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Abstract— Two control algorithms for a swarm robot are pre- area and one leading to the nest entrance. In this work the
sented that enable it to orientate itself by using informaton from  robot behavior at a single bifurcation of this kind will be
the geometry of trail bifurcations within a trail network. T he investigated as it was done by Jackson et al. [4]. A probsiaili

development of these algorithms was inspired by the behaviof ientati d . ficient si h |
Pharaoh’s ants as reported by Jackson et al. [4]. The perforance reorientation procedure is sufficient since there are sua

of the robot is analyzed in a large number of embodied exper- S€veral consecutive bifurcations, i.e. there are sevé@iaes
iments with different bifurcation angles. The reactive betavior to reorientate.

implemented by simple rules is sufficient to accomplish thisask
using a robot of limited capabilities. The frequency of corect
reorientations is maximized when the trail bifurcation ange is
60 degrees, as found in natural networks.
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I. INTRODUCTION

The hardware used in swarm robotics is in general charac-
terized by its boundedness concerning computational power
memory, energy, communication abilities, accuracy, diver
and number of sensors and actuators [2], [8]. Despite all Fig. 1.
this imprecision, useful and complex behavior can still be

generated by using rules that are both probabilistic anglsim ) o .
Nature, especially social insects, served as the biggestso Bes!des thell_nsp|rat|.on by nature the_ algorithms were found
of inspiration for such behaviors. out in a tradm_onal trial-and-error fashion because of Iticek_ _
The work of this paper was inspired by the behavior of anf other applicable top-down approaches. However, this is
that extract polarity information out of the geometry ofithe Uneéndurable and first steps to more sophisticated top-down
trail networks [3], [4]. Our aim is not primarily a direct@PProaches have been proposed recently [5]-[7]. The use of
application of the presented algorithms in swarm robotids ponline learning techmques_ for such a swarm ropot woulld have
a proof of concept. Starting from an observed natural ph@een a research topic on its own, although an interesting one
nomenon, that cannot be explained by biologists yet, wel trid € option of developing or learning a controller in simidat

to mimic at an abstract level basic concepts of the enviraiimeWas consciously ignored because there are too many importan
the ant's sensors, and its behavior. The most important pagPtieties that are complicated to simulate in this scenarg.
was, however, unknown which is the algorithm causing thRdghly variable turning angles or intrinsic inhomogerestin
observed behavior. The only clue that was available, was tftge trail on which the found robot behavior relies as disedss

a solution exists. However, it is unknown whether ants haif section Il.

other capabilities involved in this trail following experent Please note that the purpose of this work is not to produce a
that the used robot does not have. The effectiveness of tfg@listic model of the Pharaoh’s ant. Whether the reortenta
approach might be a benefit for both communities, biologiseghavior of this ant is reactive or makes use of memory is an
and swarm roboticists. open question. In a previous biological work the reorigatat

In the following the robot is supposed to move on trails th&ehavior of the Pharaoh’s ant is also modeled with agents
enable it to orientate itself. The emergence of this tragteyn acting reactively [3].

is not addressed in this paper and could be the result olrathe next section we briefly describe the swarm robot
self-organized process as it is observed, for example,diako “Jasmine”, which is a respectable byproduct of the European
insects: “Most trail-laying ants produce complex trail net-SWARM project, while the main aim of this project is to
works branching throughout their foraging environment. [4 develop a robot in sizes of one magnitude below Jasmine’s
A schematic representation of such a trail network is given {about 3«3x3 mn? compared to about :33x3 cn?). In

Fig. 1. Thus, in the ideal case we have a tree structure asettion Il we will describe the algorithms in detail and in
every bifurcation has two branches leading to the foragirsgction IV we present the results.

foraging
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Schematic representation of a trail network.



Fig. 3. The Robot Jasmine and the projection of the trail.

Fig. 2. The Jasmine swarm robot. sensor board gives values of the full interval from O (dark)
to 255 (bright) depending on the brightness of the part of
the projected image that is shed on the photodiodes. In the

[I. MATERIALS AND METHODS following the currently measured value of the left and the

right photodiode will be referenced bl and R.

Because of its design for low cost and the artificial restict

The swarm robot Jasmine (see Fig. 2 and [1]) was developeduse no long distance communication the Jasmine robot

especially for swarm robot research. Despite its small sfze might seem to be below the technological state of the art.

about30 x 30 x 30 mn?, it has good local communicationHowever, this makes it a suitable testbed for even much

abilities and a far distance scanning and distance measurgmaller robots because besides the locomotion there are no

sensor. The good communication abilities result from sionceptual problems for miniaturization.

::f(rj?:ed sensors and emitters arranged around the roliot wi !ylotion Description Language Two ExtendedDL2¢)
placement of 60 degrees. These sensors are also use

for short distance measurements. The far distance megsulR Program the robot we useNMIDL2¢ as it is presented

sensor is hooked to the front of the robot. Two differenyiallin this proceedings [9]. The Programming of a swarm robot

driven wheels give this micro-robot a high manoeuvrabiity ¢a@n be done very efficiently usinyIDL2¢ if all needed

a high speed. Generation two, that was used in this paper, A¥MS (smallest abstract component iniDL2¢-controller)

an Atmel Mega 8 micro-controller with 1 Kbyte RAM andhave been already implemented. AMDL2¢ program is

8 Kbyte Flash. Two LiPo battery packs provide 7.2 V for ujp'Sually very compact and concise, which makes quick changes

to two hours of motion. easy. The implementation work of the below algorithms was

Generation three of the robot, that was not used here, [fgfinitely sped up by using this programming framework.

an Atmel Mega 168 micro-controller with 1 Kbyte RAM andC. Experimental Setup

16 Kbyte Flash. Now a single LiPo battery pack is sufficie

with the same endurance and optical encoders are availar:!,;ﬁ1

th_at allow odometric measurements in the mm-range. white on the floor (see Fig. 3). At positions in the arena that a
Different from some other swarm robots Jasmine SUPPOYS; directly below the projector the light beams down in asgl
only local communication. Long distance communication Vig o iier than 90 degrees which is displayed by the shadow of

radio frequency is not implemented and does not correspaRd 1ohot and its displacement to the projection on the gtoun
with the views of the construction team about swarm robm Fig. 3. The geometry of the projected trail bifurcation fo

capap|l|t|es. _ _ a = 90° is shown in Fig. 4 and the key situations of the robot
In thls'work we used an pptlonal sensor board with twﬁpproaching a bifurcation are shown in Fig. 5.

photodiodes that can be fixed on top of the robot. Here

the board just sends permanently an averaged value of thd- TWO ALGORITHMS FOR THEORIENTATION IN TRAIL
measured brightness encoded in one byte per sensor to the NETWORKS

robot’s controller. These values are the average of 50 senbothis section we present two algorithms, one that enables t
measurements. In the experiments here, a video projeabr tfobot to find the nest (we will refer to this as thest algo-
projects the trails onto the arena was the only light sourbe. rithm) and one to find the food place$o6d algorithn) in

A. The Swarm Robot “Jasmine”

e setup for the experiments is simple. The video projector
&t is mounted about 2.5 m above the arena projects thatrail



TABLE |
BRIGHTNESS THRESHOLDS

Threshold | Value
dgiff 20
6dark 11
Sbright 130

otherwise the robot keeps going straight.

Here the correction turn is, with up to about 45 degrees,dyigg

than the correction turn of the nest algorithm (see below). |

should be noted that this turning angle is not constant. The

rotation will be stopped immediately if the interrupt doest n

hold anymore, e.g. in case of a correction turn to the left the

rotation is stopped if the interrupt conditiobh > R is not

true anymore. Even if the turn would be repeated in the exact
Fig. 4. Geometry of a trail bifurcation. same environmental setting, the angles could differ a fatesi

the version of the Jasmine robot that we used in this work
) o ) ) (generation two) has no odometry.
a trail network of trail bifurcations of given angles. In an, e case of coming from A the basic idea of this algorithm

implementation of a transportation scenario the robot &oul 14 4y0id approaching the bifurcation in a driving direati
switch between these two algorithms using SIMMEDL2¢  paraiie) to the line through A and D because this might

mechanisms. o , trigger a u-turn if both photodiodes leave the trail almost
The trail following behavior is based on the input of th%ynchronously. Coming from B or C we hope for this u-turn

two photodiodes only. They are used to basically keep t)& an the robot approaches the big angles ADB or ADC (for
robot on the trail and to identify the bifurcations. Three, +£120°) as it is shown in Fig. 5(c).

different events are relevant: First, at one sensor it ishmuc

brighter than at the other ondl — R| > dq¢, for some B. The Nest Algorithm

threshold dqir. See Fig. 5(b) for a typical situation in thejn the nest algorithm the correction turn is, with up to about
experiment where this holds. Second, at both sensors itys v85 degrees, smaller than the correction turn of the food
dark: (R < ddark) A (L < ddark), for some valuegark < 255, algorithm. The other change to the food algorithm is an extra
see Fig. 5(c). Third, at both sensors it is very brighgondition that checks for a high brightness at both sensors.
(R > Gbright) A (L > dpright), for some valu&pright > ddar SE€  that situation the robot turns up to 120 degrees. The rotatio
Fig. 5(d). For simple straight-ahead driving on the trail iflirection is chosen randomly with a 50% chance of a right
would be sufficient to rotate to the brighter side (in th@nd a 50% chance of a left turn.

following this will be calledcorrection turr) if at one sensor The basic idea is that the robot coming from A is nicely
it is much brighter than at the other oné ¢ R+ dair OF aligned to the trail such that it gets into the situation show
R > L + éqi). To reorientate correctly at the bifurcations inp Fig. 5(d). Then a bigger turn of up to 120 degrees followed
the network more sophisticated mechanisms are needed Wh:'b‘}hcorrection turns should bring it back to A. Coming from B
will be discussed below. or C the robot should overcome the bifurcation by correction
turns and should not approach the position of brightest.ligh

A. The Food Algorithm

We say that walking to C or B in Fig. 4 takes you to the IV. RESULTS

foraging area as it is true in most cases for trail networks @he setup for our experiments is shown in Fig. 4. In corre-
the Pharaoh’s ant [3]. Hence in this section the robot showdgondence to the natural networks the direction to A is dalle
leave the bifurcation at C or B. Additionally, in case it meve“to the nest” and to B and C is called “to the food”. The bi-
in the wrong direction, i.e. it approaches a bifurcatiomir@ furcation angles were varied: € {30°,45°,60°,90°,120°}.

or B, it should turn and leave the bifurcation either at C or BEach experiment starts with the robot being placed at A, B, or
but not at A. A simplified flow chart of the algorithm is givenC positioned straight ahead and switched on. The experiment
in Fig. 6. The conditions are implemented as interrupts.sThends with one of six possible outcomes: The robot arrives at
the execution of an action will be stopped if the superor@inaA, B, or C by having driven at least 20 cm on the trail before
conditions do not hold anymore. The values that were uskédving possibly executed a u-turn, it executed a u-turnrieefo
for the thresholds are given in Table I. having driven at least 20 cnfiaflure), it left the trail (ailure),

The first condition checks if the light at one sensor is muabr it got caught in some repetitive behavior for more than two
brighter than at the other one. | — R| > dqir iS true, a seconds, e.g. turning permanently.

correction turn will be executed. Otherwise it is checked if For the food algorithm the definition aforrect turnsis as

is quite dark at both sensors. Then a u-turn is performed afodlows: The robot started at B or C (sine qua non) and arrived



(a) Approach of a bifurcation coming from the
food place.

).\

(b) Typical situation for a correction turn (here to
the right).

(c) Typical position for a u-turn.

(d) Position of brightest light.

Fig. 5. Exemplary situations occurring when the robot (goex with two

|L — R| > dgiff

Rotate Rotate
Left Right U-turn Move
(=~ 45°) (~ 45°) (=~ 180°) Forward

Fig. 6. Simplified flow chart of the food algorithm.

at B or C again or it ended up in a repetitive behavior. This
is a fair classification because the robot has recognized the
bifurcation and with a more sophisticated algorithm it wbul
be possible to minimize repetitive behavior and droppirg th
restriction of a purely reactive control it would be possibd
avoid it at all. The definition of incorrect turns is this: The
robot started at A (sine qua non) and arrived at A again or
ended up in a repetitive behavior.

The definitions for the nest algorithm are defined in an analog
way. Since fails occurred very seldom (%), they were not
counted and experiments were repeated in case of fails.

For each, nest and food algorithm, we performed 50 exper-
iments starting at B, 50 starting at C, and 100 starting at
A for a € {30°,45°,90°,120°} and 100 at C, 100 at B,
and 200 at A fora = 60°. The results are shown in Fig. 8
and the ratio between the number of correct reorientatins
divided by the number of incorrect reorientatioRs is given

in Fig. 9(a). As long asi./R; > 1 holds the algorithm is in
principle effective. The average of both algorithms is diea
below the reported performance of the Pharaoh’s ant [4]. The
food algorithm performs much better than the nest algorithm
This is discussed below. But the nest algorithm is still effe

for a < 75° although it might take a long time for a robot
to find the nest. The peak of both algorithms iscat= 60°

as observed in ants [4]. The noticeable drop in performance
for « = 45° is induced by an incompatibility of the average
correction turn angles and. Although in many experiments
for « = 45°, at first, the robot turned correctly, it then
approached the border of the straight trail paths in a low
angle, which prevented it from executing another correctio

little black boxes indicating the position of the photocis}i approaches the tUrn because of the threshold in the interrygt{ R| > dait)-

trail bifurcation (in white).

Thus it went often off the trail and did a u-turn.
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The case ofv = 120° can serve as a sanity check for the datag, 15 }
Since there cannot be any polarity information encoded in &
120 degree bifurcation we assume that all three outcomes (é
B, and C; counting repetitive behavior as leaving at were it ° |
came from) are uniformly distributed, ignoring for simgityc s s
that 180-degree-turns versus 120-degree-turns do nottbave 40 e 8 100 120
be equiprobable (here far = 120° the ratio of 180-degree-
turns to 120-degree-turns was about 1.5). Since we do the
same amount of experiments starting at A as starting atq, g Correct and  incorrect  reorientations  for
and C together, we get:6.6% incorrect and33.3% correct o € {30°,45°,60°,90°,120°}, error-bars indicate the 95% confidence
reorientations for the food task. That means we get a corr&i'val (some values are shifted b0.5° for better readability).
to incorrect ratio ofR./R; = 2 for granted. For the nest
task we get vice versaR./R; = 0.5, which makes the nest ) ) B )
finding a harder task. In Fig. 9(b) the ratios normalized tdyPothesis can, of course, easily be falsified by preserting
these values are given. This diagram shows clearly that b@gorithm with better performance.
algorithms perform significantly better than and similaslgll The behavior described here is highly probabilistic whigha i
compared to random behavior. typical characteristic of natural and artificial swarmsc8ese
of that for laymen watching our robot working its way through

V. CONCLUSION the trail network it might not look “intelligent” at all as it
At first, we presented the swarm robot Jasmine that was usedrue for following a natural ant’s route. Such behavior is
to conduct the experiments. We showed that even for a véhg only possibility to overcome the impreciseness of the
bounded hardware platform it is possible to solve compléxdividuals in a swarm, since highly efficient behaviors of
tasks as reorienting in a network of trails depending oragert the individuals ®./R; — oc) cannot be achieved. However,
geometric properties of bifurcations. While the performenf because of the dependence on probabilities the algorithms
the reorientation algorithm for finding food is good, the megresented here are hard to analyze. Only by directly megguri
algorithm might possibly be improved heavily. The fact that the robot’s turning angles and tagging the triggering esient
one hand it is easier for a robot moving totally random findinigpr example, it will be possible to find the probability dibty-
the food than finding the nest and that, on the other hartihn of the angles. This distribution is not explicitly sjfesd
the authors were not able to find a nest algorithm showimg the algorithm but in the ensemble of the hardware platform
similar performance as the food algorithm might indicatat thand the software as it might be true for the natural ant. As
this is the more difficult part of the task or that the naturatl aalready mentioned better approaches to master this unison o
uses a different mechanism to return to the nest. Howevisr, thardware and software are in need.
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(b) Nest algorithm.
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Fig. 9. Ratio of correct to incorrect reorientations.
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