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Physiological Controls Research Center
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Abstract—In this study, we review recently proposed advanced
methods based on various techniques in order to improve blood
glucose control while avoiding an increased risk of hypoglycemia
or hyperglycemia in patients with type 1 diabetes. We introduce
type 1 diabetes and the artificial pancreas and provide an
overview of research advances based on predictive control,
statistical processes, filters, and machine learning. Common
control methods have been successfully used to control blood
glucose levels while new approaches that rely on machine learning
algorithms offer promising performance.

Index Terms—Type 1 diabetes, artificial pancreas, continu-
ous glucose monitoring, model predictive control, PID control,
Kalman filter, neural networks, machine learning

I. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an autoimmune disease
that destroys pancreatic β-cells responsible for production of
the insulin peptide hormone that enables maintaining blood
glucose (BG) levels. Patients with T1DM require exogenous
insulin administration due to the lack of internal insulin
production. However, external administration has its own risks.
For example, physical exercise and applied insulin therapy
may lead to dangerous hypoglycemia. In general, caution
should be taken when using insulin as it may cause hypo-
glycemia (BG < 70 mg/dL) leading to a potential seizure,
coma, or even death of a patient. Underdosing may also
cause persistent hyperglycemia (BG > 180 mg/dL) leading to
long term complications such as neuropathies, nephropathy, or
cardiovascular diseases [1].

In its simplest form, the artificial pancreas (AP) is a closed-
loop glucose controller consisting of a wearable insulin pump
that delivers insulin based on Continuous Glucose Monitoring
(CGM) system that measures the BG levels. A continuous
subcutaneous insulin infusion (CSII) pump communicates with
the CGM system that measures the BG levels [2]. After
calculating the amount of insulin, the pump releases and
delivers the appropriate dose into the patient’s body using a
control algorithm.

Research results have shown that compared to conventional
insulin therapy (open-loop control), AP may control the BG
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levels better than the conservative insulin administration and
reduce the risk of hypoglycemia. However, numerous chal-
lenges in designing AP algorithms need to be considered.
The metabolic glucose process may be disturbed under var-
ious factors such as dietary changes, unannounced physi-
cal exercise, alcohol consumption, circadian rhythm, chronic
metabolic variations, menstrual cycle, or insulin sensitivity [3].
Furthermore, security issues, urgent time requirements, and
unknown analytical relationship between adjusted parameters
and measured values are some of the factors that present
additional challenges for developing AP algorithms [4].

After introducing T1D and AP, we provide overview, com-
parison, and results of recently proposed approaches based
on control methods, sensitivity analysis, filters, and machine
learning. In Section II, we review control methods based
on model predictive control, Bayesian optimization, sliding
mode control, proportional integral derivative control, active
disturbance rejection control, and bioinspired AP. A short
review of a method for identifiability of parameters was given
in Section III while methods based on filters are described in
Section IV. Novel approaches based on machine learning are
reviewed in Section V. We conclude with Section VI.

II. APPROACHES BASED ON CONTROL METHODS

In this Section, we review recently proposed methods
for controlling BG levels and reducing the delay of in-
sulin absorption. The model predictive control is one of
the most commonly used AP methods [5]. It is used to
determine BG levels and optimize insulin delivery through
the prediction horizon. Appropriate control may handle meal
announcements, limit insulin infusion rates, and BG levels
in a simple and proactive manner [6]. Other approaches
include Bayesian optimization, sliding mode control, pro-
portional–integral–derivative, active disturbance control, and
bio inspired AP. Proportional–integral–derivative is a common
approach and its model-based approach relies on physiological
models that consider the operation of metabolism.

A. Model Predictive Control Approach

Algorithms based on the linear model predictive control
(MPC) method have been tested in clinical studies and have
shown to be able to stabilize BG levels [7]–[9]. They also
improve the bolus calculator to more efficiently manage meals.
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Current calculators assume a linear relationship between the
size of the announced meal and the insulin bolus and, hence,
the correction depends on the BG levels and the insulin
intakes [10].

Cairoli et al. [2] improved the MPC method using Signal
Temporal Logic (STL) to solve the BG control problem. The
Hovorka compartment ordinary differential equation (ODE)
model was used for the MPC implementation as shown in
Fig. 1. The simulation was performed using the MPC and
MPC-STL controllers. The results indicated that STL allowed
soft constraints and provided safe BG trajectories without
restrictions even at higher meal disturbances. Hence, it enabled
avoiding both hypoglycemia and prolonged hyperglycemia.

Fig. 1. Hovorka compartment ordinary differential equation model [2].

Shi et al. [11] proposed a zone MPC (ZMPC) method using
a dynamic cost function to update the real-time control penalty
parameters to reduce the BG levels. The proposed method
offered good performance in case of announced and moderate
meal-bolus and unannounced meals and exercises. It improved
BG levels and rate of insulin delivery to be within a safe range
and without the risks of hypoglycemia.

The control algorithm based on the nonlinear MPC (NMPC)
method for solving optimal regulation problem (OCP) was
presented by Boiroux and Jørgensen [6]. The insulin injection
rate was separated into a basal insulin infusion and the
administered insulin bolus by using the objective function.
The basal insulin was used for endogenous BG production
while the bolus administration mitigated the absorption of the
carbohydrates (CHO). The improved bolus calculator based on
the proposed optimal control algorithm may optimize insulin
levels and suspension time relative to a meal size. The algo-
rithm based on the NMPC method enables to more systemati-
cally handle the physiological model of a patient. However, the
method has disadvantages in designing numerical optimization
routines and recognizing physiological models.

Chakrabarty et al. [12] proposed implementation of the
embedded ZMPC method using the Fast Adaptive Memetic
Algorithm (FAMA) and fast Alternating Direction Method of
Multipliers (FADMM) algorithm to solve convex constraints of
the linear MPC method. The generated closed-loop data were

used to select the optimization algorithm and the appropriate
setting parameters. A comparison between the median rate
of insulin delivery in euglycemia (announced meals) and
equivalent yielding test (unannounced meals) indicated that
the proposed method was compatible with other embedded
systems and may maintain regulation of the BG levels.

Rashid et al. [13] proposed a novel adaptive MPC method
for measuring the optimal insulin infusion rate for considered
bounds of the plasma insulin concentration (PIC) to prevent
delays in the insulin action. The controller was designed to reg-
ulate the BG levels in the presence of significant disturbances
(unannounced meals). The recursive subspace-based empirical
modeling algorithm based on the predictor-based subspace
identification (PBSID) method was used for determining the
linear dynamic model. The method provides a stable, time-
varying, and individualized state-space model for predicting
CGM measurements by taking the insulin infusion rates as the
manipulated input variables. The CGM measures were used to
determine the appropriate values for the PIC bounds and the
risk indexes. The results indicated that the proposed method
may control BG levels within the safe range without meal
announcement.

Chakrabarty et al. [14] presented an event-triggered commu-
nication (ETC) algorithm for selective transmission of CGM
values to the controller to reduce communication between the
sensor and the controller. The CGM value is not transmitted
to the controller if the current and predicted BG levels are
in the safe zone. An observer-based MPC algorithm with
event-triggered CGM communication to regulate the BG levels
was deployed. The proposed method effectively reduced the
sensor-controller transmissions in the hypoglycemic range and
required less time than the standard MPC.

B. Bayesian Optimization Approach

Shi et al. [4] proposed the controller adaptation method
based on the multivariate Bayesian optimization (BO) ap-
proach and the dynamic parameter selection module for solv-
ing the parameter adaptation problem. The dynamic param-
eter selection module determines the parameter that should
be adjusted based on the performed diagnostics of the BG
levels. The BO-based optimization module, shown in Fig. 2,
automatically adjusts the selected parameter and optimizes an
unknown cost function that determines the amount of glycemic
regulation.

Fig. 2. The BO-based multivariate controller adaptation scheme. The dynamic
parameter selection module (blue) and the optimization module (green) [4].
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The two scenarios help verify the efficiency and robustness
of the proposed algorithm. In the first scenario, the algorithm
improves the rate of insulin delivery and reduces BG levels to
the euglycemic range. In the second scenario, the algorithm
improves the duration of the insulin delivery. Hence, the
proposed method may properly adjust the parameters and their
identifications in order to achieve regulation of adequate BG
levels with no risk of hypoglycemia.

C. Sliding Mode Control Approach

Leyva et al. [15] presented methods for insulin stabilization
based on positive sliding mode control (SMC) and the Lya-
punov function (CLF) control theory. The cascade structure
of the physiological model was used to improve the rate of
stabilization of BG levels while the compartmental mathemat-
ical model was used to reproduce glucose metabolism and the
insulin and glucagon dynamics. The proposed methods solve
BG stabilization, maintain BG levels in a healthy physiological
range, and avoid hypoglycemia. The CLF exhibited better
results, improved convergence rate, and generated a continuous
signal that prevented insulin accumulation.

To improve the regulation of the BG levels caused by
unannounced physical activity, Beneyto et al. [16] enhanced
the insulin-only controller using fast-acting CHO for the
recommender system as shown in Fig. 3. The insulin-only
controller is composed of two loops: a proportional–derivative
(PD) controller with insulin feedback (IFB) and a safety
auxiliary feedback element (SAFE) layer. The SAFE layer
consists of insulin on board (IOB) constraints, sliding mode
reference conditioning (SMRC) block, and a low-pass first-
order filter. The CHO controller is based on a predictive
quantified proportional-derivative controller. The comparison
between the original insulin-only controller and the combined
insulin CHO recommender system showed that the novel com-
bined system is able to reduce daily hypoglycemia episodes
and increase the rate of insulin delivery per unit time within
acceptable limits.

Moscardo et al. [17] extended the coordinated configuration
(CC) control structure with insulin-on-board (IOB) limitation
by using Sliding Mode Reference Conditioning (CC-SMRC)
for coordinated control of glucose as shown in Fig. 4.
Comparison between the CC and CC-SMRC control structures
based on meals, snacks, and exercise scenarios indicates that
the proposed CC control method with the IOB limitation has
a slightly lower periods of hypoglycemia in the meal and
meals plus snack scenarios. However, in the exercise scenario,
the reduction was statistically significant. The rate of insulin
delivery was better using the CC-SMRC control method during
the exercise scenario than during the meals scenarios. During
the most demanding exercise scenario, the insulin delivery
levels were low and insufficient to prevent hypoglycemia.

D. Proportional Integral Derivative Control Approach

To reduce delay of the insulin absorption, Barnes and
Jones [18] relied on a continuous intra-peritoneum insulin in-
fusion (CIPII) method based on proportional integral derivative

Fig. 3. The insulin-only controller (blue) with the CHO controller (orange)
[16].

Fig. 4. The closed-loop system based on CC-SMRC controller [17].

(PID) controller. They introduced IMC-PID controller based
on the Internal Model Control (IMC) tuning method that
employs an inverter to realize the PID controller feedback.
Time delay was modeled using the first-order with time delay
(FOPTD) model with Pade approximation. Comparison be-
tween the subcutaneous insulin infusion (CSII) method based
on the MPC controller and the continuous CIPII method
indicated that the PID controller with the insulin feedback
method may successfully control the BG oscillations.

Kushner et al. [19] presented novel non-deterministic data-
driven model with a PID-based closed-loop system for BG
levels control. Patient data, together with insulin and glucose
data, were used in order to predict how the patients react under
the PID-based closed-loop system. The results have shown
that simple non-deterministic models may efficiently adjust
key controller parameters and improve BG levels control.

E. Active Disturbance Rejection Control Approach

Cai et al. [20] proposed a method based on the active
disturbance rejection control (ADRC) for regulation of BG
levels by adding the insulin on board (IOB) and insulin deliv-
ery constraints to ensure the safety of the control algorithm.
The proposed ADRC controller is composed of two modules:
the ADRC module (composed of tracking differentiator (TD),
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extended state observer (ESO), and nonlinear feedback) and
the constraints module (composed of the IOB, non-negative,
and maximum input constraints). The controller achieved
satisfactory performance for glucose regulation and rate of
insulin delivery with no risk of hypoglycemia.

F. Bioinspired AP Approach

Güemes et al. [21] proposed an extension of the existing bi-
hormonal bioinspired AP (BiAP) controller by adding a novel
hybrid hormonal-insulin sensitivity glucose (InSiG) controller
to determine insulin and glucagon doses and the desired insulin
sensitivity (SI) from CGM measurements. The coordinated bi-
hormonal BiAP controller determines insulin and glucagon
doses while a standard proportional-derivative (sPD) controller
determines the desired SI. A comparison between the InSiG
controller and the coordinated bi-hormonal BiAP controller
indicated that the InSiG controller achieves improved glucose
control and maintains glucose levels within target with no
risk of hypoglycemia. Using the InSiG controller reduced
the total delivered insulin dose while the glucagon dose was
significantly reduced. The disadvantage of the method is the
unknown relationship between the magnitude of stimulation
of the nervous system and the dynamics of insulin sensitivity.

III. APPROACH BASED ON SENSITIVITY ANALYSIS

Staal et al. [22] investigated methods to improve recognition
and estimation of the most appropriate model parameters used
in a T1D mellitus simulator and thus reduce parameters of
the critical models. They also investigated identifiability of
nonlinear state-space model parameters. The nonlinear observ-
ability rank condition (NORC) was used for structural while
sensitivity analysis and Fisher information matrix (FIM) were
used for practical identifiabilities. A simplified model, derived
from free-living data (CGM, SMBG, meal, or insulin data),
proved useful for AP applications.

IV. APPROACHES BASED ON FILTERS

In this Section, we present recently proposed methods based
on Kalman and kernel filtering (KRLS) algorithms for glucose
measurements, regulating insulin infusion rate, and online
glucose prediction.

Ortmann et al. [1] improved the existing MPC controller
using a new kernel function for the Gaussian process in
order to address the measurement noise in case of unan-
nounced meals. The Unscented Kalman Filter provides the
state estimate used to extract data in order to change insulin
sensitivity. Extracted data are then processed using Gaussian
filter to predict future effects. The MPC optimizes the received
data in order to calculate the volume of insulin injections.
The collected training data become insensitive to noise after
applying the Gaussian process. This causes the controller to
be insensitive to unannounced meals. The proposed method,
illustrated in Fig. 5, enables effective improvement of glucose
control strategy and personalized health care.

For regulating basal insulin infusion rates, Fushimi et
al. [23] integrated an automatic switching signal generator

Fig. 5. The proposed method based on the Gaussian process, Unscented
Kalman Filter, and MPC [1].

(SSG) into the Automatic Regulation of Glucose (ARG)
algorithm and an advanced version of the switched Linear
Quadratic Gaussian (SLQG) controller. The SSG module is
based on the Kalman filter, which generates a filtered version
of the BG levels. The proposed algorithm regulates the basal
insulin infusion rate and generates insulin feedback during
unannounced meals. Even though it introduces a large delay
in selecting the controller mode after a meal, the proposed
algorithm does not significantly increase hypoglycemia or
hyperglycemia.

Fathi et al. [24] proposed a novel adaptive model-based
algorithm for detecting unannounced meals by using the linear
Kalman filter used to compute the evaluation of the glucose
measurements. The statistical Generalized Likelihood Ratio
Test (GLRT) was then employed (under the null hypothesis) to
decide if the glucose measurements are affected by an unan-
nounced meal. The threshold criterion was applied to GLRT
in order to control and prevent the increase of BG levels.
The results indicted that the proposed algorithm successfully
detected unannounced meals without false positives.

Yu et al. [25] extended the adaptive kernel filtering (KRLS)
algorithm with the sparsification criteria to improve computa-
tional efficiency in online glucose prediction. They combined
the KRLS algorithm with the the approximate linear depen-
dency (ALD) and the surprise criterion (SC) to design the
online sparse ALD-KRLS and SC-KRLS algorithms. The pro-
posed online adaptive method proved insensitive to abnormal
or inaccurate CGM measurements and adaptable to prediction
models. It effectively reduces the computational load and
regulates the time delay in glucose nonlinear dynamics.

V. MACHINE LEARNING ALGORITHMS

We review recently proposed machine learning methods [26]
for detecting insulin pump malfunction, predicting the quality
of overnight glycemic control, and solving the BG stability
and gradient problems.

A. Algorithms Based on Unsupervised Learning

Meneghetti et al. [27] proposed an unsupervised model-
free approach to detect insulin pump malfunction by relying
on data-driven techniques for anomaly detection (AD). The
machine learning approaches were applied on the extracted set
of features to detect anomalies using local outlier factor (LOF),
connectivity-based outlier factor (COF), and isolation forest
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(iF/iForest). The proposed Four Time Series Data (4TSD)
procedure was applied to LOF and COF to overcome cor-
relations among time-closed samples. The optimal parameter
configuration for LOF and iForest offered a satisfactory de-
tection performance while maintaining high accuracy. When
compared with the traditional multivariate control chart (MCC)
method (used as a baseline approach), COF outperformed
other methods while LOF and iForest offered a comparable
performance. Furthermore, iForest was shown to be prone to
errors and instabilities despite good performance.

B. Algorithms Based on Binary Classification

Güemes et al. [28] proposed a novel data-driven method
in order to predict quality of overnight glycemic control by
analyzing small dataset from the CGM measurements, meal
intake, and insulin boluses. Machine learning algorithms for
binary classification such as Random Forest Classifier (RFC),
Artificial Neural Networks (ANN), Support Vector Machine
(SVM), Linear Logistic Regression (LLR), and Extended Tree
Classifier (ETC) were used to classify the quality of overnight
glycaemic control. Previously processed data were used for
the training and evaluation of binary classifiers. The proposed
method is able to predict overnight BG levels within the
target range. However, a larger dataset is needed in order to
fully validate the proposed method. Thus, a more advanced
classification algorithms such as LSTM networks may be more
suitable for processing dataset sequences.

C. Non-Linear Autoregressive Neural Network and Long
Short-Term Memory

Aliberti et al. [29] improved prediction accuracy and ro-
bustness of previous methods by applying Non-Linear Autore-
gressive (NAR) neural network and Long Short-Term Memory
(LSTM) on BG signals, as illustrated in Fig. 6. NAR was
used to solve BG stability issues while the LSTM addressed
the exploding and disappearing gradient and to maintain long-
term information over time.

Fig. 6. Improved solution using NAR and LSTM methods [29].

Tikhonov regularization was applied as a pre-processing
step for filtering signals using training data from CGM sys-
tems. To avoid over-fitting of parameters in the hardware
implementation, the two-step design procedure was applied in
case of the NAR network. In the first phase, an automated
optimization strategy based on the Lipschitz method was
applied to determine the delay of glucose signals to be used as

regressors. Based on these results, three fully-connected NAR
models were developed. In the second phase, an Optimal Brain
Surgeon (OBS) method was implemented to minimize the
error variation by using a recursive calculation of the inverse
Hessian matrix applied to training data. The improved method
eliminates redundant connections between the neurons without
affecting prediction capability. Then, the three models were
trained again with a Levenberg-Marquardt backpropagation
procedure (LMBP) in order to obtain the normalized sum of
squared errors (nSSE).

The co-dependence of the LSTM parameters was reduced
by removing individual nodes and corresponding links at each
training stage of the model. The Adam (adaptive moment
estimation) method was then applied as an optimizer for
adjusting individual learning rates for each parameter, which
helped deal with non-stationary noise. When compared to the
Recurrent Neural Networks (RNNs), LSTM proved resistant
to the exploding and vanishing gradient problems.

The proposed methods were trained and tested on a large
dataset of continuous signals from monitoring systems. They
were compared with multi-patient techniques such as autore-
gressive (AR), feed-forward neural networks (FNNs), and
recurrent neural networks (RNNs). The NAR model has shown
good prediction accuracy only for a short-term period while
the LSTM model exhibited very good performance for pre-
dicting both short-term and long-term BG levels.

Li et al. [30] proposed a convolutional recurrent neural
network (CRNN) method for predicting BG levels using both
in-silico and clinical datasets. The CRNN architecture con-
sisted of a multi-layer convolutional neural network (CNN),
a RNN layer with LSTM cells, and fully-connected layers.
The CNN was employed to extracts features or patterns of the
multi-dimensional time series while the modified RNN was
used to analyze the previous sequential data and predict BG
levels. The models for each diabetic subject were trained using
individual patients’ data. The root-mean-square error (RMSE)
and mean absolute relative difference (MARD) indicators were
used for the predicted and referenced glucose measurements
and for evaluating the accuracy of the proposed algorithm. The
proposed method predicted BG levels with high accuracy. The
trained neural network was also developed for implementation
on portable devices.

D. Bioinspired Reinforcement Learning

Lee et al. [31] proposed a novel AI-based bioinspired
reinforcement learning (RL) approach for automated insulin
infusion to maintain BG levels and robustness of the CGM
sensor. The layer-wise relevance propagation (LRP) method
was used to analyze input-output relevance and define the rate
of insulin infusion. The LRP method based on AI-decisions
provided information about insulin distribution, automated
postprandial regulation, and sensor robustness. The proposed
method was applied for training and evaluated on virtual
patients. It was able to fully automate the control of BG levels
in unannounced meals with no risks of hypoglycemia.
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VI. CONCLUSION

In this paper, we reviewed recently proposed solutions for
regulation and control of the insulin delivery in type 1 diabetes.
The proposed methods are based on predictive control, sensi-
tivity analysis, filters, and machine learning theory. The control
approaches include model predictive control, Bayesian opti-
mization, sliding mode control, proportional integral derivative
control, active disturbance rejection control, and bioinspired
artificial pancreas. Combination of common control methods
have exhibited good results in controlling blood glucose levels.
Other successful approaches include methods for identifiability
analysis, methods based on filters, and learning algorithms.
Novel deep and reinforcement learning algorithms promise
improved performance due to the availability of larger exper-
imental datasets and powerful hardware platforms.
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