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Real global-scale quantum communications and quantum key distribution systems cannot be 

implemented by the current fiber and free-space links. These links have high attenuation, low 

polarization-preserving capability or extreme sensitivity to the environment. A potential solution to 

the problem is the space-earth quantum channels. These channels have no absorption since the signal 

states are propagated in empty space, however a small fraction of these channels is in the 

atmosphere, which causes slight depolarizing effect. Furthermore, the relative motion of the ground 

station and the satellite causes a rotation in the polarization of the quantum states. In the current 

approaches to compensate for these types of polarization errors, high computational costs and extra 

physical apparatuses are required. Here we introduce a novel approach which breaks with the 

traditional views of currently developed quantum-error correction schemes. The proposed solution 

can be applied to fix the polarization errors which are critical in space-earth quantum communication 

systems. The channel coding scheme provides capacity-achieving communication over slightly 

depolarizing space-earth channels.  



I.  Introduction 

Quantum error-correction schemes use different techniques to correct the various possible errors 

which occur in a quantum channel. In the first decade of the 21st century, many revolutionary 

properties of quantum channels were discovered [12-16], [19-22] however the efficient error-

correction in quantum systems is still a challenge. These error-correction schemes use different 

techniques to correct the various possible errors which can occur in a quantum channel. One of 

the biggest challenges in current quantum error-correction techniques is redundancy [8]. To 

protect an arbitrary quantum state it has to be encoded in a redundant way, and redundant 

encoding was an unavoidable corollary in quantum error-correction. The level of redundancy can 

differ, however one issue is that it cannot be removed from currently known approaches [1-5], [7-

9]. A second major problem is that the various types of errors which can occur in the quantum 

channel require different encoding and decoding schemes, moreover if the type of the error is 

completely unpredictable then the only way to achieve protection of the quantum state is to 

increase the level of redundancy [9-12].  

In this paper we introduce a new quantum-error correction scheme which has many 

advantages in comparison to currently known techniques. First of all, the proposed method 

requires minimal redundancy. Second, the error correction can be made without any knowledge 

about the transformation of the quantum channel. The proposed error correction scheme is 

based on the usage of pilot states. The pilot states are ordinary quantum states, fed by Alice to 

the quantum channel. The pilot states will capture and store the unknown error transformation 

of the quantum channel. These pilot states—using a simple Hadamard and Controlled-NOT 

(CNOT) gates [4]—can be used to correct an arbitrarily high number of data quantum states 

sent through the quantum channel. However the errors on all of these states are unknown, Bob 

is able to construct them using our simple quantum circuit. Furthermore, the quantum channel 

is stored in the pilot quantum state without making process tomography on the channel. The 

simplicity of the proposed error-correction quantum circuits makes it possible to be easily 

implemented in practice. The hard part is to construct an error-correction scheme which can 



correct the unknown errors of the channel, without any knowledge of the channel output pilot 

states. The probabilistic behavior of these controlled quantum gates, and the storing process of 

unitary transformations in quantum states were studied in the literature [12,13]. 

An immediate practical application of the pilot quantum-error correction is in polarization 

compensation in space-earth quantum communications [1], [6], [14-16]. In space-earth quantum 

communications the relative motion of the ground station and the satellite causes a rotation in 

the polarization of the quantum states. In the current approaches to compensate for these types 

of polarization errors, high computational costs and extra physical apparatuses are required. The 

proposed quantum error-correction scheme can be applied to fix the polarization errors which 

are critical in space-earth quantum communication systems. Our polarization compensation 

scheme can be implemented in practice without any extra hardware or software costs, providing 

an easily implemented on-the-fly polarization compensation scheme. 

There are several polarization techniques existing in the literature, but in each case, further 

hardware and software implementations are required and the cost of these practical polarization 

solutions is high. Our scheme uses minimal redundancy and adds it into an arbitrary large block 

set instead of each individual qubits. Using our scheme, the error-correction of the data qubits 

can be achieved without any knowledge about angle of the polarization rotation error.  

This paper is organized as follows. In Section 2, we give an exact problem in space-earth 

quantum channels where the proposed technique can be applied. In Section 3 we show the 

details of the channel coding scheme. In Section 4 we introduce the channel model and express 

the capacities. In Section 5 we present the theorems and the proofs. In Section 6 a practical 

implementation with capacity calculations for space-earth quantum channels is shown. Finally, 

in Section 7 we conclude the results.  



II. Polarization Compensation 

A. Problem Statement 

In space-earth quantum communications the relative motion of the ground station and the 

satellite causes a rotation in the polarization of the quantum states as depicted in Fig. 1. The 

relative motion of the ground station and the satellite is denoted by q . During time T the 

ground station sends n data qubits and the relative motion causes a unitary rotation 

according to the angle q . The time-dependent rotation angle  is constant for a given time 

T (for realistic results see Table 2.). The rotation causes time-dependent  unitary 

transformation of the polarization states of the sent qubits.  

qU  
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( )qU T

In time-domain  the channel is modeled by the same map, where  is the 

critical upper bound on time parameter T during the quantum channel is in the “stationary 

state”. The pilot error-correction method corrects for the rotation caused by the rotation angle 

, without any redundant qubits, extremal hardware devices or any complex mathematical 

calculations. 
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Figure 1. During time T, the relative movement causes a unitary rotation ( )q T  in the polarization of the qubits. 



In existing polarization control schemes [15], the relative motion is compensated in several steps, 

requiring many extra hardware and software costs. In current approaches, the most important 

part of these correction steps is the calculation of the time-dependent Jones matrix , 

which describes the rotation of the polarization angles in the form of Jones vectors  
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where  are the relative amplitudes,j  is the relative phase (  are real values) 

and 

+ =2 2 1a b j, ,a b

( ) ( )= 0J T C T J ,                                        (2) 

where T is the time-slot during the rotation with the given angle q  occurring on the 

polarization of the qubits, while  is the initial polarization state sent by Alice in the beginning 

of the communication [15].  

0J

 

B. Related Work 

The aim of the existing solutions is the description of the Jones matrix , which requires 

the measure of the space-earth quantum channel. It is a very error-sensitive process, since during 

the measuring process the angles of the original qubits cannot be perturbed, i.e., it has to be 

implementable in practice without any physical contact between the polarization angles and the 

measuring beam [15]. In current approaches, the measurement process requires many extra costs, 

such as the use of ultra-sensitive hardware devices which can characterize the properties of the 

quantum channel with a probe-beam using a special wavelength (different from the signal) 

without causing any interference. Aside from experimental challenges such as the measure of the 

quantum channel, the mathematical derivation and calculation of the time-dependent Jones 

matrix causes further increase of the costs of the error-correcting scheme [15].  

( )C T

Another practical approach for polarization compensation is the time-multiplexing of signal 

and probe beam, which technique uses the same wavelength for the signal beam and the probe 



beam. In either case, the implementation costs are high and cannot be decreased, since these are 

arising from the characteristics of the physical apparatuses used for the polarization 

compensation [15]. The pilot quantum error-correction scheme does not require the 

characterization of the Jones matrix  and does not require any computations regarding it, 

nor does it require the implementation of any extra devices for the probe beaming, the 

calibration of the wavelength, or the delicate channel measurement strategy. The developed 

technique provides an on-the-fly solution for correcting polarization errors, without any matrix 

computations or the usage of any probe beaming devices.  

( )C T

 

III. Coding Scheme 

The proposed method can correct any unitary error U in the polarization angles of the data 

qubits without using any channel-measuring process or probing beams, or causing any 

disturbance in the satellite quantum channel. The extreme efficiency of the on-the-fly strategy is 

ensured by two main attributes of a satellite communication system.  

The number of maximally transmittable and correctable qubits depends on the length of the 

time T during the rotation q  occurring on the polarization of the qubits in the space-earth 

channel, and on the frequency at which the incoming beam is modulated [15, 16]. Current 

practical approaches all make it possible to send as many qubits as required for the proposed 

polarization compensation [15], see Table 1 and Table 2. (Note: The results will be demonstrated 

for qubit inputs (d=2 dimensional systems) and qubit channels.) 

 

A. Error Characterization 

The unknown polarization rotation (constant for time T, see Fig. 1 and Table 2 [16]) due to the 

relative movement is expressed by  

q

q = 2
i G

U e ,         (3) 



where G is a Hermitian generator operator (i.e., , its eigenvalues are real and it is also a 

normal operator) of arbitrary dimension and q  is a real number. (Note: The map of the realistic 

space-earth channel will be given in Eq. 

= †G G

†G

(14)). Any Hermitian operator G can be expressed as a 

linear combination of the Pauli operators I, X, Y and Z. As follows, the pilot quantum error-

correction scheme can correct I (Identity transformation, i.e., no error), plus any single-qubit X, 

Y, or Z error [11, 12], therefore it can correct an arbitrary single-qubit error, including non-

unitary ones. It can be verified easily, because I, X, Y, and Z form a basis for the space of 2x2 

matrices, and every single-qubit error can be described by a 2x2 matrix [1-5], [15,16]. If the 

generator matrix G is also unitary, i.e., G  then - =1

 ,                  (4) -= =  = =† 1 †G G G GG GG I

thus G is self-inverse, thus . As follows, the error transformation with the self-inverse 

generator G (the Pauli operators are also self-inverse operators) of the quantum channel can be 

rewritten as 

=2G I

q
q q

= +cos sin
2 2

U I i G .             (5) 

To reveal and store this channel operation in a quantum state, we will use pilot quantum states 

to describe the transformation of the channel. The continuous variable q  will be stored in the 

quantum state. We note, non-unitary errors also can be corrected with this technique (using 

multiple pilot states for the decoding), since any Hermitian generator matrix G can also can be 

stored in this way [1-4]. In the further parts of the paper we consider the case if the generator 

matrix G is also unitary (self-inverse), i.e., its inverse can be implemented in practice by a 

controlled unitary transformation . On the other hand, our results make possible to store and 

correct any non-unitary errors [16]. In the proposed pilot error-correcting scheme the unitary 

operator  (see Eq. 

†U

qU (5)) is stored in a quantum state, which problem is equal to store a 

continuous variable q  in a single qubit [12,13]. Note: the term unknown data state will refer to 

the encoding of quantum information, while for the transmission of classical information the 



term known data state will be used. We also use the term unknown for the pilot states, which 

refers to the unknown probability amplitudes. 

The input pilot state j
Pilot
IN

 is a quantum state, sent by Alice to the quantum channel. The  

unknown transformation of the channel will transform the input pilot state into  

qU

qj j= =
Pilot Pilot
OUT IN

U q .              (6) 

The quantum channel   during time T carries out the same rotation transformation 

(according to the relative movement, see Fig. 1) on all of the pilot and data qubits [16]. The 

map of the quantum channel is characterized by the self-inverse operator G, will be produced on 

the input pilot state.  

 

B. System Characterization  

The input pilot state cannot be an eigenvector of the Pauli X, Y and Z operators, which 

excludes the following states: 
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Furthermore, the pilot state cannot be a pure state, since every quantum state is an eigenstate 

of some unitary operator, henceforth a fixed pure quantum state cannot work for all errors. As 

follows, the pilot state can be any mixed, but non-maximally mixed state, i.e., the only condition 

on the mixed input pilot state r  is the following:  Pilot
IN

 r ¹
1
2

Pilot
IN I .                                                   (8) 

This trivially follows from that fact, that r  has to store only the rotation caused by the 

channel, and an arbitrary, non maximally-mixed state can be chosen for this purpose.  

Pilot
IN

The result will be the pilot state 



 .                                    (9) ( ) q qr r s= = †Pilot Pilot Pilot
IN IN OUTU U

The state s  is a mixed state, however, in the calculations we can use the Pilot
OUT q  purification 

state of this system, which defines a pure system. Bob will apply the Hadamard transformation 

on the pure system q , which is given by  

( )s r q=  =Pilot Pilot
OUT IN ETr q ,                                       (10)  

where  

q q q q
q q

æ öæ ö÷ç ç= + +÷ç ç÷÷ç çè øè ø
cos 0 sin 1 cos 0 sin 1

2 2 2 2
i ÷÷÷÷i ,                       (11) 

and E is the environment. As follows, the pure q  channel output pilot state in (11) is the 

purification state of the mixed channel output state s , and we can calculate with system Pilot
OUT

q  in the further steps. 

 

Comparing of Output Pilot State with the Reference Pilot State 

Before the communication, Alice and Bob agree on a pure reference pilot state j
REF.
Pilot , which 

can state is an arbitrary pure state. As follows, for an I identity channel, Bob will not rotate the 

channel output states, since in that case Bob will find that for the purified state q  the 

following relation holds 

q j=
REF.
Pilot ,                                          (12) 

which easily can be verified by a SWAP-test circuit [37] (see Theorem 1 in Section 5). Applying 

it on Bob’s side, he will be able to determine easily whether he has to apply the rotation or not, 

by simply comparing the purification of ( )r Pilot
IN , denoted by q , with his pure reference pilot 

state j
REF.
Pilot .  

Upon reception of the pilot states, Bob can use them to correct the errors of the quantum 

channel, see the theorems and proofs of Section 5. The process of the pilot state generation is 



summarized in Fig. 2. The input pilot qubit is a well-characterized and exactly chosen qubit 

(and known a-priori by the parties, referred as j
REF.
Pilot ). The channel output pilot state captures 

the unknown map of the channel. (The G generator matrix of the channel will be defined in 

Section 5, see (52).) 
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Figure 2. In the transmission process, Alice sends the pilot qubits to Bob before the data qubits. These states will 

store the unknown transformation of the quantum channel. 

 

After the purification of s , the  unknown unitary polarization rotation transformation of 

 can be described in the following channel output pilot quantum state  

Pilot
OUT qU



q q
q = +cos 0 sin 1

2 2
i ,                         (13) 

which means that the unknown unitary transformation is mapped onto the state 1 , while - 

provided the channel has no error and hence realizes an identity transformation I - is mapped 

onto 0  [12,13]. After the unknown transformation of the quantum channel is stored in the 

pilot quantum state q , we would like to use it in quantum-error correction, but without 

adding any redundancy into the encoding process [16].   

 

IV. The Time-Dependent Depolarizing Quantum Channel  

In the previous section the quantum channel is assumed to be an arbitrary channel map, which 

does a time-dependent unitary rotation transformation . This error occurred by the relative qU



movement and caused an angle q  theta rotation in the polarization states. The space-earth 

quantum channels have no absorption since the signal states are propagated in empty space, on 

the other hand a small fraction of these channels is in the atmosphere, which causes slight 

depolarizing effect [1], [6], [14-16], [35-36]. To make our channel model more realistic, we can 

assume that this channel is a time-dependent depolarizing channel, which will be denoted by 

. This channel behaves as a standard depolarizing channel [30-33] for , (and 

which channel applies also the U  rotation operator) while it becomes a completely depolarizing 

channel if , where T  is the critical upper bound on time parameter T during 

channel  is in the “stationary state” (see Fig. 1). The time-dependent  channel has 

positive capacity only in time domain 

 .
T
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cri



é ùÎ ë û.0, critT T . If , the capacities become zero, 

i.e.,  (Note: The depolarizing channel models a worst-case scenario 

assuming an extremely noisy atmospheric environment. The actual choice of the corresponding 

channel model could depend on the weather conditions, environment properties and other 

atmospheric parameters. These environment-specific attributes determine the exact channel 

model.) 
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.For T , channel   is a unital channel, and the CPTP (Completely Positive 

Trace Preserving) map of  is defined as  

Î

T

 ( ) ( ) q qr r †T
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where T is the time parameter with é ùÎ ë û.0, critT T ,  is the polarization rotation due to the 

relative movement (see Eq. 

qU

(3)),  is the time-dependent depolarization parameter of the 

channel. The time-dependency of the depolarization parameter of the channel is defined as  

Tp

               
ì é ù. .,
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where  is the depolarization parameter of the channel . The depolarization parameter 

of  takes  for , and takes it maximum  if T  exceeds .  

.depp

.depol

 .
T
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deppT
.depp éÎ ë .0, critT T ùû =. 1 .critT

For  the channel behaves as a completely depolarizing channel > .critT T

( )r = . 2
T
depol i

I .        (16) 

Let assume that Alice uses two orthogonal states r =0 0 0  and r =1 1 1  for the encoding 

then the mixed input state of the channel is 
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After the channel has realized the transformation   on state , we will get the following 

result 
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                  (18)                     

where  is the polarization rotation that occurs during q é ùÎ ë û.0, critT T .  

Geometrically, the map of the time-dependent depolarizing quantum channel shrinks the original 

Bloch sphere in every direction by . First we show the effect of the  on the mixed 

input pilot state 

-1 Tp  .
T
depol

r ¹
1
2

Pilot
IN I . The q  rotation of the mixed r  input pilot state due the 

relative movement and the map of the time-dependent  depolarizing quantum channel are 

illustrated in Fig. 3. The shrink of the Bloch vector of state r  will be relatively small, 

because the  depolarization parameter of channel  depends only on the time parameter 

T.  

Pilot
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T
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.
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Figure 3. (a): The r  mixed (but non maximally-mixed) input pilot state will be rotated by angle q  due to the 

relative movement. The pure state 

Pilot
IN

q  is the purification state of the mixed output pilot state s . (b): The 

channel is a time-dependent depolarizing channel which generates a mixed state s . The channel input pilot state 

 is rotated by angle  (grey sphere represents the depolarizing channel map).   
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The unknown quantum channel  is described for the i-th pure data state  y ,
Data

A i IN
 as follows: 

it rotates the angle of any input states y ,
Data

A i IN
 by angle  and shrinks the pure state q

y ,
Data

A i IN
 along to the center of the Bloch sphere. The mixed channel output data state s  

will be the following state, according to the map of the time-dependent depolarizing channel:   

Data
OUT

( ) ( ) q qs y y y y= = + - � †
. , , , ,1

2
Data DataData T T T

OUT depol A i A i A i A iIN IN
Ip p U U .     (19) 

In the error correction we will calculate with the purification y ,
Data

A i OUT
 of s , defined as Data

OUT

( )s y y y y=  . , , , ,=Data DataData T
OUT depol A i A i E A i A iIN OUT

Tr ,                       (20)  

where y ,
Data

A i OUT
 is the a pure system according to the given i-th pure input data state 

y ,
Data

A i IN
. In the decoding process, the purified pilot and data systems q  and y ,

Data
A i OUT

 will be 

used. 



A. Classical Capacity of the Channel 
As it was mentioned, the   time-dependent depolarizing channel is a unital channel. 

Geometrically, this means that the channel maps an identity transformation to an identity 

transformation, hence  . We show the channel ellipsoid of the time-dependent 

depolarizing channel  in Fig. 
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Figure 4. The channel ellipsoid of the time-dependent depolarizing quantum channel model. The center of the 

channel ellipsoid and the smallest quantum informational ball is equal to the center of the of the Bloch sphere.  

As depicted in the figure, the HSW capacity [24], [25] of channel  can be expressed by the 

maximized quantum relative entropy function 
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(
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r s )n maxDmi  [29], where ( )⋅ ⋅D  is the 

quantum relative entropy function between quantum states r  and  is defined as s
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In the definition above, the term  is finite only if  for all diagonal 

matrix elements. If this condition is not satisfied, then 

( )(r slogTr ) ( )r s ³log 0

(r sD ) could be infinite, since the trace 

of the second term could go to infinity. The HSW capacity of   can be analyzed by the .
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optimal average output state s , and the optimal channel output state r  which are generated 

during . The average state s  of the optimal output ensembles éÎ ë .0, critT T ùû r= å k k
k

p { }r,k kp  

is equal to the center of the Bloch sphere. The HSW capacity of  is equal to the quantum 

relative entropic distance between the optimal output state r  (which maximizes the channel 

capacity) and the origin of the Bloch sphere [29], thus for 
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where ( )⋅ ⋅S  is the von Neumann entropy function. The density matrix s  must be expressible 

as a convex combination of r  as , which satisfies the min-max criteria of 

Schumacher and Westmoreland [34], which leads us to HSW capacity of : 
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capacity of : 
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where H is the Shannon entropy, and  is the depolarization parameter of the depolarizing 

channel.   

.depolp

The classical capacity of the   time-dependent depolarizing channel for  is 

trivially 

.
T
depol > .critT T

( ) = . 0T
depolC .      (26) 

 

B. Quantum Capacity of the Channel 
The quantum capacity [26-28] of the  time-dependent depolarizing quantum channel for 

 and with depolarization parameter , (according to the no-cloning 

bound) can be expressed as  
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Using channel  with  it is possible to construct a quantum code with rate at 

least R that any qubit 
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The classical and the quantum capacities of the time-dependent   depolarizing channel in 

function of the time-dependent depolarization parameter p  are shown in Fig. 5. In 

 the time-dependent depolarizing parameter takes the constant value . 

As the  critical time parameter of the channel is exceeded, the depolarizing parameter takes 

its maximum . 
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Figure 5. The classical and the quantum capacities of the time-dependent quantum channel in function of the time-

dependent depolarizing parameter. 

 

The time-dependency of the channel and the static behaviors of the channel capacities as the 

function of the time parameter T are illustrated in Fig. 6. Positive classical or quantum capacity 

can be achieved only in time domain é ùÎ ë û.0, critT T

.critT

. If , the capacities become zero, i.e., 

 As the  critical time parameter of the channel is exceeded, 

the channel capacities are cut down to zero.  

> .critT T

( ) ( )= = . . 0.T T
depol depolC Q

 
Figure 6. The classical (a) and the quantum (b) capacities of the time-dependent depolarizing channel. The 

capacities of the channel vanish as the time parameter T reaches the critical value of Tcrit.. The channel can transmit 

classical or quantum information only in the domain é ùÎ ë û.0, critT T .  

 

Since the capacities of the  time-dependent depolarizing channel decreases as , 

to achieve high communication rates, low depolarizing parameter  and sufficiently large 

.   parameters would be desired. As we will show in Section 6, these conditions are almost 

 .
T
depol  .critT T

» 0Tp

critT



completely satisfied for a space-earth quantum communication channel, which makes possible to 

apply the proposed pilot coding scheme with high rates. 

 

C. Information Transmission over the Time-Dependent Channel 

Our error correction method only requires multiple instances of the pilot state, which can be 

easily achieved by sending r quantum states (For the exact number of r see Section 6. From the 

r pilot states Bob generates an l-length string for the error correction.) with the data qubits over 

the quantum channel. According to Fig. 1, the quantum channel   carries out the same 

transformation (i.e., rotation q  in the polarization) on all of the pilot and data qubits. The map 

of the quantum channel is characterized by the self-inverse operator G, will be produced on (8), 

and according to (10) 

q q
q = +cos 0 sin 1

2 2
i .                               (29)  

When receiving, Bob applies a Hadamard transformation on q . Upon reception of the pilot 

states, Bob can use them to correct the errors of the quantum channel. Using the pilot state q , 

the polarization rotation can be expressed as Eq. (13). Alice sends her i-th quantum state  

y a b+, = 0 1A i ,           (30) 

where  and b  are the probability amplitudes, a b , on the quantum channel, which  

according to 

a +2 2=1

(20) is transformed into  

q y= ,id U A i .       (31)  

The unitary transformation of the polarization rotation is denoted by , and defined by Eq. qU

(5). The error correction of data qubits id  will be completed with the help of the pilot qubits 

q . In the proposed error correction scheme the channel output pilot states are distinguished 

into two well separable sets. The first set contains the r channel output pilot states, while in the 

second set we have  pilot states. In the error correction only the states of the second set l r



are valuable, while the elements of the first set are just of required to generate the valuable pilot 

states, i.e., the elements of the second set. The first set contains the r-length string  

q=Ä 1
r
i i

,                  (32) 

while the second l-length string contains only the “2 power” states  

q-
=Ä 1

1 2l i
i .                                             (33) 

As we will show in Section 5, only the “2 power” states valuable in the error correcting process. 

We also will give the exact values of r and l. The proposed error-correction method only requires 

multiple instances of the pilot state (see Fig. 7), which can be easily achieved by sending r 

quantum states (For the exact number of r see Table 1.) From the r pieces of pilot states Bob 

generates an l-length string for the error-correction, which string contains l valuable pilot 

quantum states. For the exact connection between the number r of transmitted pilot states and 

the number l of valuable pilot states see Table 1. Using the pilot state q , the polarization 

rotation can be expressed as depicted in Eq. (13).  

 

Input and Output System 

In the communication phase, Alice first feeds to the quantum channel the r pilot (mixed but non 

maximally-mixed) states r , Pilot
IN

r r r r= Ä Ä Ä1, 2, ,
Pilot Pilot Pilot Pilot
IN IN IN r IN ,                              (34) 

then the n input data qubits (pure states), i.e., 

y y y= Ä Ä,1 ,
Data

A AIN A n .                         (35) 

The output system is characterized by the r purified channel output pilot states (pure states)  

j q q q == Ä Ä Ä = Ä1 2 1
Pilot r

r iOUT
qi                           (36) 

and the n channel purified output data states (pure states)  

y = Ä Ä Ä1 2
Data

A OUT
d d dn ,                                       (37) 

where  



q y= ,i Ad U i .                              (38) 

From the r channel output (unknown) pilot states, Bob generates an l-length pilot string, which 

contains those valuable pilot states which are required for the error-correction. The elements of 

this string are the valuable “2 power” channel output pilot states (using the pure purification 

state qi  of mixed channel output state ( )s r= , . , =Pilot T Pilot
OUT i depol i IN E i iTr q q  ) 

 
{ }

q q q q

q q q q

-
=

-

= Ä = Ä Ä Ä

=





1
1 1 2

1

2

, 2 , 4 , , 2 .

Pilot l i
i l

l

q
                 (39) 

The quantum channel is represented by , and defined by Eq. qU (5). The error-correction of 

output data qubits id  will be carried out by means of the received purified pilot qubits q . 

The determination of the ratio between the data qubit states and pilot states depends on the 

physical properties (time parameter T) of the quantum channel [16]. The number r of pilot 

qubits can be chosen to be several orders of magnitude lower than the number n of data qubits 

(see the theorems and proofs of Section 5).  

The mixed pilot qubits r  along with the pure data qubits Pilot
IN y

Data
A IN

 are transmitted from 

Alice to Bob, as shown in Fig. 7. The purified output systems are denoted by j
Pilot
OUT

 and 

y
Data

A OUT
.  In the transmission phase, Alice sends the mixed pilot qubits and the data qubits. 

This time-dependency in the encoding and decoding process makes it possible to Bob to 

distinguish between the two sets of channel outputs s  and s , i.e., the purified states Pilot
OUT

Data
OUT

q  and y
Data

A OUT
 can be identified unambiguously. Alice’s initial state is y ,A i , the error 

correction transformation is the inverse of the channel’s transformation on id , i.e., considering 

a unitary transformation, it is the adjugate operator U .  q
†



�Data

Purified
output pilot
states (r 
qubits)

Purified output 
data qubits
(n qubits)

: Alice’s data qubits 
(n qubits)

: Alice’s pilot qubits (r<<n qubits)

Alice’s message (n+r qubits)

Data

A IN
 Pilot

IN

:
Pilot

OUT


:
Data

A OUT


Pilot

Pilot states
(l qubits, l<<r)

 
Figure 7. Alice sends the data qubits and a very small number of pilot states. The pilot qubits will store the 

unknown transformation of the quantum channel. The data qubits will be corrected with the help of pilot qubits. 

 

Remark 1. The data qubits can carry both classical and quantum information. In case of 

classical information the data qubits are referred as known data states, for quantum information 

as unknown states. For classical information, the data block can be constructed by a simple 

classical repetition code. In case of the transmission of quantum information, the data block is 

filled with random qubits. 

 

V. Theorems and Proofs 

In this section we present the theorems and the proofs and prove the correctness of the proposed 

pilot quantum encoding scheme (Note: The results will be demonstrated for qubit inputs (d=2 

dimensional systems) and qubit channels.) 

 

A. Determination of the Presence of Noise 

Theorem 1. The presence of noise can be determined from the state of the purified pilot state 

q .  

 

Proof. Bob constructs a simple quantum circuit, which can solve this problem, but only in a 

probabilistic way. In Fig. 8, Bob’s quantum circuit is shown, constructed to distinguish between 

the purified channel output pilot state q  and the pure reference pilot state j
REF.
Pilot  (known a-



priori by Bob). The verifier circuit contains only Hadamard-gates and a controlled-SWAP-gate. 

(The SWAP gate can change the two inputs on its output.). 

SWAP

M
0

H H


REF.

Pilot

 
Figure 8. Bob’s verifier circuit to determine the presence of noise in the quantum channel. The purified pilot state 

j  will be compared with the reference pilot state j
REF.
Pilot , which state is a-priori known by Bob. 

  

On the output of the circuit, Bob will measure a 0 or 1. From this measurement result he will be 

able to determine whether the channel is ideal or noisy. Bob’s zero output can be generated by 

the following steps of the quantum circuit:     

( )
( )

( ) ( )

q j

q j q j

q j q j j q j q

q j j q q j j q

Ä Ä

Ä Ä + Ä Ä

= Ä Ä + Ä Ä + Ä Ä - Ä Ä

Ä Ä + Ä + Ä Ä - Ä





REF.

REF. REF.

REF. REF. REF. REF.

, 

REF. REF. REF. REF.

0

1 0 1
2

1 0 1 0 1
2

1 10 1
2 2

Pilot

H
Pilot Pilot

Pilot Pilot Pilot Pilot

SWAP H
Pilot Pilot Pilot Pilot .

  

 (40)   

From this result, the output probability of the 0 outcome can be expressed as follows:  

 

( )( )

( )

q j j q q j j q

j q q j q j j q

j q

é ù = + +ë û

= + +

= +

REF. REF. REF. REF.

REF. REF. REF. REF.

2
REF.

1Pr 0 , , , ,
4
1 2 , , , ,
4
1 1 .
2 2

Pilot Pilot Pilot Pilot

Pilot Pilot Pilot Pilot

Pilot

               (41)              



Bob would like to measure 0, if the two states are equal, i.e., their inner product is 

q j »REF. 1Pilot , and he hopes measuring 1, if the two states are different (nearly orthogonal to 

each other), i.e., q j »REF. 0Pilot . The probability of 0 outcome is  

 
q j q j

q j q j

»

é ù é ù= +  » = + »ê ú ê úë û ë û

1

REF. REF.
REF. REF.

1 1Pr 0 Pr 0 1 1,
2 2 2 2

Pilot Pilot
Pilot Pilot    (42) 

while measuring 1 has probability  

 
q j

q j

»

é ù» = - »ê úë û

0

REF.
REF.

1 1Pr 1 0
2 2

Pilot
Pilot

2
.                            (43)                      

As can be seen, when q j »REF. 1Pilot , Bob can almost always generate the correct answer, but in 

case of q j »REF. 0Pilot , he may incorrectly conclude that the two systems equal when this is not, 

in fact, the case.  

 

Proposition 1. Bob can determine the presence of the noise from states q  and j
REF.
Pilot  with 

arbitrary low error.  

 

If Alice sends to Bob some copies from q  and the reference pilot state j
REF.
Pilot , and Bob can 

repeat the test multiple times, then Bob can increase the probability of success. However, this 

step decreases the efficiency of the quantum circuit, but the error probability of the network also 

can be decreased.  

The outcome probabilities can be used to derive the error probabilities for the case of 

q j= REF.
Pilot  and q j¹ REF.

Pilot . In the first case, the quantum circuit of Bob gives a correct 

output with error probability  



 
( ) ( )q j d= dé ù- -ê ú= - + = - =ê úê úë û

REF.
1 11 11

2 2 2 2
Pilot

errorp 0 ,                   (44)                    

where d q j= - REF.1 Pilot , which is trivially zero if q  and j
REF.
Pilot  are equal. On the other 

hand, in the second case, the error probability will be higher, thus the worst-case error 

probability for the q j¹ REF.
Pilot  input is  

 
( ) ( )q j d¹ dé ù-ê ú= - - = +ê ú

-

ê úë û

REF.
11 11

2 2 2 2
Pilot

errorp
1

.                         (45)              

But, Bob can decrease this error probability to an arbitrary  error. To reach this arbitrary 

 error in the case of 

e > 0

e > 0 q j¹ REF.
Pilot , Bob has to repeat k-times the test with the 

constructed quantum circuit, where  

 .                                         (46)                      (( eÎ  2log 1 /k ))

After k-iterations, the error probability reduces to  

 
( ) ( )q j d¹ æ é ù ö æ ö- ÷ç çê ú ÷ç ç= - - = +÷ç çê ú ÷÷ ÷ç çè ø è

d- ÷÷÷÷øê úë û

REF.
1 11 11

2 2 2 2
Pilot

k k

errorp ,

0

              (47)                      

which for ( ) , hence d- 1 q j d£ -REF. 1Pilot , which results in a probability of making an 

error in the case of logical 0 of 

 =
1 .
2error k

p                                            (48)          

It proves that Bob can determine the question whether q  and j
REF.
Pilot  are equal or not, with 

vanishing error probability.  

 

These results conclude the proof of Theorem 1.  

 

■ 

 



B. The Error Capturing Process 

The main result on the fundament of the proposed error correction scheme is summarized in 

Theorem 2.  

 

Theorem 2. The  operator of the unknown polarization rotation of the quantum channel can 

be stored in the pilot quantum state 

qU

q , where q  is the purification state of the mixed channel 

output pilot state ( )s r=  . = q qT Pilot
depol IN ETrPilot

OUT , with the input condition r ¹
1
2

Pilot
IN I .   

 

Proof. The transformation  of the channel will be stored in the pilot quantum state  qU

q q
q = +cos 0 sin 1

2 2
i ,               (49) 

thus , the polarization rotation transformation of the given angle  can be rewritten as qU q

qq

q

é ù
ê ú
ê ú-ë û= =
1 0

2 0 12
ii G

U e e ,                 (50) 

where G is the generator matrix, and (50) which can be further evaluated as 

q
q q

q q

q q q q

q q q q

q q

q q

é ù
ê ú= + ê ú-ë û

= +

= + + -

æ ö æ ö÷ ÷ç ç= + + -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
ææ ö ö÷ ÷çç + ÷ ÷çç ÷ ÷÷çç ÷è øç ÷ç= ÷ç ÷æ öç ÷ç ç - ÷ç ç ÷ç ÷çè è øø

1 0
cos sin

2 2 0 1

cos sin
2 2

cos 0 0 cos 1 1 sin 0 0 sin 1 1
2 2 2 2

cos sin 0 0 cos sin 1 1
2 2 2 2

cos sin 0
2 2

0 cos sin
2 2

U I i

I i Z

i i

i i

i

i

q é ù
ê ú
ê ú-ë û

÷÷÷÷÷

=
1 0

2 0 1 ,
i

e

        (51) 

i.e., the generator matrix of  is  qU



é ù
ê ú= ê ú-ë û

1 0
0 1

G .       (52) 

These results mean that the transformation G=Z is mapped onto the state 1 , while - provided 

the channel has no error and hence realizes an identity transformation I - is mapped onto 0 . 

From these result follows the polarization rotation angle q  can be stored in the pilot state q , 

and the transformation  can be restored from the pilot state qU q , since the unknown 

transformation is mapped onto the state 1 . Note: The generator matrix G is known by both 

Alice and Bob. 

 

These results conclude the proof of Theorem 2.  

 

■ 

The main result on the single data qubit error-correction is summarized in Theorem 3. 

 

C. The Error Correction Process 

The correction of an arbitrary data state id  can be achieved by the q  pilot state and 

elementary quantum gates. The result for the single qubit case is stated as follows. 

 

Theorem 3. The unknown pilot state q  can be used to correct the data state id , of 

y -= Ä Ä Ä0 1
Data

A 1OUT
d d dn where y

Data
A OUT

 is the pure output data system, given by  

( )s y y y=  . =Data DataData T
OUT depol A A E A AIN OUT

Tr y . The error-correction requires only a 

Hadamard gate and a CNOT gate with 0  control at the receiver.  

 



Proof. Bob does not need to know anything about the channel’s unitary transformation , nor 

about the data qubit 

qU

id . Bob cannot exactly determine the received state since he does not 

know the angle of the error q . In this phase, Bob cannot be sure whether or not the i-th 

quantum state 

i

id  is identical to the originally sent state, yi . We construct a quantum 

circuit, which uses the pilot state and the data states to complete the error correction. As will be 

explained, we need the inverse transformation stored by the pilot state (and hence , the 

adjugate of the channel transformation ).  

q
†U

qU

The error-correction method consists of a control qubit 0 , which corresponds to the modified 

qubit d , and a target qubit, which is equal to the error-correction pilot state q . To correct 

state d  to , Bob uses a simple Hadamard and CNOT transformation with yA 0  control, thus 

the state d  is transformed into 

( )

( ) ( )( )

( )( )

q q

q q q q

q q

q

y y

y y

Ä 

Ä + Ä

= Ä +

= Ä + Ä

†

†

1 0 1
2
1 0 1
2

1 0 1 ,
2

A A

A A

d H

U d U d

U U U U

U U

Ä =
                  (53) 

and therefore a projective measurement in the { }0 , 1  basis of the correction-state q  will 

make the modified qubit d  either collapse into the desired, error-corrected state q
†U d  or into 

the incorrect state qU d  [12,13]. That projective measurement will make the damaged state 

either collapse into the wrong state (in the case of measurement outcome 1 ) 

q q q y= AU d U U             (54) 

or into the right state (in the case of measurement outcome 0 ) 

q q q y y= =† †
AU d U U A ,                (55) 



with each outcome having a probability of 1/2. Therefore, Bob applies the gate of Fig. 9 to 

prepare the right state q
†U d  or the wrong state qU d  with an equal probability of 1/2.  

 

Figure 9. The error correction of a damaged qubit with a single-qubit pilot state. The pilot state is one qubit. The 

gate is controlled by zero.  

 

The CNOT transformation is controlled by the 0 , instead of the 1  control qubit. The 

measurement will be made on the pilot state, which transforms the data qubit into the desired 

state with a given probability. The error-correction quantum circuit is probabilistic, however 

with the help of pilot states the success probability can be increased to be arbitrarily high 

[12,13].  

 

Proposition 2. The pilot error-correction defines a probabilistic process but the success 

probability can be increased to arbitrarily high. 

 

The working mechanism of Bob’s error correction gate uses the unknown pilot state 

q
q = +cos 0 sin 1

2 2
i q , which stores the transformation of the channel - and the unknown 

data state  

= +0 1d a b               (56) 

which is a damaged  state (i.e., its polarization is rotated). The error correction only requires a 

CNOT gate (and a Hadamard gate) with 0  control on Bob’s side. On the other hand, it is 



currently a probabilistic mechanism, although as we will show the success probability can be 

increased arbitrarily high. If Bob has an l-length qubit string  

q q-
== Ä 1

1 2Pilot l i
i                                           (57) 

to decode the damaged state d , Bob’s failure probability will be only  

(e = 1 / 2 l) .                                    (58) 

The probability of wrong decoding decreases exponentially with the size of q , the length of the 

error-correction string is denoted by l . Bob takes the damaged qubit d  as the control-bit, and 

takes error correction qubit states q-
=Ä 1

1 2l i
i  as the target, therefore Bob evolves the 

transformation of 

q q-
=Ä = Ä 1

1 2Pilot l i
id d                    (59) 

into 

( )
q q

-æ ö÷ç - Ä + Ä ÷ç ÷çè ø
2 1 †1 2 1

2

l
l

l
U d right U d wrong ,               (60) 

where = 0.right wrong  The gate for improved decoding is shown in Fig. 10. 

 

Figure 10. The correction of a damaged data state with a multi-qubit pilot state. The error correction angle is stored 
in an l-length quantum string. 
 



As follows, if Bob knows the pilot states { }q q q q q- -
== Ä = 1 1

1 2 , 2 , 4 , , 2Pilot l i l
i q

)

)

)

, 

then he can correct the damaged qubit with a success probability of 

(= -1 1 / 2 lp .                                     (61) 

In this case the right transformation  succeeds with exponentially increasing probability 

 as the number l of the pilot states increases linearly, and exhibits an 

exponentially decreasing error probability  [12,13,16]. Since Bob has a one-qubit 

length state for correcting the damaged state, Bob fails to perform 

q
†U

(= -1 1 / 2 lp

(e = 1 / 2 l

( )q q y y=†
A AU U                   (62) 

with a probability  The single data qubit error-correction can be achieved as follows: =1 1 / 2.p
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hence Bob can correct any error of the unknown quantum state without the explicit knowledge 

of the quantum channel. On the other hand, it is currently a probabilistic mechanism, although 

as we will show the success probability can be increased arbitrarily high as will be provided in 

Theorem 5. The error correction can be extended to an arbitrarily high number of input 

quantum data states, instead of just a single qubit as it is summarized in Theorem 6. 

 

These results conclude the proof of Theorem 3.  

■ 

 

The result on the generation process of new pilot states for the polarization compensation is 

summarized in Theorem 4. For the description of the multi-qubit error correction process, see 

Theorem 6. 

 

D. The Pilot String Generation Process 

The most critical part of the proposed pilot quantum error correction protocol is the pilot string 

generation. Here we prove that the pilot string generation makes it possible to achieve the error 

correction with arbitrary high probability; however the channel output states are unknown 

states. As Theorem 4 shows the unknown valuable pilot states can be generated from the 

unknown channel output pilot states, using elementary quantum gates. 

 

Theorem 4. The l-length string q -
== Ä 1

1 2Pilot l i
i q  of the unknown valuable pilot states 

{ }q q q q- 1, 2 , 4 , , 2l  can be generated using the r-length string j q== Ä 1
Pilot r

iOUT i
 of the 

unknown channel output pilot states. Only the q -
== Ä 1

1 2Pilot l i
i q  valuable “2 power” pilot 

states can be used in the error correcting. 

 



Proof. In the proof of Theorem 3 we have demonstrated that Bob can correct any arbitrary 

length set of data quantum states without knowledge of the transformation of the quantum 

channel. The generation of these states is performed by the same quantum circuit as used for 

error-correction, however in this case Bob will use the CNOT with control 1  and will use the 

pilot states as both the control and the target, as depicted in Fig. 11.  

 
Figure 11. The generation of pilot states for high success probability error correction.  

 

The outcome of the circuit shown in Fig. 11 is 
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hence, Bob obtains the next required pilot state q2 . This process can be continued, and the 

new pilot states can be used as control qubits to increase the success probability of the next 

rotation. The new pilot states can be used as control qubits to increase the success probability 

of the next rotation.  

In Fig. 12 we illustrate the generation process of the 3-length pilot qubit string 

{ }q q q= , 2 , 4Pilot
q . In the generation process all states and the whole set 

j == Ä 1
Pilot r

iOUT i
q  from which the state will be generated are completely unknown.  



 
Figure 12. The process of generation of decoding states. The different angles are constructed from the unknown pilot 

states, no other information is required for Bob. After a new pilot state has been successfully generated it can be used 

as a target state to increase the success probability of the next rotation transformation. 

 

For the error-correction, only the valuable q -
== Ä 1

1 2Pilot l i
i q , i.e., the “2 power” pilot states 

can be used in the error correction, the generation of the other (intermediate) pilot states 

between these pilot states are unavoidable for the generation of these angles. (For example, q3  

will not be part of the final, l-length qubit string.) As follows, from the unknown “2 power” pilot 

states can be generated by the proposed quantum circuit, using only standard Hadamard and 

CNOT gates, and the r-length string q=Ä 1
r
i i

 with unknown pilot channel output states. The 

success probability increases in every step, the final success probability of generating q-12l  is 

  ( ) -
= -

21 1 / 2 lp .

Fig. 13 displays the generation process of q-12l  from ( )q- -12 1l , which is also an unknown 

state, as well as the states of pilot string from which the state will be generated. 



 
Figure 13. Generation of the final state of the pilot string. After this state is ready, Bob can correct an arbitrary 

number of data qubits with a probability ( )= -1 1 / 2 lp .  

 

Bob rotates in every step q  by an angle q , hence to get the final state q-12l  from q , he 

needs to apply  rotations. This process does not decrease the efficiency of our scheme, 

since the value of l can be chosen to be several orders of magnitude lower than the number of 

data qubits n. Moreover, this error-correction scheme does not require redundant coding on the 

level of a single qubit, it can be carried out without the transmission of redundant qubits 

through the quantum channel.  

- -12l 1

 

These results conclude the proof of Theorem 4. 

■ 

The result on the required number of pilot states for the generation of the valuable pilot string 

is summarized in Theorem 5. 

 

E. Required Number of Channel Output Pilot States 

In the previous section we proved that it is possible to generate the set of valuable (and 

unknown) pilot states from the set of unknown pilot states. Here we give an exact measure to 



the number of channel output pilot states and the achievable success probability of the error 

correction. 

 

Theorem 5. The linearly increasing number of pilot states ensures the exponentially 

increasing success probability of the pilot error-correction. 

 

Proof. According to working mechanism of the circuit shown in Fig. 13, and the defined pilot 

output states in see (36) and (39), to generate the l-length pilot qubit string 

q q q- -
=Ä = Ä Ä1 1

1 2l i l
i 2 , r pilot states q  needed: 

( ) ( )- -

⋅ ⋅ ⋅

= - + - +

+ + + + + -

2 3

2 1 0

2 1 2 2

        2 3 2 2 2 1 1 1,

l lr l l

l
                            

The required number of q  for some type of pilot states and the success probability of the 

error-correction are shown in Table 1. 

 

l 
Required number of 

r 

Success probability: 

( )= -1 1 / 2 lp  

l=2 r=3 p=0.75 

l=3 r=8 p=0.875 

l=4 r=21 p=0.9375 

l=5 r=54 p=0.96875 

l=6 r=135 p=0.984375 

 

Table 1. Required number of generation of pilot qubits and the reachable success probability in the error correction 

process. 

 

The decoding success probability in function of the length of the pilot qubit string is illustrated 

in Fig. 14. 



 
Figure 14. The decoding success probability increases exponentially as the number of pilot qubits increases linearly. 

The maximization of success probability requires only a minimal number of pilot qubits states.   

   

The pilot error-correction process requires only a minimal number of pilot qubit states which 

assures the efficiency and the minimal redundancy of the technique.  

 

But this process does not decrease the efficiency of the scheme, since the value of l can be 

chosen to be several orders of magnitude lower than the number of data qubits n. After 

receiving 54 pilot qubits q  from Alice, Bob can construct a 5-length pilot qubit string to 

correct arbitrary number of data qubits with success probability 0.96875. To summarize, the 

linearly increasing numbers of r and l ensures the exponentially increasing  

success probability of the pilot quantum error-correction.  

( )= -1 1 / 2 lp

 

These results conclude the proof of Theorem 5. 

■ 

The result on the multi qubit error-correcting is summarized in Theorem 6.  

 

F. The Multi Error-Correction Process 

In Theorem 6 we extend the results of Theorem 3 to the correction of an arbitrary length data 

string y == Ä 1
Data n

A iOUT
di , where .  ¥n



Theorem 6. The error correction quantum circuit can achieve the correction of n data states 

y == Ä 1
Data n

A iOUT
di l simultaneously, where  is an arbitrarily high number, where 

.  

n

 ¥n

 

Proof. The number n depends on the length of the occurring of the same error on the quantum 

channel, our error-correction scheme works in this “pilot region”. We show how Bob could 

achieve this for an arbitrarily long input data system with n unknown input data quantum 

states.  

If Bob receives an n-qubit length damaged string y == Ä = Ä Ä1 1
Data n

A i iOUT
d d dn , see 

(37), then he can correct all the data qubits with the l-qubit length pilot string q-
=Ä 1

1 2l i
i  

(which string was generated from the r-length string j == Ä 1
Pilot r

iOUT i
q , see (36) and (39)) 

simultaneously, as depicted in Fig. 15. Using our method, all the rotation transformations are 

completed by an l-length multi-qubit pilot string, therefore every error correction transformation 

 on the corresponding damaged qubit q
†U id  of the data qubit string can be implemented with 

a success probability The outcome of the quantum circuit can be expressed in the 

following form 

( )-1 1 / 2 l .

( ) ( )
q qy y

-æ ö÷ç - Ä + Ä ÷ç ÷çè ø
2 1 †1 2 1

2

l Data Datal
A AOUT OUTl

U right U ,wrong              (64) 

since in this case we have an n-length data string. 



 

Figure 15. The correction of an n-length data string with an l-length multi-qubit pilot string. 
 

The n-length y
Data

A OUT
 data state can be expressed as 

y
-

=

= å
2 1

0

n
Data

A OUT
k

c kk ,           (65) 

where  is the complex coefficient. The output of the quantum circuit of Fig. 15 can be 

evaluated as follows: 
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As can be concluded, the success probability -2 1l  is independent of the length of the 

y
Data

A OUT
 data qubit string. As follows, the success probability only depends on the length l of 

the pilot states.  

 

These results conclude the proof of Theorem 6. 

■ 

 

VI. Application of Pilot Quantum Error-Correction 

In this section we show, that our encoding scheme can be applied in a realistic space-earth 

quantum communication system. The efficiency of the scheme depends on the time parameter T, 

for which the quantum channel can be assumed to be in a stationary state. The velocity at 

which the angle q  changes depends on the speed (and therefore on the orbit) of the satellite. 

The time parameter T also differs for a low and high-orbit satellite systems [16]. In an 

experimental space-earth quantum communication system the values of q  changes fast, but as 

we show, the proposed pilot strategy can also be applied in these cases. (Note: From the 

viewpoint of the efficiency of pilot coding scheme, the geostationary systems would mean the 

optimal solution. In a high-orbit GEO (Geostationary Earth Orbit) system the rotation angle 

changes slow and the quantum channel takes the desired stationary state for longer time T, in 

comparison to lower orbits.) Based on these arguments, in the next subsection the performance 

of the pilot coding scheme will be analyzed for a realistic MEO (Medium Earth Orbit) channel 

implementation, where the rotation angle changes fast. 

 



A. Medium Earth Orbit Implementation  

Assuming a Medium Earth Orbit space-earth quantum communication system with satellites 

above 2,000 kilometers of the Earth and between the geostationary orbit (35,786 kilometers), the 

time parameter during rotation q  can be taken to constant [15] is  

=. 0.5 sec .critT         (67) 

Using a laser source with repetition rate [15] 

 ,           (68) = 100 MHZsourcef

during the given time-slot  the number S  of generated qubits is  é= =ë .0, 0.5 seccritT T ùû

S = ⋅ =75 10 50 million qubits T .                         (69) 

The attenuation parameter D  differs in the up-link and down-link directions and also depends 

on the properties of the physical apparatus (such as the telescope size, motion speed, etc.).  

An averaged value of the attenuation parameter for an MEO space-earth quantum channel 

[15] can be taken to  

-D = ⋅ 55 10 .                          (70) 

From these parameters, the number  of transmitted qubits during time-slot T can be 

expressed as 

= +N n r

 ( )-= S ⋅ D = ⋅ ⋅ ⋅

= + =

7 5
.5 10 qubits 5 10

2500 qubits.
critN T

n r
              (71) 

The D redundancy of the code is evaluated as follows:  

( )
= =

+
rD

r n N
r ,           (72) 

where the value of r is chosen according to the desired decoding success probability.   

 

In Table 2 we summarized the number of maximal transmittable qubits using the given time-

slot  and attenuation parameter , which values can be used for an 

experimental space-earth quantum communication system.  

=. 0.5 seccritT -D = ⋅ 55 10



Each stream characterized with the same the time-slot  and attenuation 

parameter . 

=. 0.5 seccritT

-D = ⋅ 55 10

 

Laser 

repetition 

rate: 

( )sourcef  

Generated 

qubits* 

per T: 

 ( )S

Maximal 

transmittable 

qubits: 

( )= +N n r

Corrected data qubits ( ) 

with probability p=0.96875 (l=5, 

r=54) 

- =N r n
Redundancy 

(D) [%] 

100 MHZ  ⋅ 75 10  ⋅ 225 10  = 2446N  2.16% 

500 MHZ  ⋅ 82.5 10  ⋅ 312.5 10  = 12446N  0.43% 

1 GHZ  ⋅ 85 10  ⋅ 325 10  = 24946N  0.21% 

5 GHZ  ⋅ 92.5 10  ⋅ 412.5 10  = 124946N  0.04% 

10 GHZ  ⋅ 95 10  ⋅ 425 10  = 249946N  0.021% 

 

Table 2. The number of maximal transmittable and correctable data qubits during time slot T with success 

probability p=0.96875 assuming MEO satellites. (*Note: The generated qubits can carry both classical or quantum 

information. If Alice wants to send classical information, the data block is a simple quantum repetition code, while in 

case of quantum information, the data block is filled with random qubits.) 
 

 

As follows from Table 2, the pilot strategy can be applied with very high efficiency in space-

earth quantum communications. On the other hand, the limit on the number  of 

transmittable qubits in time slot T is depends on the applied technology, i.e., on the laser source 

frequency  and mainly on the dead-time of the detectors. In current practical space-earth 

satellite quantum communication systems the limit is on the detector more than on the 

frequency of the laser. These practical issues can be overcome by technological innovations in 

the very near future [15], [18-22]. 

S

sourcef

 



B. Capacity and Rate Calculations 
According to the results of experimental demonstrations [15], [16], for the analyzed space-earth 

quantum communication link the depolarizing effect can be taken to small, i.e., assuming a 

critical time value  for the channel, in an experimental MEO setting the  

time-dependent depolarization parameter of   for 

=. 0.5 seccritT Tp

.
T
depol é ùÎ ë û.0, critT T  can be chosen to 

 [15], [16], [35], [36] (Note: The value of the depolarizing parameter of the channel in 

the space-earth setting depends on the environment, actual weather conditions and the 

atmospheric parameters, i.e., it is a dynamically changing parameter. We assumed a worst-case 

scenario.). From this, the classical capacity of the  time-dependent depolarizing channel 

assuming critical time value , can be evaluated as follows: 

= 0.05Tp

T
depol.

=.critT 0.5 sec

( ) ( )( )r
æ ö÷ç= - = - =÷ç ÷÷çè øå S. .
11 1 0.83134.
2

T T T
depol i depol i

i
C p H p               (73) 

The quantum capacity of  in the MEO space-earth channel setting can be approximated 

by the following bound: 

 .
T
depol

( ) £ - = . 1 4 0.8T T
depolQ p .              (74) 

For  the capacities of  are cut down to zero, i.e.:  > .critT T  .
T
depol

( ) ( )= . . 0T T
depol depoC Q .=l                      (75) 

The results for the time-dependent Medium Earth Orbit depolarizing channel are summarized in 

Fig. 16. The time-dependent depolarizing parameter has the constant value  in the 

time-domain . If  the time-dependent depolarizing parameter takes its 

maximum , i.e., the classical and the quantum capacities of the channel will be equal to 

0.   

= 0.05Tp

é ùÎ ë û.0, critT T

= 1

> .critT T

Tp



 
Figure 16. The classical and the quantum capacities of the time-dependent depolarizing channel as function of the 

time parameter T in an experimental MEO space-earth setting.  

 

For the rate R of the pilot channel coding for an MEO system, the following conclusions can be 

derived. In  the rate R of pilot coding scheme achieves the capacities 

 and 

é= =ë .0, 0.5 seccritT T

)

ùû

( .
T
depolC ( ) .

T
depolQ  of . The pilot code contains n  data qubits  .

T
depol

y y y= Ä Ä,1 ,
Data

A AIN A n , see (35) and r pilot states r r  

as “redundancy”, see 

r r= Ä Ä Ä1, ,
Pilot Pilot ot Pilot
IN IN r IN2,

Pil
IN

(34), i.e., the ( ).T
depolCR  classical communication rate of the code for 

 is é ù= ë û.0, critT T

( ) ( ) æ ö÷ç= - ÷ç ÷÷çè ø
  . . ,T T

C depol depol
rR C
N

               (76) 

where r is the number of pilot states and  is the number of total qubits sent 

through over  in .  

(= +N n r )

)

 .
T
depol é ù= ë û.0, critT T

The  quantum communication rate of the pilot code is ( .
T

Q depolR

( ) ( ) æ ö÷ç= - ÷ç ÷÷çè ø
  . . .T T

Q depol depol
rR Q
N

               (77) 

According to the pilot code construction strategy (see Sections 4.c and 5), for sufficiently large n 

the following relation holds 


= =

.

lim 0
critT T

rD
N

,                    (78) 



which condition assures that the proposed pilot code is capacity-achieving code. The code 

achieves the capacity of the channel as , since after the r redundant qubits are 

transmitted, only the value of n increases, i.e., in the asymptotic setting . Due to the 

time-dependency of the code, in 

 .critT T

 ¥n

é ù= ë û.itT0, crT  the previous result in (78) can be rephrased as 

( )¥
= =

+
lim 0

n

rD
r n

.           (79) 

As follows, the rates R of the code for the analyzed  depends on the level of redundancy 

(see Table 2.) Assuming , 

 .
T
depol

= 100 MHZsourcef S = ⋅ =710

0216

5 50 million qubits T , , 

,  pilot qubits with D , the achievable rates are calculated as 

follows: 

-D = ⋅ 55 10

= 2500 qubitsN = 54r = 0.

( ) = - = . 0.83134 0.0216 0.80974,T
C depolR              (80) 

and 

( ) = - = . 0.8 0.0216 0.7784.T
Q depolR          (81) 

The code rates assuming  and  are shown in Fig. 17. The capacity-

achieving property also can be observed. The rates of the code converges with exponential speed 

to the capacity of the time-dependent depolarizing quantum channel, which makes possible 

capacity-achieving classical and quantum communication over the space-earth links. 

=. 0.05depolp = 54r

 
Figure 17. The code rates of the pilot code. The redundancy of the code decreases exponentially as the number of 

number of transmitted qubits increases linearly. The code makes possible capacity-achieving classical and quantum 

communication over the time-dependent slightly depolarizing channel. The speed of converge is equal for the classical 

and quantum case, since the level of redundancy of the code depends only on the number of transmitted qubits. 



Using the proposed   time-dependent depolarization channel, high classical and quantum 

communication rates can be obtained in the time domain 

.
T
depol

é ù= ë û.0, critT T  for an MEO setting. 

The  time-dependent channel in the MEO setting has very small critical depolarization 

parameter , in the critical time-domain 

 .
T
depol

p .crit é ù= ë û.0, critT T . In the pilot coding scheme we do not 

use the elements of standard error-correction techniques (stabilizer codes). The error-correction 

is achieved by the pilot states, in comparison to the techniques of repetition coding, random 

coding, or other "well-known" standard quantum-error correction methods. As we have 

demonstrated, the rate of the code is determined only by the redundancy of the code. The 

redundancy of the code decreases exponentially with the increasing number of transmitted 

qubits. Using the redundant qubits (the so-called pilot states) a complete n length blockcode can 

be corrected, with the code rates given above in (80) and (81). According to our knowledge, no 

similar code construction scheme was demonstrated in the literature before our results, thus the 

complete proof of the achievable rates of the code over arbitrary quantum channels is still open.  

 

VII. Conclusions 

In this paper we have introduced a new quantum-error correction scheme. The protocol uses 

quantum states to capture and store the unknown error of the quantum channel. The error 

correction requires only a very small number of quantum states sent out with the data qubits - 

called pilot states. The pilot states characterize the unknown rotation that occurs in the 

polarization of the qubits. The proposed pilot quantum error-correction protocol uses a 

probabilistic process for the error correction, however with the generation of the required pilot 

states, the success probability can be increased arbitrarily high. Our solution requires the most 

simple quantum circuits to conduct the correction in practice, providing an easily 

implementable, lightweight on-the-fly error correction framework for polarization compensation.  



In future work we would like to extend our method to correct any arbitrary errors in qudit 

systems. An important question is the determination of the time parameters of the physical 

quantum channels. The possibility of the correction of any non-unitary errors still keeps so many 

exciting results. We believe the proposed scheme can be applied to solve these issues by rather 

simple modifications and improvements in the error-correction circuits.   
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