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ABSTRACT

In group-living animals, aggregation favours interactions as
well as information exchanges between individuals, and al-
lows thus the emergence of complex collective behaviors.
In previous works, a model of a self-enhanced aggregation
was deduced from experiments with the cockroach Blattella
germanica. In this work, this model was implemented in
micro-robots Alice and successfully reproduced the agre-
gation dynamics observed in a group of cockroaches. We
showed that this aggregation process, based on a small set
of simple behavioral rules and interactions among individu-
als, can be used by the group of robots to select collectively
an aggregation site among two identical or different shel-
ters. Moreover, we showed that the aggregation mechanism
allows the robots as a group to “estimate” the size of each
shelter during the collective decision-making process, a ca-
pacity which is not explicitly coded at the individual level
but that simply emerges from the aggregation behaviour.

1. INTRODUCTION

Since the last 15 years, collective robotics has undergone a
considerable development [27]. In order to control the be-
havior of a group of robots, collective robotics was often
inspired by the collective abilities demonstrated by social
insects [4, 24]. Indeed, nature has already developed many
strategies that solve collective problems through the decen-
tralized organisation and coordination of many autonomous
agents by self-organized mechanisms [6] (for instance trail
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formation [21], food source selection [25], division of labor
[5] or collective defense [20]).

Among all these self-organized behaviours, aggregation
is one of the simplest. But it is also one of the most useful.
For instance, it allows an individual to transmit an informa-
tion in a very efficient way to many other conspecifics at
the same time. It thus favours recruitment processes during
food source exploitation [6] or territory defense [9]. Ag-
gregation also facilitates the interactions among individuals,
leading to complex collective behaviors such as nest con-
struction [11], nest-site selection [16] or traffic regulation
[10]. To sum up, aggregation is a step toward much more
complex collective behaviours because it favours interac-
tions and information exchanges among individuals, leading
to the emergence of complex and functional self-organized
structures. As such it plays a keyrole in the evolution of co-
operation in animal societies [8].

Such self-organized aggregation processes were regu-
larly used in collective robotics. For instance, foraging tasks
(i.e. clustering of objects scattered in the environment) were
used to study the impact of the group size [19] or of a sim-
ple form of communication [26] on the harvest efficiency.
But even more complex consequences of aggregation pro-
cesses were studied with groups of robots. For instance,
Agassounon and Martinoli [1] showed that division of labor
can emerge in a group of foraging robots when the size of
the group grows. Beckers et al. [3] and Holland and Mel-
huish [14] showed that an object clustering paradigm based
on stigmergy [13] can lead a group of robots to order and
assemble objects of two different types.

In this paper we address a new collective behavior that
is based on self-organized aggregation of robots themselves.
We show that a self-enhanced aggregation process, which
leads groups of cockroaches to a quick and strong aggre-
gation [17], can be used by a group of mini-robots Alice



to select collectively an aggregation site among two identi-
cal or different shelters. We show that, even though these
robots have limited sensory and cognitive abilities, they are
still able to perform a collective decision. It has already
been shown that such self-enhanced mechanisms are used
by insects to make collective decisions: for instance in food
source selection in bees [25], in nest site selection in ants
[16] or in resting site selection in cockroaches [2]. This
collective choice appears each time through the amplifica-
tion of small fluctuations in the use of two (or more) targets.
These fluctuations arise from behavioral randomness and/or
from natural preferences of animals (in the case of different
targets) and are amplified by recruitment processes (through
pheromone deposits for instance) [6].

Here we propose that a biological model of aggregation
of first instar larvae of the cockroach Blattella germanica
[15, 17] can lead a group of robots Alice to the collective
choice of a “resting” site (or shelter). We show that a very
simple self-enhanced mechanism underlying this aggrega-
tion process is sufficient to make the group of robots aggre-
gate under one of two identical shelters, instead of equally
splitting between them. If the two shelters are different
(here in size), we also show that robots preferentially choose
the biggest of the two, without being individually able to
measure the size of each shelter.

In this paper, we first describe the biological model of
aggregation we have used and the way this model was im-
plemented in a group of mini-robots Alice. We then show
that this implementation indeed results in a collective aggre-
gation behavior that is quantitatively indistinguishable from
cockroach aggregation. Finally, we show that, when this ag-
gregation behavior is restricted to certain zones in the envi-
ronment (for instance by natural preferences for dark places
as in cockroaches [23]), the robots preferentially aggregate
in only one of these zones, i.e. they collectively choose a
single “resting” site. The results of our experiments were
also used to calibrate a computer simulation of robots Alice
that will allow us to extend the exploration of this collective
decision model in further studies.

2. SELF-ORGANIZED AGGREGATION

The aggregation process cited above is directly inspired
by a biological model of displacement and aggregation de-
veloped from experiments with first instar larvae of the ger-
man cockroach Blattella germanica [15, 17]. This model
was built by quantifying individual behaviors of cockroaches,
that is their displacement, interactions among individuals
and with the environment in a homogeneous circular arena
(11 cm diameter) . Each of these individual behaviors was
described in a probabilistic way: we measured experimen-
tally the probability distribution for a given behavior to hap-

pen.

This analysis showed that cockroaches display a corre-
lated random walk (constant rate to change direction and
forward oriented distribution of turning angles) in the center
of the arena [15]. When reaching the periphery of the arena,
cockroaches display a wall following behavior (also called
thigmotactic behavior) with a constant rate to leave the edge
and come back into the central part of the arena [15]. In ad-
dition, cockroaches can stop at any moment, stay motionless
for some time and then move again. Analysis showed that
the stopping rate for an individual increases with the num-
ber of stopped cockroaches in the direct neighbourhood (i.e.
within the range of antenna contact) [17]. On the contrary,
the rate to leave an aggregate decreases with this number
[17]. Thus, this dual positive feedback leads to the quick
and strong formation of aggregates (as can be seen in Fig.
1). A more detailed description of the model can be found
in Jeanson et al. [15, 17].

The first part of our work was to implement this biolog-
ical model of aggregation in the micro-robots Alice. These
robots were designed at the EPFL (Lausanne, Switzerland)
[7]. They are very small robots (22mm x 21mm x 20mm)
equipped with two watch motors with wheels and tires al-
lowing a maximum speed of 40 mm s . Four infra-red sen-
sors are used for obstacle detection and local communica-
tion among Alices (up to 4 cm distance). Robots have a mi-
crocontroller PIC16LF877 with 8K Flash EEPROM mem-
ory, 368 bytes RAM but no built-in float operations. To de-
termine the number of neighbors (upon which relies of the
aggregation process), each robot owns a specific identifica-
tion number and counts the number of nearby neighbors in a
distance roughly less than 4 cm) with a different id number.
Intrinsic differences between the perception area of robots
and cockroaches and imperfect neighbor counts due to noise
in IR devices required some fine-tuning of the behavioral
parameters in order for the behavioural output of the robots
to correctly match the cockroach individual behaviors. This
behavioral output of robots was measured using the same
experimental methods (10 to 30 experiments depending on
the studied behavior) as those used to characterize the indi-
vidual behavior of cockroaches (see Jeanson et al. [15, 17]
for a detailed description of these methods).

However individual behaviors are not yet aggregation
behavior, and the true validation of the model implementa-
tion must be done at the collective level by comparing the
aggregation behavior of robots to the aggregation behavior
of cockroaches. To this aim, we ran the following aggre-
gation experiment: groups of robots (10 or 20 individuals)
were put into a homogeneous white circular arena (50 cm
diameter) during 60 minutes. This experiment is similar
to the one done by Jeanson et al. [17] with cockroaches.



To draw a parallel between cockroach aggregation behavior
and robot aggregation behavior, we scaled the dimensions of
the robot arena so that it matches scale differences between
robot and cockroach sizes. The experiment was repeated
10 times for each group size (10 or 20 robots). The aggre-
gation dynamics were characterized through three kinds of
measurements (sampled every minute): size of the largest
aggregate, number of aggregates and number of isolated in-
dividuals (see Jeanson et al. [15, 17] for a detailed descrip-
tion of these measurements). For each of these three dy-
namics, the experimental results showed a very good agree-
ment between robots and cockroaches, confirming that the
cockroach aggregation process was well implemented in the
robots Alice (see Fig. 1).

3. COLLECTIVE CHOICE

This aggregation process implemented in robots can occur
in the whole experimental arena, without any preference
for a given location. Actually, in nature some places are
more attractive for cockroaches, thus promoting aggrega-
tion in particular sites. For instance, cockroaches preferen-
tially aggregate in dark places [23]. Experimentally, if one
puts a dark shelter in a lighted arena (as the one used for the
study of cockroach aggregation), one can observe that cock-
roaches strongly aggregate under this shelter. And if two or
more dark shelters are placed in the arena, one can observe
that a majority of cockroaches aggregates under only one of
these shelters, rather than evenly spreading their population
among all the aggregation sites [18]. Thus cockroaches are
able to perform a collective choice for a given aggregation
site, even if these sites are identical.

Though the mechanisms leading to this collective choice
are not yet fully understood, we suggest that this choice
could strongly rely on the self-enhanced aggregation pro-
cess described above and tested with robots. Indeed such
self-enhanced mechanisms are already known to lead an-
imal groups to collective decisions, such as the collective
choice of a food source [25] and of a target [20] in bees, of
a nest site in ants [16], or of a resting site in cockroaches
[2]. In this latter case, Ame et al. [2] showed that the simple
modulation of the resting period on a given site by the num-
ber of individuals on that site leads the group of cockroaches
to the choice of one shelter among two or more identical
ones. We argue that this modulation can be achieved eas-
ily through the aggregation process described above. To
test our hypothesis, we ran three sets of experiments dur-
ing which a group of robots was faced to the choice between
two potential aggregation sites. Besides proving that collec-
tive decision in robots can appear from a simple aggregation
process, these experiments were also used to calibrate a sim-
ulation tool which will be used in further studies to identify
the behavioral parameters that control collective choice (see

Fig. 2 for some pictures of both experiments wih robots and
simulations).

The first set of experiments was designed to ascertain
whether the cockroach aggregation behavior is able to lead
a group of robots to a collective choice between two iden-
tical targets. To that aim, we put a group of 10 robots in
the same arena as the one used for aggregation experiments,
except that we added just above the arena two dark shel-
ters. These shelters were of the same size (14 cm diame-
ter) and each of them can house the whole population of
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FIGURE 1. Aggregation dynamics: size of the largest ag-
gregate. A: experiments with 10 individuals. B: experi-
ments with 20 individuals. Black dots represent data for
robots; white dots represent data for cockroaches. Each dot
represents the mean 4 standard error (s.e.). Initial differ-
ences between starting points of robot and cockroach dy-
namics are solely due to the way cockroaches have to be
brought into the arena as explained in Jeanson et al. [17].
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FIGURE 2. Snapshots of an experiment (left) and a sim-
ulation (right) taken every 20 minutes during 60 minutes.
These snapshots corresponds to the experiment with two
identical shelters (14 cm diameter). As can be seen, the
experiment ended with the choice of one of the two shelters
by both real and simulated robots.

robots. Robots used the same behavioral algorithm as the
one previously tested for its aggregation ability, except that,
now, robots only stop under dark shelters (that is when IR
light intensity falls under a given threshold). 20 experiments
were performed, each lasting 60 minutes.

The number of stopped robots under each shelter was
measured every minute to characterize the aggregation dy-
namics under each shelter. In addition, we also computed
the percentage of stopped robots under each shelter at the

end of each experiment to characterize the collective choice
of the group of robots. From this last measurement, we de-
rive what we call a “choice distribution”. For a given shel-
ter, this choice distribution corresponds to the number of ex-
periments ending with a given percentage of stopped robots
under this shelter (the choice distribution being symmetrical
for the other shelter). For instance, how many experiments
ended with O to 20 percent of stopped robots under shel-
ter number 1? Or with 20 to 40 percent, etc. Note that a
robot can be in one of the three locations at the end of an
experiment: under shelter 1, under shelter 2 or outside the
shelters. In the case of each robot choosing randomly a shel-
ter (i.e. without any influence of its conspecifics), the re-
sult will follow a trinomial law with parameters m,; = 10
(number of robots), p, = (Mot — ms)/mtot (pa, proba-
bility for a robot to be outside the shelters; m, number of
robots stopped under any shelter, parametrized from the ex-
periments), ps1 = (1 —pa) (12, /(12 +72)) (ps1, probabil-
ity for a robot to be under shelter 1; 74, radius of shelter 1;
52, radius of shelter 2) and pyo = 1 — ps1 — Py (Ps2, prob-
ability for a robot to be under shelter 2). The choice dis-
tribution resulting from this trinomial law can be obtained
through Monte Carlo simulations (10000 simulations of 20
replicates). In the case of identical shelters, this choice dis-
tribution displays a centered peak as can be seen in Fig. 3
B.1, meaning that a majority of experiments ended with no
choice for a particular shelter.

Contrary to the trinomial resulting choice distribution,
the choice distribution obtained in experiments with two
identical shelters displays two peaks, one at each side (see
Fig. 3 B.2). A chi square test shows a strong difference
between the trinomial and experimental distributions (2 =
367.6885, df =4, p < 0.0001). Similar results are obtained
with simulations (see Fig. 3 B.3) and a chi square analysis
of contingency tables shows no difference between experi-
ments and simulations (X2 = 2.1007, p = 0.7322, p-value
simulated with 10000 replicates [22]). This U-shape distri-
bution corresponds to two different “populations of experi-
ments”, each of them preferentially ending with the choice
of a given shelter. Furthermore, in this case with two iden-
tical shelters, the symmetry of the U-shape means that each
shelter is randomly chosen from one experiment to another.
The dynamics of this choice can be seen in Figs. 4 B.1
and B.2. It shows that the choice occurs very rapidly within
the first minutes of the experiments. It also shows that this
choice is very strong, since 75.5 + 3.36% (mean=s.e., n =
20) of the population of robots is under the chosen shelter at
the end of the experiments (78 4= 0.53%, n = 1000, in sim-
ulations). Thus this set of experiments clearly shows that
the aggregation process described above (with very simple
individual behaviors) can lead a group of robots to perform
a collective choice between two aggregation sites.
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FIGURE 3. Choice distributions. In these distributions,
each block represents a number of experiments ending with
a given percentage (0-20, 20-40, 40-60, 60-80 and 80-100
percent) of robots under one of the two shelters. Top: trino-
mial distributions (random choice). Middle: experimental
distributions (n = 20). Bottom: simulation distributions
(n = 1000). Columns A and C represent choice distribu-
tions for the 14 cm diameter shelter against either the 10 cm
diameter shelter (column A) or the 18 cm diameter shelter
(column C). For each of these distributions, blocks on the
right mean choice of the 14 cm diameter shelter and blocks
on the left mean choice of the other shelter (either 10 or 18
cm diameter). Column B represents the choice distribution
for a 14 cm diameter shelter against an other 14 cm shelter.

The two other sets of experiments were designed to as-
sess the impact of a qualitative difference between the two
shelters on the collective choice. As in the previous set of
experiments, a group of 10 robots faced a choice between
two shelters. But this time, while one of the shelters kept
the same size as in the previous experiment, the size of the
other was altered.

In a first set of 20 experiments, we confronted a 14 cm
diameter shelter (able to house the whole robot population)
with a 10 cm diameter shelter (too small to house the whole
population of robots). As can be seen in Figs. 4 A.1 and
A.2, robots quickly and strongly choose the shelter able to
house their whole population. Thus, at the end of the ex-
periments, 68 + 3.29% (mean+s.e., n = 20) of the popu-
lation is under the 14 cm diameter shelter (72.7 £ 0.79%,
n = 1000, in simulations). The choice distribution shows a
strong shift towards the 14 cm diameter shelter (see Fig. 3
A.2). This shift is the result of more than the simple differ-
ence between the area of the two shelters. Indeed, a compar-
ison between the experimental distribution and a trinomial
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FIGURE 4. Choice dynamics: number of robots aggregated
under each shelter. Top: experimental data (n = 20). Bot-
tom: simulation data (n = 1000). In column A and C,
black dots represent data for the 14 cm diameter shelter;
white dots represents data for either the 10 cm diameter
shelter (column A) or the 18 cm diameter shelter (column
O). In column B, black dots represent data for the chosen
shelter (i.e. the shelter which is chosen at the end of each
experiment); white dots represent data for the “not chosen”
shelter. In all cases, each dot represents the mean = s.e.

distribution (Fig. 3 A.1) taking into account this difference
in size shows a strong difference (x2 = 365.3578, df = 4,
p < 0.0001). Similar results are obtained with simulations
(see Fig. 3 A.3) and a chi square analysis of contingency
tables shows no difference between experiments and simu-
lations (X2 = 9.4322, p = 0.0595, p-value simulated with
10000 replicates [22]). The disappearance of the U-shape of
the distribution means that it remains only one “population
of experiments” preferentially ending with the choice of the
14 cm diameter shelter, i.e. the one able to house the whole
population of robots.

In a second set of 20 experiments, we confronted a 14
cm diameter shelter with a 18 cm diameter shelter. Both
shelters are able to house the whole population of robots.



As can be seen in Figs. 4 C.1 and C.2, robots choose the
18 cm diameter shelter. Thus, at the end of the experiments,
70.5 £ 7.56% (mean=s.e., n = 20) of the population is un-
der the 14 cm diameter shelter (61 4+ 1.12%, n = 1000, in
simulations). The choice distribution shows a shift towards
the 18 cm diameter shelter (see Fig. 3 C.2). This shift is the
result of more than the simple difference between the area of
the two shelters. Indeed, a comparison between the experi-
mental distribution and a trinomial distribution (Fig. 3 C.1)
taking into account this difference in size shows a strong
difference (x? = 373.8106, df = 4, p < 0.0001). Similar
results are obtained with simulations (see Fig. 3 C.3) and
a chi square analysis of contingency tables shows no differ-
ence between experiments and simulations (x? = 5.4480,
p = 0.2301, p-value simulated with 10000 replicates [22]).
But contrary of the previous experiment, the U-shape of the
distribution has not disappeared and the two “populations of
experiments” still exist: one that preferentially ended by a
choice of the 14 cm diameter shelter, the other that prefer-
entially ended by a choice of the 18 cm diameter shelter, the
latter prevailing on the former.

From the two latter sets of experiments, we can con-
clude that the group of robots will choose preferentially a
shelter that is sufficiently large to house all its members.
But when the group is confronted with two sufficiently large
shelters, the self-enhanced aggregation mechanism can lead
the group to two stable choices, with a preference for the
larger shelter. This implies that the group of robots is able
to “sense” and “compare” the size of the shelters during the
collective decision process, a performance that is beyond
the direct scope of the simple aggregation process used in
these experiments and that is not explicitly implemented in
individual robots.

4. CONCLUSION

In this work, we achieved a collective decision process from
a simple biological model of aggregation. We showed that a
self-enhanced aggregation process associated with a prefer-
ence for a given type of environmental heterogeneity (here
a preference for dark places) can lead a group of robots to
a collective choice for an aggregation site. Furthermore,
this choice can be related to a collective ability to “sense”
and “compare " the sizes of the aggregation sites. The most
interesting aspect is that individual robots are unable to per-
form such behaviors (sensing the size of the shelters and
choosing one of them) because of their very limited percep-
tion apparatus and computing power, and also because of
the simplicity of their individual behaviors. But, as it has al-
ready been shown in insects [2, 6, 10, 20, 25] and robots [1,
14], this simplicity is not a limit to the appearance of com-
plex collective behavior. Division of labor [1], object order-
ing [14] and even collective decisions can emerge from the

numerous interactions between artificial agents with some
very simple behavioral rules.

To explain the ability of the group to choose preferen-
tially the biggest shelter in our experiments, we hypothe-
sise that this relies on the higher probability for the robots
to encounter this shelter in the arena. Indeed, the more
robots encounter a shelter, the more likely they will stop
spontaneously under it. Thus, there will be more individ-
ual stopped robots under the bigger shelter that will act as
“seeds” for new clusters. But we hypothesise that beyond
a given size, the shelter will become too big to be chosen.
Indeed, the bigger the shelter is, the smaller is the “seed”
density under it. This will decrease the probability for a
moving robot to encounter a “seed” and form a new cluster
with it. Furthermore, we also hypothesise that groups under
the smaller shelter would be more packed due to smaller
opportunities to move. This will increase stability of ag-
gregates under the smaller shelter by slightly increasing the
local density of neighbors. In these ways, the group would
be able to choose a shelter not too small (as it is already the
case) but also not too big to house the whole population.
These last hypotheses will be tested in further simulation
works.

We now plan to complete our experimental results by
performing choice experiments with more than 10 robots to
better tune our simulation tool. Indeed, we also plan to per-
form simulation experiments in order to find behavioral pa-
rameters able to influence this choice. Previous simulation
work with this kind aggregation model showed that small
modifications of stop and start probabilities can deeply al-
ter aggregation patterns. What is more interesting is that
these alterations appear even if only 20% of the popula-
tion has modified probabilities [12]. Thus we think that
modifying these probabilities can also modify the collec-
tive choice, allowing us to control group decisions through
the introduction of some modified robots into the population
of cockroach-like robots. Moreover, Ame et al. [2] showed
that mixing individuals of two different strains of the same
species of cockroaches can either lead mixed or segegated
groups. According to the affinity between the two strains
and the proportion of individuals of each of them, the group
can split into two sub-groups. These sub-groups will con-
tain individuals of only one strain and will choose different
shelters.

To conclude we argue that this work opens some inter-
esting perspectives for collective robotics. Collective choi-
ces could be associated, for instance, with a construction be-
havior, allowing a group of robots to choose a place to build
a “nest” adapted to the size of their population or having
some specific environmental properties (for instance light
intensity, humidity, etc.). It could also be associated with



the ordering behavior described in Holland and Melhuish
[14], allowing robots to assemble objects of different types
in different places. We argue that such associations are new
challenges to take up if this collective robotics, based on
self-organized mechanisms and/or biologically inspired be-
haviors, must become an efficient and robust way to achieve
complex tasks with groups of numerous small autonomous
robots.
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