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Abstract—The traditional problem of similarity search re-
quires to find, within a set of points, those that are closer
to a query point q, according to a distance function d. In this
paper we introduce the novel problem of metric filtering: in this
scenario, each data point xi possesses its own distance function
di and the task is to find those points that are close enough,
according to di, to a query point q. This minor difference
in the problem formulation introduces a series of challenges
from the point of view of efficient evaluation. We provide basic
definitions and alternative pivot-based resolution strategies,
presenting results from a preliminary experimentation that
show how the proposed solutions are indeed effective in
reducing evaluation costs.

I. INTRODUCTION

Metric spaces are a powerful framework to describe a
variety of search problems that commonly arise in several
application domains [1], [2]. For instance, the metric space
model has been successfully adopted in content-based re-
trieval of multimedia objects, in genomic and biomolecular
databases, as well as for string/text databases.

Although the metric space model is general enough to
satisfy the requirements of many contexts, it lacks a rele-
vant feature, which is becoming more and more important
for novel database applications, that is, the possibility of
accommodating user preferences in the specification of the
distance function that determines how much two objects
can be considered to be “similar” to each other. This
leads to consider an “enlarged” metric scenario, allowing
“personalized views” of the space. The simplest case to be
examined is when each query q carries its own personal
metric, according to which objects are to be ranked: this
user-defined queries scenario can be dealt with thanks to
recent solutions applicable to generic metric spaces when-
ever personal metrics all derive from a “default” (natural)
metric [3].

The more general case, where each point of the space is
associated to its personal metric, represents a generalization
of information filtering [4], where a profile is stored for
each user of the system and, each time a new information
becomes available, it is forwarded only to those users
whose profile is sufficiently similar to it (according to the
user distance criterion). Clearly, this extension provides the
maximum of freedom, since no restrictions are put on the
personal metrics. In the following we describe how the
model of metric spaces could be extended to the case where

each object “sees” its own metric world. At the same time,
we provide some hints that could be exploited by search
algorithms to guarantee good performance levels.

II. THE PROBLEM

Given a domain U of objects (U is the “universe”), a
metric space over U is a pair M = (U , d), where d
is a distance function that satisfies the metric postulates
∀x, y, z ∈ U :

d(x, y) ≥ 0 (non-negativity)
d(x, y) = 0 ⇐⇒ x = y (indiscernibility)
d(x, y) = d(y, x) (symmetry)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

Consider now a finite subset X of U , called a dataset, and
a query point q ∈ U : each point xi ∈ X is associated to a
personal metric di and a personal radius ri. In information
filtering terms, the triple (xi, di, ri) represents the profile
of the ith user, whereas q is a new item (product). The
system’s objective is then to deliver q only to those users
whose profiles “match” the new item q, i.e., for which
di(xi, q) ≤ ri.1 We call such set of points the query result,
with a slight abuse of terminology.

This generalizes the Multi-Modal approach presented
in [4], that represents information as spatial points, accord-
ing to the vector-space model [5]: users are modelled as (sets
of) points in the same space and information is forwarded
only to users whose points are close enough (according to
a single distance d) to the query point, thus di ≡ d,∀i. The
focus of [4] is on the efficient updating of user profiles: such
results could be easily extended for updating personalized
metrics, e.g., by exploiting results on relevance feedback [6].

It has to be remarked that the scenario we consider here is
rather different from the case of user-defined queries, where
a single distance dq is considered at query time: results in
[3] indeed show how metric access methods can be modified
so as to efficiently process user-defined queries, the key
idea being to exploit a bound on the ratio between dq and
a default distance d0 to limit the search space. Indeed, if
d0(q, x)/dq(q, x) ≤ s,∀x, then knowing that d0(q, x) > s ·r
is sufficient to deduce that dq(q, x) > r. The case of “metric
filtering” appears to be much more challenging to deal with,

1The case where each user is associated with multiple profiles can be
straightforwardly defined.



since now we have, at each instant, |X| personal metrics
in play (one for each element of the dataset). Indeed, if
no reasonable assumption is made on the di metrics, it is
not possible to exploit the triangle inequality to speedup the
search process. To see why this is the case, consider that
all metric access methods rely on a pivot-based comparison
to avoid computing some distances. This is clearly true
for pivot-based methods (starting from AESA [7]), but
also holds for partition-based methods (such as the M-
tree [8]). For instance, the M-tree relies on information
on the covering radius of a node to decide whether that
node has to be accessed or not. Clearly, this information
is useful as long as the covering radius is an upper-bound
of the distances of objects in that node from the routing
object (center) of the node, so that the triangle inequality
(written in the “difference” form) can provide a lower-bound
on the distances from objects in the node to the query point.
Since similar issues are to be considered for both pivot-based
and partition-based methods, in the following we consider
the simplest case of pivot-based methods, being understood
that, with suitable modifications, our observations apply to
partition-based methods as well.

III. PIVOT-BASED METHODS FOR METRIC FILTERING

With pivot-based methods the basic idea is to start by
choosing (at random or possibly using some “smart” crite-
rion [9]) a set of m pivots P = {p1, p2, . . . , pm}, P ⊆ X ,
and then measure and store all the distances between such
pivots and the elements of the dataset X .2 When the metric d
is in use, the inequality |d(q, pj)− d(pj , xi)| > r is enough
to conclude that d(q, xi) > r, thus leading to exclude xi

from the result without the need of computing d(q, xi).
Assume now a “metric filtering” scenario, where both

pj and xi use their own metrics. Using the inequality
|dj(q, pj) − dj(pj , xi)| > ri one can only deduce that
dj(q, xi) > ri, but, without further assumptions, there is
no way to conclude that also di(q, xi) > ri holds.

Also observe that the inequality

|di(q, pj)− di(pj , xi)| > ri, (1)

which would be the standard way to infer that di(q, xi) > ri,
cannot be used without giving up the very role of pivots.
Indeed, using di(q, pj) (rather than dj(q, pj)) to measure
the distance between q and pj would require to compute the
distance between q and pj for each xi, thus making pivots
completely useless! Figure 1 makes explicit the reference
scenario to consider.

We are interested in bounding from below3 the value
di(q, xi), under the following constraints:

2In principle, pivots do not need to be elements of the dataset X .
3Bounding from above the value of di(q, xi) can lead to conclude that

q is relevant for xi if the bound is not larger than ri; we never use such
inequality in the following.
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Figure 1. The basic distances

1) the di metric cannot be used to compare pivot pj with
query q (the basic choice is to use dj to this purpose);

2) either di(xi, pj) or dj(xi, pj) (or both) can be pre-
computed and stored.

Because of the first constraint, one must at least assume that
metrics di and dj are somewhat related, so that measuring
dj(q, pj) can provide some information on di(q, pj) and, in
turn, on di(q, xi). To this end we rely on the well-known
lower-bounding relationships between distance functions. In
particular we consider scaled lower bounds, as introduced
in [3].

Definition 1. Let di and dj be the metrics used by point xi

and pivot pj , respectively. We say that di is a scaled lower
bound of dj if and only if it exists a real value si,j > 0 such
that ∀x, y ∈ U it is:

di(x, y) ≤ si,j · dj(x, y), (2)

which can also be concisely written as di ¹ si,j · dj . The
minimum value of si,j for which the inequality holds is
called the (optimal) scaling factor of dj with respect to di.
In the following, only optimal scaling factors are used.

In a similar way, we have that the pivot metric is a scaled
lower bound of di if and only if there exists sj,i > 0 such
that:

dj(x, y) ≤ sj,i · di(x, y), (3)

also written as dj ¹ sj,i · di.

Basic properties of scaling factors are proved in the
following lemma.

Lemma 1. For any two metrics di and dj , if both scaling
factors si,j and sj,i exist, then it is

si,j · sj,i ≥ 1. (4)

with equality being achieved if and only if dj is a rescaling
of di, that is, dj(x, y) = sj,i · di(x, y), ∀x, y ∈ U (in this
case, the two corresponding metric spaces are isometric).

Proof: From the definition of scaling factors it is
di(x, y) ≤ si,j · dj(x, y) ≤ si,j · sj,i · di(x, y), from which,
after dividing by di(x, y), it is derived si,j · sj,i ≥ 1.



When dj(x, y) = sj,i · di(x, y), it is plain to see that
si,j = 1/sj,i. Going the other side, if equality holds in (4)
it is dj ¹ sj,i · di = di/si,j ¹ dj , from which the result
follows.

Example 1. Let di and dj be two weighted Euclidean
metrics on R2 × R2, respectively defined as:

di(x, y) =
√

(x[1]− y[1])2 + 2 · (x[2]− y[2])2

dj(x, y) =
√

3 · (x[1]− y[1])2 + (x[2]− y[2])2

In the case of weighted Euclidean distances, it is not difficult
to show that the scaling factor si,j is given by the square
root of the maximum ratio of corresponding weights w[k] of
the two metrics, that is, si,j = maxk

√
wi[k]/wj [k] (analo-

gously for the derivation of sj,i). For our sample distances
it is therefore derived that si,j =

√
2 and sj,i =

√
3.

Based on the assumption that at least one of the scaling
factors si,j and sj,i exists, in the following we list the basic
alternatives to generalize pivot-based methods so as to deal
with the metric filtering problem.

A. Computing Bounds in Pivot Spaces
The first alternative we consider assumes that for each

point xi and pivot pj the distance dj(pj , xi) is precomputed
and stored. Since the distance between pj and q is neces-
sarily measured using dj , computation is indeed done only
in “pivot spaces”. In this case there are two basic strategies
that can be used to prune point xi.
Triangle inequality in pivot space. Assume that dj ¹ sj,i ·
di. Then:

|dj(q, pj)− dj(pj , xi)|
sj,i

> ri (5)

is a sufficient condition to guarantee that xi can be
pruned. Indeed, from (3) and (5) it is derived di(q, xi) ≥
dj(q, xi)/sj,i ≥ |dj(q, pj)− dj(pj , xi)|/sj,i > ri.
Using both scaling factors. When both scaling factors are
defined, the following inequality could also be used to prune
xi:

dj(q, pj)
sj,i

− si,j · dj(pj , xi) > ri (6)

Correctness is easily proved, since it is di(q, xi) ≥
di(q, pj) − di(pj , xi) ≥ dj(q, pj)/sj,i − di(pj , xi) ≥
dj(q, pj)/sj,i−si,j ·dj(pj , xi) > ri. However, let us consider
the “positive form” of (5), that is

dj(q, pj)
sj,i

− dj(pj , xi)
sj,i

> ri. (7)

We can exploit Lemma 1 to immediately conclude that si,j ·
dj(pj , xi) ≥ dj(pj , xi)/sj,i, since si,j ≥ 1/sj,i. This means
that (7) will always yield a better (higher) lower bound to
di(q, xi) than (6). In logical terms this is also to say that (6)
implies (7), written (6) =⇒ (7).4

4Note that a lower-bounding inequality Iuseful is useful as long as there
is no other inequality Iother such that Iuseful =⇒ Iother.

Similar arguments can be applied if one exchanges the
roles of dj(q, pj) and dj(pj , xi), thus using the inequality

dj(pj , xi)
sj,i

− si,j · dj(q, pj) > ri, (8)

and compares it against the “negative form” of (5), that is

dj(pj , xi)
sj,i

− dj(q, pj)
sj,i

> ri. (9)

Again, due to Lemma 1 it is si,j ·dj(q, pj) ≥ dj(q, pj)/sj,i,
thus (8) =⇒ (9).

In conclusion, we see that the strategy that uses both
scaling factors is never convenient.

B. Computing Bounds in Point Spaces

In the above-described approaches precomputed distances
between points and pivots are measured using the pivots’
metrics. The other alternative to consider, aiming to possibly
derive more accurate bounds, is to make use of di(pj , xi) in
place of dj(pj , xi) (remind that the distance between q and
pj is necessarily measured using dj).
Large pivot-point distance. Consider (1): since di(q, pj)
≤ si,j · dj(q, pj), we can use the inequality

di(pj , xi)− si,j · dj(q, pj) > ri (10)

to prune point xi.
Small pivot-point distance. When point xi is “close” to
pivot pj the triangle inequality in point space can also be
used to prove that

dj(q, pj)
sj,i

− di(pj , xi) > ri (11)

is a valid pruning condition. This follows from the inequal-
ities di(q, xi) ≥ di(q, pj) − di(pj , xi) ≥ dj(q, pj)/sj,i −
di(pj , xi).

However this approach is not effective at all, when com-
pared to the (higher) lower bound provided by (7), since
(11) =⇒ (7). This easily follows from the observation that
di(pj , xi) ≥ dj(pj , xi)/sj,i.

Before proceeding it is useful to summarize the results
obtained so far. These are as follows:

1) The scaling factor si,j , as defined in (2), is not useful
at all to bound the search space if we are working only
in “pivot space”, whereas it can be exploited through
(10) if we also work in “point space”.

2) Among the several possible conditions that can be
tested to prune xi, only three of them are non-
redundant, namely:

dj(q, pj)
sj,i

− dj(pj , xi)
sj,i

> ri, (7)

dj(pj , xi)
sj,i

− dj(q, pj)
sj,i

> ri, (9)

di(pj , xi)− si,j · dj(q, pj) > ri. (10)



The strategy that uses all above inequalities (which we call
∆-both) has to pay for an increased storage overhead and
preprocessing time, since both dj(pj , xi) and di(pj , xi) have
to be used. We will experimentally investigate under which
conditions, depending on the distance(s) between pj and xi,
it is convenient to trade off space for bounds accuracy by
storing only one of these two distances. In this case, we
can either use tests (7) and (9) (∆-pivot strategy) or the
combination of (10) and the otherwise redundant (11) (∆-
point strategy).

IV. BEYOND CORRECTNESS: THE SYMMETRIC SCALING
FACTOR

In order to characterize not only the correctness but
also the performance of metric filtering, it is important
to properly understand how the use of a specific lower-
bounding inequality (among those introduced in the previous
section) can impact search costs. To this end, in this section
we provide basic results aiming to shed more light on the
role that scaling factors play from a performance point of
view. We start with the following preliminary observations:

1) Just considering the scaling factor sj,i (or si,j) says
nothing about “how well” dj approximates di. This is
also to say that the magnitude of sj,i (si,j) does not
matter at all.

2) As demonstrated by Lemma 4, when si,j · sj,i = 1
we have an “ideal” situation in that dj , albeit different
from di, equals di up to a scaling factor.

3) The bound(s) provided by approximate distances can
be even higher (thus better) than the bound(s) obtain-
able from (1).

The last point is quite surprising, since it tells us that
there are cases where scaled bounds are more effective than
“natural” bounds, as the following example demonstrates.

Example 2. Let di and dj be the two weighted Euclidean
metrics defined in Example 1. Let xi = (7, 5), pj = (7, 8),
and q = (3, 5), from which it is derived di(q, xi) =√

(3− 7)2 + 2 · (5− 5)2 = 4. The “natural” bound yielded
by (1) would be

di(q, xi) ≥ |di(q, pj)− di(pj , xi)| = |
√

34−
√

18| ≈ 1.588.

On the other hand, the bound computed using (7) is

di(q, xi) ≥ dj(q, pj)− dj(pj , xi)

sj,i
=

√
57−√9√

3
≈ 2.626.

Assuming a personal radius ri = 2, it is evident that using
the pivot’s metric could lead to discard xi, whereas this
would not be the case if pruning were based on the classical
triangle inequality.

Based on above observations, we introduce the symmetric
scaling factor (SSF for short) of di and dj , defined as
S(i, j) = si,j · sj,i, as a synthetic yet effective way to
characterize the relationship between di and dj metrics. SSF

can be given a simple interpretation, which is formalized by
the next lemma and illustrated in the following example.

Lemma 2. It is

sup
U
{di(x, y)|dj(x, y) = sj,i} ≤ S(i, j),

sup
U
{dj(x, y)|di(x, y) = si,j} ≤ S(i, j).

Proof: Immediate from the definition of scaling factors
and of SSF.

Example 3. Let di and dj be the two weighted Euclidean
metrics defined in Example 1. Since si,j =

√
2 and sj,i =√

3, it is S(i, j) =
√

6. Consider now the set of points
Yi = {y ∈ U : di(x, y) ≤ 1}. Since sj,i =

√
3, we have

that for all y ∈ Yi it is also guaranteed dj(x, y) ≤ √
3,

because dj(x, y)/
√

3 ≤ 1 holds. In geometrical terms,
the Yi ellipsoid centered in x with equation di(x, y) ≤ 1
is contained in the co-centric ellipsoid Yj with equation
dj(x, y) ≤ √

3 (see Figure 2).
Consider now a point on the surface of Yj and measure

its distance from x using di. According to Lemma 2, this
distance cannot exceed the value of the SSF, S(i, j) =

√
6.5

Intuitively, the higher the value of S(i, j), the worse Yj (dj)
approximates Yi (di).

Yi:
di(x,y)≤1

Yj: dj(x,y)≤√3

di(x,y)≤√6

x

Figure 2. The effect of scaling factors and of SSF.

We can generalize the observations in the above example
as follows. When dj is scaled so as to become a lower bound
of di (dj/sj,i ¹ di), if S(i, j) > 1 then such scaling leads
to define the (normalized) non-empty region:

R(x) = {y|di(x, y)− dj(x, y)/sj,i > 0, dj(x, y) = sj,i}
= {y|di(x, y) > 1, dj(x, y) = sj,i}

Within this region we have all points for which the bound
provided by dj(x, y)/sj,i is not accurate, and Lemma 2
simply says that

sup {di(x, y)|y ∈ R(x)} ≤ S(i, j).

5In the example the
√

6 bound is achieved if one takes the points y ≡
(x[1], x[2]±√3).



Therefore, the SSF of di and dj tells us how much, in the
worst case, we “relax” di by approximating it with dj .

It has to be observed that the result does not depend on
the specific reference point x and that it also holds when
the roles of di and dj are reversed (since S(i, j) = S(j, i)).

The basic properties of SSFs are as follows:

S(i, j) ≥ 1,

S(i, j) = 1 ⇐⇒ di is a rescaling of dj ,

S(i, j) = S(j, i),
S(i, k) ≤ S(i, j) · S(j, k),

where the last inequality easily derives from the definition
of scaling factors. For any two metric distances di and dj ,
log S(i, j) is therefore a pseudo-metric among them.

A. Analyzing Lower-Bounding Inequalities

We come now to consider things from a more pragmatical
point of view, that is: what is the effect on performance when
we bound from below the value of di(q, xi) using one of the
inequalities introduced in Section III? In particular we con-
sider, for each lower-bounding expression, its relationship
with the “natural” bound provided by (1).
A. Consider the expression in (7). From the definition of
scaling factor and of SSF it is derived:

di(q, pj)

S(i, j)
− di(pj , xi) ≤ dj(q, pj)

sj,i
− dj(pj , xi)

sj,i

≤ di(q, pj)− di(pj , xi)

S(i, j)
.

(12)

B. For the expression in (9) it is similarly derived:

di(pj , xi)

S(i, j)
− di(q, pj) ≤ dj(pj , xi)

sj,i
− dj(q, pj)

sj,i

≤ di(pj , xi)− di(q, pj)

S(i, j)
.

(13)

C. The expression in (10) admits the following bounds in
point space:

di(pj , xi)− S(i, j) · di(q, pj) ≤
di(pj , xi)− si,j · dj(q, pj) ≤ di(pj , xi)− di(q, pj).

(14)

D. Finally, for the expression in (11) it is:

di(q, pj)

S(i, j)
− di(pj , xi) ≤ dj(q, pj)

sj,i
− di(pj , xi)

≤ di(q, pj)− di(pj , xi).

(15)

Comparing above limit cases with the triangle inequality in
point space, it is clear that:
• Only cases A and B, which only work in pivot space,

can provide better lower bounds than the triangle in-
equality in point space. On the other hand, in the most
favorable situation C and D can only provide a bound
equal to the one obtainable from the triangle inequality
in point space.

• Case C has the advantage, with respect to case B, of
enjoying a most favorable worst case, since the lower

limit of C is S(i, j) times higher than that of B. In
other terms, considering both extremes of B and C, we
can say that B is “more aggressive” than C.

V. EXPERIMENTAL EVALUATION

We implemented the three pruning strategies proposed in
Section III and tested them over some synthetic datasets.
The use of synthetic, rather than real, datasets is motivated
by the fact that in our experiments we need not only a set
of data points, but also a corresponding distance for each
point. We therefore generated three different 3D datasets in
the [0, 1]3 cube, using a weighted Euclidean distance; data
(and query) points and distance weights were produced as
follows:

uni Points and weights are uniformly distributed in the
unit hypercube.

clust Points follow a Gaussian distribution (with σ2 =
0.1) around 5 centers that are uniformly distributed
in the unit hypercube; weights are also uniformly
distributed.

rw (random walk) A single point is randomly chosen
in the unit hypercube; following points are created
by slightly perturbing (0.01 of maximum amount)
the coordinates of the previous point; weights are
created in a similar fashion.

While the first two datasets are commonly used as yardsticks
for measuring performances of spatial/metric structures, the
latter has been considered so as to investigate a situation
where close objects have similar distances, which appears
to be a reasonable assumption (see Figure 3). Finally, for
each dataset, the personal radii, ri, were chosen so that each
point selects around 3% of incoming queries.

x
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Figure 3. In the rw dataset, objects close in the space adopt similar
metrics.

We used a number of pivots in the range [25, 150]: pivots
were chosen so as to maximize the distance among them,
according to the outliers selection technique [9]. We are
mainly interested in evaluating the performance of the pro-
posed strategies in terms of two basic objective measures [1]:
• Internal complexity: This measure accounts for the

effort (in terms of distance computations) needed by the
index structure to compute the set of candidate results,



i.e., those objects that may be part of the result, but need
to be exactly checked using their respective distance
functions. In our case, the internal complexity always
coincides with the number of pivots used.

• External complexity: This is the cost needed for
filtering the set of candidate results, i.e., the number of
distances that have to be computed to check whether
candidate objects belong to the result or are just false
positives.

The alternatives that will be contrasted are listed in Table I
(the ∆ strategy, being based on (1), cannot be used with
pivots and is only included as a reference yardstick for
external complexity).

Strategy name Used inequalities
∆ (1)
∆-pivot (7) and (9)
∆-point (10) and (11)
∆-both (7), (9), and (10)

Table I
PRUNING STRATEGIES USED IN THE EXPERIMENTS.

Graphs in Figure 4 and 5 respectively show the external
and the total (internal+external) complexity of the three
filtering strategies; measures are normalized to the total
number of points (30K for all 3 datasets) so as to show
the speed-up over a simple sequential scan. As expected,
the ∆-both strategy always attains the best performance, in
many cases very close to the ∆ strategy. Comparing the ∆-
pivot and the ∆-point strategies, the latter strategy is rarely
better than the former (as expected, since (11) is never more
effective than (7)). Remarkably, all strategies attain very
good performance on all considered datasets, never requiring
to test more than 10% of the data points.

As already observed in Section IV-A, inequalities in
pivot spaces (cases A and B) can provide bounds that are
better than “natural” ones obtained by way of (1). In our
experiments, this happened in 40% of the cases for the uni
dataset, in 35% for clust, and in 20% for rw.

The optimal number of pivots (m) can be observed in
Figure 5 and ranges between 100 and 150 for the most
efficient ∆-both strategy. Clearly, the dataset cardinality n
has an influence on the value of m, with m increasing for
increasing values of n [9]. This is confirmed by graphs in
Figure 6, where we plot the total complexity of the ∆-both
strategy when both m and n are varied: for low values of
n, the optimal number of pivots is low, while increasing the
number of data objects (up to 100K for all the datasets) leads
to increasing optimal values.

A. Optimizing Performances

In this section we investigate two optimizations aiming
to reduce the time complexity of the pivot-based techniques
proposed for metric filtering. In particular, we consider how

the order according to which pivots are accessed for each
data point can be modified so as to discard non-candidate
objects as early as possible, i.e., visiting the least number of
pivots. Clearly, this has no effect on the number of distances
to be computed to assess whether a new object is relevant
for a data object or not, but might reduce the number of
comparisons for each data object.

The first heuristics we propose is to order pivots according
to their distance to the query point, i.e., for increasing values
of dj(q, pj). This is based on the assumption that a pivot
close to q is likely to have a higher pruning power with
respect to a pivot which is far from q. The cost for this
optimization is rather low, since it does not require any
additional information and its complexity is O(m log m).

Our second strategy exploits the distribution of dis-
tances [10] for each of the m pivots to estimate the prun-
ing probability of each pivot. Pivots are then sorted for
decreasing values of such probability, so that pivots that
are most likely to prune a data point are accessed first.
To show how the pruning probability of a pivot can be
computed, let us consider strategies working in pivot spaces,
i.e., ∆-pivot and ∆-both, and a data point xi. From (7)
and (9), it follows that xi cannot be pruned by pj iff
dj(pj , xi) ∈ [dj(q, pj) − sj,i · ri, dj(q, pj) + sj,i · ri]. If
Fj(t) is the distance distribution for pivot pj , i.e., Fj(t) =
Prob{dj(pj , x) ≤ t}, x ∈ U , and fj(t) is its corresponding
density function, fj(t) = dFj(t)/dt (see Figure 7), then the
probability PPi,j that xi is pruned by pj is given by:

PPi,j = 1− (Fj(dj(q, pj)− sj,iri)− Fj(dj(q, pj) + sj,iri))

= 1−
∫ dj(q,pj)+sj,i·ri

dj(q,pj)−sj,i·ri

fj(t) dt

(16)

fj

dj( pj , q) dj( pj , xi)

2 rj2 rj

Figure 7. How the pruning power of a pivot pj can be estimated using
the density distribution of distances.

Ordering pivots for decreasing values of PPi,j would
require computing (16) and sorting pivots for each point
xi in the dataset. A simple heuristics that allows to keep
manageable costs is to sort pivots only once, by using an
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Figure 4. External complexity for the three datasets: varying number of pivots, different pruning strategies.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 50 100 150

to
ta

l 
d

is
ta

n
ce

s

# of pivots

pivot

point

both

uni

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

0 50 100 150

to
ta

l 
d

is
ta

n
ce

s

# of pivots

pivot

point

both

clust

0%

1%

2%

3%

4%

5%

6%

7%

8%

0 50 100 150

to
ta

l 
d

is
ta

n
ce

s

# of pivots

pivot

point

both

rw

Figure 5. Total complexity for the three datasets: varying number of pivots, different pruning strategies.
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Figure 6. Total complexity for the three datasets: varying data cardinality, different number of pivots, ∆-both pruning strategy.
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Figure 8. Fraction of tested pivots for the three datasets: varying number of pivots, ∆-both pruning strategy, different optimizations.

average effective radius rj for each pivot, computed as

rj =
1
n

n∑

i=1

sj,i · ri (17)

Then, substituting (17) into (16), we obtain the pruning
power of pivot pj , PPj , as

PPj = 1− (Fj(dj(q, pj)− rj)− Fj(dj(q, pj) + rj))

= 1−
∫ dj(q,pj)+rj

dj(q,pj)−rj

fj(t) dt

Figure 8 shows the effect of the two optimizations on
the ∆-both strategy for all the considered datasets (with 3K

data points), computed as the fraction of pivots that have to
be checked for each non-candidate point (candidate points
necessarily test 100% of the pivots). Clearly, having more
pivots leads to a better utilization of them, i.e., increase in
the total number of comparisons is sublinear in the number
of pivots. Moreover, we see that the optimization based on
the distribution of distances (denoted PP in the graphs) is
the one that attains the lowest number of comparisons (up to
a 23.9% saving over the non-optimized ∆-both strategy for
the uni dataset); only for the rw dataset the optimization
based on the query distance (QD in the graphs) obtains
better performance. This, however, was expected since in



the rw dataset close objects have also similar distances,
thus favoring the QD strategy. On the other hand, the
rw dataset is the one where the non-optimized strategy
achieves the better performance, thus the saving obtainable
by optimizations is limited with respect to other scenarios,
reaching only 16% when using the QD optimization with
25 pivots.

VI. CONCLUSIONS

We have introduced the novel problem of metric filtering,
whose main difference from the traditional problem of
searching in metric spaces is the fact that every data point
carries its own personal distance to measure dissimilarity
with queries. To speed up query resolution over the simple
sequential scan of the data points, we presented three differ-
ent strategies to be applied to pivot-based access methods.
Preliminary experimental results show that the proposed
strategies are effective in reducing query processing costs:
a more thorough study of performance is however needed.
We believe that our results will be helpful in several cases
of recommendation systems, where user profiles are used
to suggest new items to users, according to a similarity
criterion that takes into account the items each user has
visited/bought in the past. Along this direction, another issue
that is interesting to analyze is whether further optimizations
could be devised in the case where multiple queries are
submitted in a batch, which is the most common case in
information filtering.
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[2] E. Chávez and G. Navarro, Eds., Proceedings of the First
International Workshop on Similarity Search and Applications
(SISAP 2008). Cancún, Mexico: IEEE Computer Society,
Apr. 2008.

[3] P. Ciaccia and M. Patella, “Searching in metric spaces with
user-defined and approximate distances,” ACM Transactions
on Database Systems, vol. 27, no. 4, pp. 398–437, Dec. 2002.
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