predicted, the algontbrforms a
WHILE loop. Each iteration of this loop performseorun of
the PSO/ACO algorithm, returning the best discodetde
predicting examples of the current class (C). Thie is
added to the rule set, and the examples corregtigred by
that rule are removed from the sub training set).(7
example is said to be correctly covered by a rélehat
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example satisfies all the terms (attribute-valugspdn continuous value can be directly represented asrgponent
the rule antecedent (“IF part”) and it has the <las of the vector associated with a particle and preegsising
predicted by the rule. This WHILE loop is performasl the standard formulas for PSO [14]. A simple apphoa
long as the number of uncovered examples of tresecla  would be to define upper and lower bounds for the
is greater than a user-defined threshold, the maim continuous attribute in the rule, an example mightF 21<
number of uncovered examples per class age< 35 THEN wage = medium.
(MaxUncovExampPerClass). After discovering rules fo

all classes at all levels, the algorithm returns, B®  On the other hand, for the reasons discussed rmarlie
discovered rule set. To apply this algorithm to the categorical (nominal) attributes are handled ipecil way,
hierarchical classification problem the training 8 is a as follows. A particle contains a number of pheromo
sub set of the entire training set available. T&@ios all  matrices equal to number of categorical attribiriethe data
the examples from classes with the same parert as  set. Each pheromone matrix contains values forgshenes

C. Class C is the “positive class” and its siblzigsses  for each possible value that that attribute cae {aR] plus a
are the “negative classes”. So if classes 1.1.X.XX.X  flag value (the indifference flag) indicating whethor not
and 2.1.X.X exist and class C is 1.1.X.X, then epl@®  the attribute (ProSite pattern) is selected to pdouthe
from 1.1.X.X and 1.2.X.X would be used as positwel  decoded rule. The particle representation for categl
negative examples in TS, respectively, whereas plesm  attributes is shown in graphical form in Figuravhere each
from class 2.1.X.X would be ignored. At the top mos attribute value and the indifference flag are repnted as
level the entire training set is used as TS. Th#itlg  slots in a roulette wheel. This analogy is appu@tprifor
examples that have been removed right after theexplaining the process of moving the particles withpect
discovery of a rule are replaced in TS when therétym  to categorical attributes, as discussed in the sention.

starts creating rules for a new class.

Particle
RS =0 /*initially, Rule Set is empty */ (Antecedent) (Consequent)
FOR EACH LEVEL L . B
FOR EACH class C at L Attt Attribute n
TS = {all training examples belongingctasses at THEN <class>
level L with the same paresC} @ q
WHILE (number of uncovered training exaesp || N/ - @
of class C > MaxUncovExarapElass)

Run the PSO/ACO algorithm to disarothe

best rule predicting class C,emhlBestRule

RS = R§l BestRule

TS = TS — {training examples corhgect
covered by digered rule}

Figure 1: Particle representation considering categorical
attributes only

4.2 MOVING THE PARTICLE WITH RESPECT

END WHILE TO CATEGORICAL (NOMINAL,
END FOR NON-NUMERIC) ATTRIBUTES
END FOR

At each iteration, each categorical attribute i thule
Pseudocode 1: Sequential covering approach used by the antecedent represented by each particle has its ealbsen,
hybrid PSO/ACO algorithm in order to give a particle a fixed position and caality.

This is the decoding process. An attribute valuehiesen
Each particle represents the antecedent of a catedid Wwith probability proportional to its pheromone v@luThis
classification rule. The rule’s class is fixed falt the  fixed position and so quality is used to updatephticle’s
particles in each run of the algorithm, since staswn in pheromone matrices in the next iteration. If they pesition
Pseudocode 1 — each run of the algorithm aims athas a higher quality than any position the partids ever
discovering the best rule for a fixed class. Thipraach ~ occupied then it is set as the particle’s past pesition. To
has the advantage of avoiding the problem of havingupdate the values in the pheromone matrices ottinent
different particles predicting different classestie same  particle, the past best, current and its best eighs
population, which would hinder the effective exption positions are used. The quality of these threetiposi
of the PSO principle of “imitating the best neighbo multiplied by individual random learning factors @sual in

PSO, are added to the values in the appropriateegiin the
Although not dealt with in this paper the algoritiuan pheromone matrices of the current particle. Fotaimse,
easily be extended to cope with continuous (rehled) ~ suppose that one of these positions (corresponting
attributes. Standard particle swarm optimisation is decoded classification rule), say the rule decddeah the
particularly well suited to this problem and so a particle’s best neighbour, does not contain anyeslfor a
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given attribute, i.e., the decoded rule has indéffiee flag
set to off in that given attribute. Then the pheoom
value associated with the indifference flag (th&"“slot

in Figure 1) of that attribute of the current padiwill be
updated by adding, to the current pheromone valoe,
amount which is equal to the quality of the best
neighbour rule multiplied by a random number. As

the mechanism of increasing the pheromone of angive
attribute value in the hybrid PSO/ACO corresporulshie
mechanism of moving a particle towards that attebwalue

in conventional PSO. It is also important to beamind that

in Equations (1)—(3) the indgxcan refer to any of the values
of the attribute, including the indifference flag “off” — see
Figure 1. Equation (4) normalises the pheromoneicest

another general example, suppose the rule from then that equatio denotes the number of values belonging to

particle’s best past position includes a value etuges
for the i-th attribute. Then the pheromone value
associated with the valugs of thei-th attribute of the
current particle will be updated by adding, to terent
pheromone value, the product of the best pastiposit
rule times a random number. After the qualitiestaf
three decoded rules (from best past position, atrre
position, and best neighbour position) have beele@do

the domain of attributg and the summation is ovey + 1
(rather than jusd;) terms in order to consider the “off” state.

Note that Equations (1)—(3) are quite differentnfrahe
particle movement equations from conventional PBB@&0
important ways. First, in conventional PSOs the suea of
particle quality (goodness) is used to determimeehibst past
position of a particle and its best neighbour, that actual

the corresponding pheromone values of the currentvalue of particle quality is not used to computowity. By

position), the pheromone matrix is normalised to
simulate evaporation on unused attribute valueghén
same style of the pheromone evaporation procedigé u
in [12]. More precisely, the formulas for updatirg
particle’s pheromone (the probabilities of choosing
attribute values) are as follows:

Dty =14 * (#,* Q,), Tij O CurrentRu
@1y =14 +(#,*Q,), Uil O BestPastRe
()1 =14 * (#:* Q). Uij U BestLocalRile
@)y = o

a +1

2

Wheret ; is the amount of pheromone in the current

j=1 Cei

particlec, for attributei, for valuej. Q. is the quality of
the rule represented by therrent position of the current
particle,Qp is the quality for the rule represented by the

best past position of the current particle a@dis the

quality of the rule represented by the bdstal
neighbour’s positionp is a random learning factor in the

range 0..1. We stress that in Equations (2) andf¢8)
each attribute, its valuej belonging to the best past or
best neighbour rule can be different from the vadfie
attributei in the current rule. For instance, in the best
local neighbour rule the attributecould have, say, the
valuej = yes, whereas in the current rule the attribute
could have the valueo. In this case, a fraction of the

quality of the best local neighbour rule (i.¢f3 * Q)
would be added to the pheromone entryj foryes (rather
than j no) in the current rule. This increase of
pheromone for valueyes of attribute i would be
increasing the probability that the valyes will be
chosen the next time that the particle is decodénl &
rule, i.e., in the next iteration of the algorithivherefore,

contrast, in Equations (1)—(3) the actual valueparticle
quality Q. Qp, Q) are directly used to update the position
of the current particle. This characteristic wdseiited from
ACO principles. Second, in conventional PSO the
movement of the current particle is attracted bybiest past
position and its best neighbour’s position. By cast, in the
hybrid PSO/ACO the movement of the current partisle
attracted not only by those two positions — Equrti(?),(3),
but also by the current particle’s own position guBtion
(). There is no counterpart to Equation (1) inveattional
PSO, but this formula is justified in the hybrid ®@3CO
because the formulas for particle movement arecbas¢
only on particle positions, but also on particlalifies. The
higher the quality of the current particle, the Heg the
increase in the amount of pheromone associated théih
attribute values belonging to the current rule, @odthe
larger the tendency for the particle to stay indtsrent
position.

4.3 PARTICLE FITNESS (RULE QUALITY)

The fitness of a given particle is based on thee ritl
represents, and is given by the following measufe o
predictive accuracy [12]: Rule Quality = Senstvi*
Specificity, where Sensitivity TP / (TP + FN) and
Specificity = TN (TN + FP), where:

TP (True Positives) is the number of cases thatimtte
rule antecedent (attribute values) and also mdtehrtile
consequent (class). These are desirable corretitpoms.
FP (False Positives) is the number of cases thathnthe
rule antecedent but do not match the rule conse¢qlibase
are undesirable incorrect predictions.

FN (False Negatives) is the number of cases thahato
match the rule antecedent but do match the rulsezprent.
These are undesirable uncovered cases and araldause
overly specific rule.

TN (True Negatives) is the number of cases thamndb
match the rule antecedent and do not match the rule
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consequent. These are desirable and are caused by raultiplying the original quality value by a randammber

rule’s antecedent being specific to its conseqakasts. in the range 0..1. Finally, the updated term quaiitlue was
then used to sort the terms using merge sort alyctiom top
4.4 SEEDING AND PRUNING K terms were kept “turned on” in the pruned rulee Tther

terms were “turned off", by setting the correspowgdi
If a rule was initialised at random, it might haveuality ~ attribute value to the state “off’ in the particle
of 0, if the rule does not cover any example of its representation.
predicted class. Our rule initialisation procedamids  2) Selecting a variable number of terms, in prdparto the
that. The population is initialised in positionsthvinon- quality of the terms. For instance, if the qualiy a rule
zero qualities, and so this is each particle’s eetipe term (i.e., its normalised value in the range Owas 0.6,
initial past best position. This is achieved byirgkan then that term was preserved in the rule with dalbdity of
example (record) from the class to be predictedusmsinly 0.6, and therefore removed from the rule with the
its terms (attribute values) as the rule antecedEhnis complementary probability of 0.4.
creates an extremely specific rule, covering orilg t
“seed” example. Then to improve the initial quabifythe The above rule pruning procedures were alternatiused
particle, a pruning procedure is applied, as deedri only to prune the rules resulting from the initsthge of
below. This reduces the time it takes the poputatm  seeding i.e. for the first iteration of the algbnit. Although
converge and tends to make it converge to a rule ofonly a number of rules equal to the size of theupatipn
higher quality. We found this procedure is very aripnt need to be pruned, these rule pruning procedurae we
when dealing with large numbers of attributes. designed to be fast — at the price of ignoring term

interactions, as mentioned above. This kind of fashing
Rule pruning simplifies and generalises the rule. | is important because right after seeding each isle
generalises the rule by removing the most irrelevan extremely long, having a number of terms equah#tbtal
terms and so increasing the number of examplesredve number of attributes in the data — since initiallyterms are
by the rule. It simplifies the rule by removing rex “turned on”. However, at the end of the algoritum,rwhen
which make the rule overly specific, or which dot no the best rule is returned by the algorithm, it nsakense to
affect the quality of the rule. We experimentedmitvo prune that rule using a more sophisticated approatcthis
kinds of rule pruning procedures for seeding puepofn point computational time is not a serious issungesijust
both procedures, the first step is to compute thality” one rule has to be pruned and the length of tree siabuld
of each term (attribute-value pair) occurring ineth have been reduced by the rule optimisation proddss.the
current rule. As a measure of term quality we use t quality of the best rule found by the algorithmaisvery
same formula “Sensitivity * Specificity” explaineih serious issue, since this is a rule that will bedu® classify
section 4.3, with the difference that now, when new data later. Hence, we used the more sophisticait-
computing the values of TP, FP, FN and TN for aegiv Miner's rule pruning procedure [12] for the finalile
term, we try to match each training example witktju produced by each run of the hybrid PSO/ACO algorith
that term, rather than matching the example withhe

terms in the entire rule antecedent. The positlssscis, 5COMPUTATIONAL RESULTS
of course, the class predicted by the rule. Heterm
quality is a value in the range 0..1. The larger thlue 51 EXPERIMENTAL SETUP

the better the quality of the term. We emphasiaé térm

quality is computed for one-term-at-a-time, igngrierm o (jasses to be predicted in this project ardgit BEC

interactions in the rule,. apd SOitis hot a perétimator numbers (enzyme commission number), and the poedict
of the term’s true pre'dlcuve power in the rulg.ww?r, attributes are Prosite [7] patterns — as discueséier. This
the computation of this term quality measure IS@ast, 15 peing mined (33079 examples, 854 attributeth wi
sol that th|§ rule prun(;ng profcegu:elv:s muc?hfaﬂz\ig (t)hef boolean values representing the absence or presdnae
rule pruning procedure ot Ant-Miner, Ine Of prosite pattern) was harvested from the UniProt d8i
discovering classification rules described in [12]. Prosite databases. As a pre-processing step, slaste a
number of records less than 10 were merged witin thest
similar sibling, since in principle there is notoeigh data to
make a reliable prediction of those classes. Thelagity
between two classes was measured simply as thagaver
; er T hi er di i dbcsell number of matching attribute values between albmds in

IS a parameter. 10 achieve greater diversity oecse either class. The total number of classes after pnocess

terms across different rules (i_.e. to avoid that same was 850, with 6 classes at the first level, 52hat $econd,
top-quality terms be selected in all the rules whitey 138 at the third and 654 at the fourth. During fes

appear) each term had its quality re-computed, byexperiments it was found that, when using pruning

Once the quality of each term in the rule has been
computed, one of the following two alternative rule
pruning procedures was tried:

1) Selecting a fixed numbé&t of relevant terms, whete
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procedure (1), pruning the seeding rule to 50 termsusing any classification algorithm, and rather jassigning
produced the best results in terms of accuracy andhe largest class to all examples in the testFsmt.the first
comprehensibility and accuracy, and so this thidgsho level, the baseline accuracy is computed as thebaurof

value was used in the results reported in thismpape enzymes with class 2 (the majority class) in tlaning set,
7,764, divided by the total number of enzymes ie th

5.2RESULTSAND DISCUSSION training set, 26,500, resulting in 29.3%. Althoughe

accuracy values at the third and fourth level alatively

Table 1 reports the classification accuracy obthibg  low, they are still much higher than the baselioeuaacy for

the proposed PSO/ACO and by our adapted version othose levels, which are very low, given the verygéa
the existing DPSO [11] — which was modified to tise ~ number of classes at those deeper levels.

same seeding and rule pruning procedure as the

PSO/ACO algorithm. This adaptation was done ireord et us now compare the results of PSO/ACO and DRSO
to focus the comparison of the algorithms on tlffewtint Table 1, for each kind of pruning. For the top-80nis
ways that they represent and manipulate categoricalersion of pruning, PSO/ACO outperformed DPSO wtle
values. DPSO was also adapted for hierarchicall and 2, whereas the opposite was true at levelad34.
classification with the same top-down approach used However, the differences in accuracies are notifsignt,
PSO/ACO. In addition, DPSO uses the same ruletyuali taking into account the standard deviations.

(particle fitness) formula as PSO/ACO, which isaise

rule quality of Ant-Miner [12]. For each algorithmable For the pruning producing a variable number of tgrm
1 reports the accuracy of the two above-mentionedPSO/ACO outperformed DPSO at all levels, and the
versions of the pruning procedure applied righeraft difference is significant at levels 2 and 4. Thisints
seeding, i.e. pruning preserving the top-50 termd a towards the fact that PSO/ACO benefits more from th
pruning preserving a variable number of terms. The varied lengths of rules produced in that seedinggss. The
classification accuracy on the test set (separétmu hybrid algorithm more quickly discards terms thahe of
training) was measured by a 5-fold cross-validation the particles have found good, when compared to@PS
procedure [4], and the numbers after the symbolThis is demonstrated by the greater convergencestim

“+"denote standard deviations. observed in the DPSO algorithm and the longer rules
produced with DPSO, suggesting that a wider seasch
Table 1: Accuracy (%) of PSO/ACO and DPSO being performed. This may be a useful feature eotata
PSO/ACO DPSO sets but, due to the very large amount of attribiethe

Enzyme data set, the more focused search of thé AZTSD

EC top-50 | var. No. | top-50 | var. No. algorithm wins out.

level | terms of terms | terms of terms

1 96.50.3 | 97.20.8 | 94.#4.2 | 95453 Table 2: No. of rules generated per class level
2 91.8:1.9 | 89.52.8 | 86.24.7 | 79.46.1 PSO/ACO DPSO
3 66.7#43.1 | 68.23.2 | 68.%1.5 | 65.22.0 EC top-50 | var. No. | top-50 | var. No.
4 43.6:28 | 38.32.1 | 45.%10 | 33.91.6 level | terms of terms | terms of terms
1 7.3 8.0 9.2 8.0
As can be seen from the results the accuracy of the 0.2 £0.0 £0.6 +0.0
predictions decreases with every level. This iseekgxd 2 54.3t 56.5 56.8 57.0
for two reasons. First, the number of classes peel| 0.8 0.7 1.2 1.0
: ; : 3 109.6 112.3 110.3 110.7
increases at deeper levels, with a correspondinedse 0.9 g 1 113
in the number of examples per class, making anrateu 2 4'77 o 4743 2864 265.0
prediction at deeper levels more unlikely. Secanid,an 76 +10.4 +9.6 +0.6

inevitable result of using a divide and conqueretyp
algorithm, as once an incorrect prediction has beade Table3:
at a higher level it cannot be rectified, this kedad the
accuracy being at best the same as the level above.

Average No. of terms per rule per class level
PSO/ACO DPSO
EC top-50 | var. No. | top-50 | var. No.
level | terms of terms | terms of terms
1 3.7+0.6 4.60.8 12.¢1.5 | 11.50.8
9.6+0.6 5.%#0.4 21.80.6 | 7.40.3
2.40.1 2.6:0.1 20.20.5 | 6.¢0.2
5.1+0.2 2.50.1 25.30.2 | 2.20.1

In any case, the classification accuracies at itisé tivo
levels are high. In particular, the accuracy at finst
level — containing 6 classes — is above 96% for
PSO/ACO. This is a very significant improvement rove
the baseline accuracy (the relative frequency & th
majority class) at the first level. This baselinewracy is
the probability of predicting the correct class hweifit
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Let us now turn to the comprehensibility of the [2] H. Blockeel, M. Bruynooghe, S. Dzeroski, J. Ramand
discovered rule set, which is measured by its size J. Struyf, Hierarchical Multi-Classification. SIGKDD
(number of rules and number of terms per ruleysasl Workshop on Multi-Relational Data Mining (MRDM-
in the data mining literature. Table 2 shows thenber 2002), pp. 21—35, 2002.

of rules generated by hybrid PSO/ACO and DPSO for[3] M. Sasaki and K. KitaRule-based text categorization

each class level, whereas Table 3 shows the average using hierarchical categories, In Proc. of the IEEE Int.

number of terms per rule for these two algorithres p Conf. On Systems, Man, and Cybernetics, pp. 283028

class level. 1998.

[4] ILH. Witten and E. Frank.Data Mining: Practical
Machine Learning Tools with Java Implementations,
Morgan Kaufmann Publications, 2000.

[5] U.M. Fayyad, G. Piatetsky-Shapiro and P. Smiztam
data mining to knowledge discovery: an overview,
Advances in Knowledge Discovery and Data Mining,
AAAIMIT, pp. 1-34, 1996.

[6] I. Shah L. HunterVisualization based on the Enzyme

the average number of terms in the rules discovbyed Commission nomenclature, Pacific Symposium on

PSO/ACO is much smaller than in the rules discavere  Biocomputing 3, pp. 142-152, 1998.

by DPSO. To summarize, both algorithms discoveutibo [7] ProSite, http://us.expasy.org/prosite/, Visited on Jan.

the same number of rules, but the rules discovesed 2005.

PSO/ACO are much shorter, and so easier to be[8] UniProt, http://mmw.ebi.uniprot.org/, Visited on Jan.

interpreted by the user. 2005.

[9] W. Tianl, A. K. Arakakil and J. Skolnick, EFIQAa
comprehensive approach for accura@enome-Scale
Enzyme Function Inference, Nucleic Acids Research, Vol.

The paper has introduced a new hybrid PSO/ACO 32, No. 21, 2004.

algorithm for hierarchical classification, and a@pglit to ~ [10] A. Ben-Hur and D. BrutlagProtein sequence motifs:

the classification of a challenging biological da¢. The Highly predictive features of protein function, Technical

In general the number of rules discovered by PS@AC
and DPSO is similar, for each kind of pruning. In
addition, for each algorithm the kind of pruningeds
makes little difference in the number of rules. As
expected, the number of rules increases at deepels|
of the class hierarchy, due to the correspondingease
in the number of classes. However, as shown inerapl

6. CONCLUSIONS AND FUTURE RESEARCH

results were compared with an adapted version of an

existing PSO algorithm. Overall the hybrid PSO/ACO

Report, International Computer Science Institute,
Berkeley, April 2004.

obtained somewhat better results with respect to[11] T. Sousa, A. Silva, A. Neve®article Svarm based

classification accuracy, and much better resultth wi
respect to comprehensibility of the discovered sale

Although in this paper the hybrid PSO/ACO was agipli
only to a biological data set, it is generic enoughe
applied to other hierarchical classification datssSo, a

future research direction would be to evaluate the

algorithm on other kinds of data sets. Also, theeddea

of the hybrid algorithm, using an ACO-style pherar@o
based mechanism for coping with categorical valigs,
independent of hierarchical classification, so dwd be
interesting to apply the algorithm even to othabtems
that do not involve data mining, but involve soniedkof
categorical (nominal, non-numeric) attributes. In
addition, a lot of hierarchical data sets are atadti-
label — i.e., there are several class attributesbéo
predicted. This scenario obviously add a lot of
complexity and scope for optimisation to the prablie
future research.
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