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Abstract—Automatic blood vessel segmentation from retinal
images plays an important role in the diagnosis of many systemic
and eye diseases, including retinopathy of prematurity. Current
state-of-the-art research in blood vessel segmentation from retinal
images is based on convolutional neural networks. The solutions
proposed so far are trained and tested on images from few
available retinal blood vessel segmentation datasets, which might
limit their performance when given an image with retinopathy
of prematurity signs. In this paper we evaluate performance of
three high-performing convolutional neural networks for retinal
blood vessel segmentation in context of blood vessel segmentation
on retinopathy of prematurity retinal images. The main motive
behind the study is to test if existing public datasets suffice to
develop a high performing predictor that could assist an ophthal-
mologist in retinopathy of prematurity diagnosis. To do so, we
create a dataset consisting solely of retinopathy of prematurity
images with retinal blood vessel annotations manually labeled by
two observers, where one is the ophthalmologist experienced in
retinopathy of prematurity treatment. Experimental results show
that all three solutions have difficulties in detecting the retinal
blood vessels of infants due to a lower contrast compared to
images from public datasets as demonstrated by significant drop
in classification sensitivity. All three solutions segment alongside
retinal also choroidal blood vessels which are not used to diagnose
retinopathy of prematurity, but instead represent noise and are
confused with retinal blood vessels. By visual and numerical
observations, we observe that existing solutions for retinal blood
vessel segmentation need improvement toward more detailed
datasets or deeper models in order to assist the ophthalmologist
in retinopathy of prematurity diagnosis.

Index Terms—Retinal blood vessel, segmentation, retinopathy
of prematurity, convolutional neural networks, retinal image

I. INTRODUCTION

Retinopathy of prematurity (ROP) [1] is an eye disease
affecting prematurely born infants. It manifests itself through
anomalies in the retina which is the back part of the eye.
Abnormal chemical changes in the eye result in interruption

of normal blood vessel development causing excessive vessel
growth in affected areas and appearance of vessel loops as can
be seen in Fig. 1. Since the normal vessel growth is suspended,
parts of the retina stay avascularized, and if not treated, detach
over time and finally lead to blindness.

To effectively treat ROP, and prevent the possibility of
disease developing into blindness, it is of great importance to
diagnose it in early stages of development. Prematurely born
infants fulfilling certain criteria are screened for ROP to check
for the retinal blood vessel tortuosity and dilatation, which
are initial ROP symptoms. These changes can be observed
in digital images captured by specialized wide-field fundus
cameras such as RetCam. In the first column of Fig. 3 we show
retinal images captured with a RetCam3 camera. However,
ROP diagnosis from an image can be challenging due to
issues such as: (1) low contrast between blood vessels and
retina, (2) variable illumination in image due to wide-field
view, (3) relatively low image resolution and (4) appearance
of choroidal blood vessels which might be visible on image
but do not play part in ROP diagnosis [2].

To assist ophthalmologists in disease diagnosis from digital
retinal images, many general, fully-automated blood vessel
segmentation solutions have been developed. Since the sub-
set of ROP symptoms manifests itself through blood vessel
changes, it can be expected that these solutions could assist
an ophthalmologist in disease diagnosis. Current state-of-
the-art solutions for retinal blood vessel segmentation are
based on convolutional neural networks (CNNs) [3]–[9]. It is
reported that these solutions achieve outstanding segmentation
results confirmed both visually and numerically. However, it
is known that CNNs performance depends on the data used
for training. All high performing solutions in this field are
trained using publicly available retinal segmentation datasets
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Fig. 1. Eye retinal image showing excessive blood vessel growth and
appearance of closed blood vessel paths.

counting up to 40 annotated retinal images of adults or school
children. We observe that images from publicly available
datasets are visually different and apparently easier to segment
compared to the retinal images of infants showing signs of
ROP. Some differences between images from those datasets
and ROP images concern: (1) a blood vessel network which
is fully developed in images from publicly available datasets
occasionally showing signs of degradation, while ROP images
show just partially developed blood network, (2) blood vessels
that are thicker compared to infant blood vessels, (3) a contrast
between blood vessels and retina which is usually stronger, and
(4) the illumination distribution which is uneven in wide-field
ROP images opposite to narrow-field images from the public
datasets.

Although the data class remains the same, existing solutions
trained on public datasets might degrade in performance when
tested on ROP images. It is our intention to measure the impact
on the network performance when given a ROP image and to
determine if the existing solutions can be used as-is to assist in
ROP diagnosis. Since these solutions perform well when tested
on publicly available datasets, poor results in this study could
indicate that existing publicly available datasets do not suffice
to develop high-performing CNN that can be used for blood
vessel segmentation on ROP images. To test the hypothesis,
we choose three recently developed, high-performing CNNs
proposed by Li et al. [9], Oliveira et al [4], and Zhuang [10].
We feed pretrained models with 9 ROP images provided by
the Institute of Neonatology in Belgrade. The blood vessels on
the images are manually labeled by two observers, including
one ROP expert with more than 20 years of experience in
ROP treatment, to create ground truth labels which are used
to evaluate the selected networks.

The rest of the paper is organized as follows: in Section II
we give an overview of the datasets commonly used to train
CNNs for blood vessel segmentation. Also, we introduce the
reader to the recent progress in the development of CNNs for
blood vessel segmentation from color retinal images. Section
III discusses the details of the methodology used, including
the preparation of a ROP dataset, the experimental protocol,
and used evaluation metrics. Obtained results are presented
and discussed in Section IV. The final section offers the main

conclusions as well as directions for the future work.

II. RELATED WORK

In this section we give a brief overview of publicly available
datasets for blood vessel segmentation from retinal images.
We include DRIVE [11], STARE [12] and CHASE DB1
[13] datasets, which are mainstream datasets for automatic
vessel extraction, as well as less known HFR [14] image
dataset. Example images from these four datasets and ROP
image are shown in Fig. 2. Next, we introduce the reader to
the recent work on automatic blood vessel segmentation us-
ing convolutional neural networks. For comprehensive review
of methods for retinal vessel segmentation, including both
machine learning approaches not based on neural networks
and non-machine learning approaches, we direct the reader
to the work of Jin et al. [3] and Oliveira et al. [4]. Here
we discuss solely CNN based solutions since by quantitative
measurements they have proven to be the most effective in
blood vessel segmentation from a color retinal image.

A. Retinal datasets for blood vessel segmentation

The DRIVE dataset [11] includes 40 color retinal images
measuring 768×584 pixels collected as a part of a Netherlands
screening program for diabetic retinopathy. Images are cap-
tured using a non-mydriatic 3CCD camera at 45° FoV. All im-
ages in the dataset belong to adults of age 25 to 90, with a fully
developed blood vessel network. Seven images show signs of
mild vessel degradation as a result of diabetic retinopathy. All
images are accompanied with manually labeled groundtruth
vessel segmentation masks and FoV masks. One groundtruth
set is labeled by an expert in ophthalmology, while the other
is labeled by an observer trained by the ophthalmologist.

The STARE dataset [12] contains 20 color retinal images
measuring 700×605 pixels extracted from the larger database
created as a part of STARE project. The images are obtained
using Topcon TRV-50 fundus camera at 35° FoV. Ten images
show signs of different diseases that distort or obscure the
blood vessel appearance, but none of the images show signs
of retinopathy of prematurity. For the full diagnosis list, the
reader is referred to the STARE project’s page. Remaining
10 images show no signs of disease. Similarly to DRIVE, this
dataset comes with two sets of manually annotated groundtruth
blood vessel masks.

CHASE DB1 [13] dataset contains 28 color retinal images
measuring 1280× 960 pixels. The images are captured by the
Nidek NM-200-D handheld fundus camera with a 30° FoV.
Initially, the dataset was created to validate the performance
of a novel computer software for retinal vessel tortuosity
measurements in school-aged children. In the dataset, there are
images of left and right eyes for 14 different children, each
image with two sets of groundtruth blood vessel masks. Since
tortuosity is one of the key factors in diagnosis of retinopathy
of prematurity, it is expected that networks trained on this
dataset could perform better on ROP images.

The HFR dataset [14] includes 45 color retinal images of
size 1280 × 960 pixels. The images are captured using a



Fig. 2. Example images from retinal vessel segmentation datasets. From left to right are representatives of: (1) DRIVE, (2) STARE, (3) CHASE DB1, (4)
HFR, and (5) ROP image.

Canon CF-60UVi camera. The dataset includes 15 images
of healthy patients, 15 glaucoma images and 15 images
showing diabetic retinopathy. Images are accompanied with
two manually labeled groundtruth blood vessel masks, as well
as FoV masks.

B. Convolutional neural networks for blood vessel segmenta-
tion from retinal images

The publication of UNet architecture [5] for medical image
segmentation boosted development of CNN based solutions
in many medical applications including retinal blood vessel
segmentation [3], [4], [6], [7], [9], [10]. Confronting the need
for a large dataset to train a well performing CNN, Ron-
neberger et al. have demonstrated that the UNet architecture
can produce state-of-the-art results for image segmentation
task, while being trained on a small dataset. Availability of
small public datasets for retinal blood vessel segmentation
directed the efforts toward CNNs based on UNet architecture.
There have been many modifications of the original UNet
architecture to address different problems occurring in blood
vessel segmentation, such as varying vessel width, shape and
orientation, low image quality, as well as vessel branching
and crossings which often result in misclassification of a
single vessel as two separate vessels. In [6] authors address
the appearance of thin false vessels by incorporating UNet
as a generator of a Generative Adverserial Network (GAN).
Jan et al. [3] proposed the network inspired by UNet and
Deformable convolutional networks [15] to address variability
in shapes and scales of blood vessels. They replace the convo-
lutional layer with a deformable convolutional block resulting
in adaptive adjustment of a receptive field to the vessels’
scales and shapes during network training. Similar issues have
been addressed in [4] where authors cope with vessels’ scale
and orientation variation by calculating Stationary Wavelet
Transform (SWT) and using it as additional information about
vessels in network training. In [7] authors propose an addition
to a CNN named Graph Convolutional Network [8] (GCN).
While the CNN filters learn local per-pixel features, the GCN
learns the global structure of the vessel network using the
fact that the vessel network can be represented as a graph.
The final prediction is derived by combining CNN and GCN
learned features. Another approach to improve segmentation
is to chain multiple networks as demonstrated in [9], [10].
The author of the LadderNet [10] propose UNet modification

where multiple encoders and decoders with skip connections
are chained to improve data flow, resulting in a network able
to better learn features from the input image. Similar idea
is employed with IterNet [9] where multiple networks are
chained to iteratively improve the initial prediction. The first
network in a chain is the UNet which produces the initial
prediction for the given input color image. The output of
the second last layer is then iteratively refined by lightweight
UNets and the final prediction is the output of the last network
in a chain.

All mentioned solutions use DRIVE in test and training
stages. Very often, STARE [6] or CHASE DB1 [10] datasets,
or both [3], [4], [9], are used alongside DRIVE to create and
evaluate the proposed network. The exception is [3] where
WIDE [16] and SYNTHE [17] datasets are used to additionally
test the proposed network. These datasets are not often used
since they do not have groundtruth labels and the second
dataset is synthetically generated. To measure the network
performance, authors often report network’s prediction accu-
racy [3], [4], [9], [10], sensitivity [3], [4], [9], [10], specificity
[3], [4], [9], [10] and precision [6], [9], as well as derived
measures. To be comparable to previously acquired results,
we also adopt these measures in our study.

III. METHODOLOGY

In this section we report details of the dataset used for eval-
uation, experimental protocol, and measures used for network
performance evaluation.

A. The dataset

The dataset used in this experiment consists of 9 color
retinal images shown in the first column of Fig. 3. To capture
the images, a wide-field RetCam3 fundus camera with 130°
FoV was used. Resulting images are of size 480 × 640 and
are saved in JPEG file format. Abnormal vessel tortuosity
and dilatation are present on all images. To test the networks
on complex vessel patterns, we include images with visible
excessive vessel growth and presence of vessel loops (e.g.
rows 3, 5, 6 and 9 in Fig. 3). For each color image, we
provide two groundtruth blood vessel masks (columns 3 and
4 in Fig. 3) and FoV mask (the second column in Fig. 3). The
groundtruth masks are labeled by two different observers. The
first groundtruth is labeled by a PhD student in computing
and control engineering which was previously trained by the



Fig. 3. Images used for the CNN evaluation. From left to right: (1) a color image showing sings of ROP, (2) FoV mask, (3) the first groundtruth, (4) the
second groundtruth.



experienced ophthalmologist. This is not a new approach in
blood vessel labeling, and it has already been employed to
create groundtruth labels for widely accepted datasets such
as DRIVE and STARE. The second groundtruth is labeled
by an expert ophthalmologist with more than 20 years of
experience in ROP screening. The expert refined the coarse
groundtruth masks created by the first observer to produce
the second groundtruth. To achieve maximum accuracy, FoV
masks are also labeled manually. Since groundtruth labeling
is time consuming and requires expert involvement, we limit
ourselves in this experiment to 9 images which are used solely
for testing purposes.

B. Experimental protocol

We feed color retinal images from the ROP image dataset to
the neural network models proposed by Li et al. [9], Zhuang
[10] and Oliveira et al. [4]. These networks are considered to
achieve state-of-the-art results in blood vessel segmentation
from retinal images in terms of accuracy, sensitivity and
specificity, as can be seen in Table I. For each network
architecture we use the latest pretrained model provided by
authors. All pretrained models are made open by authors
and can be downloaded from GitHub repositories following
the work of Li et al., Oliveira et al. and Zhuang. Each
network outputs a probability map of the same size as an
input image. Values in the probability map range from 0
to 1 indicating probability that the corresponding pixel on
the input map is a part of the blood vessel. A probability
map is then thresholded with 0.5 threshold value to obtain
a binary segmentation mask where white pixels indicate that
the corresponding input pixel is a part of the blood vessel,
whereas the black pixel indicates opposite. All experiments
are performed on a personal computer with 32GBs of RAM,
Ryzen 3700X central processing unit and NVIDIA RTX2060S
graphics card.

C. Performance Evaluation Metrics

To evaluate models performance, we adopt commonly used
metrics in evaluation of blood vessel segmentation solutions.
These metrics include Accuracy (ACC), True Positive Rate
(TPR), True Negative Rate (TNR), F-measure (F1), and Area
Under Curve (AUC) of a Receiver Operating Characteristics
(ROC) graph. The accuracy measures ratio of image pixels
correctly classified as a blood vessel or a background pixel.
True Positive Rate and True Negative Rate, also known as
sensitivity and specificity, are more specific and measure ratio
of pixels correctly classified as a blood vessel or a background
pixel, respectively. F-measure is used as an integral measure
of the model’s precision and specificity.

IV. RESULTS AND DISCUSSION

Three models are compared in terms of accuracy, sensitivity,
specificity, F-measure and AUC on the images from our dataset
as shown in Table I. All values are calculated on predicted
segmentation masks with applied FoV masks. In Table I we
also report numerical results from corresponding papers for

TABLE I
PERFORMANCE ON DRIVE, STARE, CHASE DB1 AND OUR DATASET

(GT1 - FIRST GROUNDTRUTH, GT2 - SECOND GROUNDTRUTH)

Datasets
ACC TPR TNR F1 AUC

Li et al.

DRIVE 0.9574 0.7791 0.9831 0.8218 0.9816
STARE 0.9782 0.7715 0.9919 0.8146 0.9915
CHASE 0.9760 0.7969 0.9881 0.8073 0.9899

GT1 0.9678 0.4990 0.9881 0.5513 0.9378
GT2 0.9429 0.3457 0.9884 0.4307 0.8396

Oliveira
et al.

DRIVE 0.9576 0.8039 0.9804 - 0.9821
STARE 0.9694 0.8315 0.9858 - 0.9905
CHASE 0.9653 0.7779 0.9864 - 0.9855

GT1 0.9681 0.5271 0.9871 0.5685 0.9125
GT2 0.9436 0.3622 0.9875 0.4459 0.8250

Zhuang

DRIVE 0.9561 0.7856 0.9810 0.8202 0.9793
STARE - - - - -
CHASE 0.9656 0.7978 0.9818 0.8031 0.9855

GT1 0.9639 0.5244 0.9830 0.5384 0.9307
GT2 0.9393 0.3633 0.9833 0.4291 0.8211

DRIVE, STARE, and CHASE DB1 datasets to compare them
to our results. We evaluate models on two sets of groundtruth
segmentation masks to evaluate the models in predicting
thicker, easier to see blood vessels annotated by non-expert
against small and hard to see blood vessels annotated by the
expert.

When compared to the first set of groundtruth values, all
three models achieve above 96% accuracy and above 98%
specificity which is comparable to the accuracy and specificity
values reported on publicly available datasets. However, mod-
els’ sensitivity significantly drops from approximately 77% for
public datasets to approximately 50% for our dataset, as the
models misclassified more blood vessel pixels as background
pixels. Degradation in model’s performance is also visible in
AUC which is reduced up to 7.9% indicating that models
produce less reliable predictions on the ROP images. The
predicted segmentation masks are shown in Fig. 4. It can be
seen that even thick blood vessels are not segmented correctly
if illumination issues are present on the image which is often
the case in infant retinal images due to wide-field lenses used
for screening.

Comparison with the second set of groundtruth values
yields further degradation in terms of segmentation accuracy,
sensitivity and AUC, which drop for approximately 2%, 15%
and 15% compared to the performance calculated on the first
groundtruth dataset. The aggressive reduction in sensitivity
and AUC is caused by the inability of the existing models
to segment tiny blood vessels labeled by the expert as it can
be seen in Fig. 4.

Existing solutions for retinal blood vessel segmentation
also produce noise in predicted segmentation maps, due to
inability to differ between choroidal and retinal blood vessels.
Despite being blood vessels, choroidal blood vessels are not
retinal blood vessels and do not play part in ROP diagnosis.
Segmentation of these vessels alongside retinal vessels would
aggravate ROP diagnosis based on segmented vessels instead
of alleviating it. Since the chosen models perform outstand-



Fig. 4. Predicted segmentation maps. From top to bottom rows are shown:
(1) original images, (2) expert’s groundtruth and segmentation maps produced
by the methods of (3) Li et al., (4) Oliveira et al., and (5) Zhuang.

ingly on public datasets, it is our educated assumption that
issues with choroidal blood vessels are caused by the lack
of images showing these vessels in public datasets used for
network training.

V. CONCLUSIONS

In this paper we evaluated three state-of-the-art solutions for
blood vessel segmentation from color retinal images in context
of retinopathy of prematurity. The chosen solutions perform
outstandingly when tested on publicly available datasets. In
this study we created a dataset consisting solely of ROP
images to test how well the solutions perform on ROP images
and can they be used as-is for blood vessel segmentation from
ROP images. Numerical measurements and visual results show
that all three solutions perform similarly and that all three
have significant issues with uneven illumination, infant’s thin
blood vessels and choroidal blood vessels present on images.
There are two possible reasons for segmentation performance
degradation: (1) the images from the few public datasets
that are used for training do not have properties needed for
effective retinal blood vessel segmentation from ROP images
and (2) trained models are not complex enough to successfully
address issues present on ROP images. Since the models tend
to under classify not only thin vessels, but in some cases
also thick vessels which is not the problem observed on the
public datasets, we believe that not all appearing issues can be
solved by creating more complex CNN architecture and that
retinal blood vessel segmentation CNNs would benefit from a
new, ROP-aware retinal image dataset that would be used in
CNN training. Additionally, we observe that existing models
have learned to classify blood vessels, but not to distinguish

between retinal and choroidal blood vessels which is possibly
due to the lack of images showing choroidal blood vessels in
public datasets.

As future work, more effort should be directed towards
creating a more adequate dataset that could be used to train
efficient CNNs for blood vessel segmentation from ROP
retinal images. Alternatively, if ROP images are too complex
for proposed CNN architectures, more complex architecture
could be used to try to improve segmentation performance on
existing datasets.
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