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Abstract— Nowadays, an increasing usage of autonomous 

mobile robots in outdoor applications can be noticed. 

Identification of the terrain type is very important for efficient 

navigation. In this paper, a novel method is proposed for terrain 

classification in the case of wheeled mobile robots. The 

classification algorithm uses frequency domain features, which 

are extracted in fixed-size windows, and Multi-Layer 

Perceptron (MLP) neural networks as classifiers. Data from 

inertial sensors were collected for different outdoor terrain 

types using a prototype measurement system. The data of the 

accelerometer and the gyroscope were tested separately and 

together, and different processing window sizes were also 

applied. The achieved results show that above 99% classification 

efficiency can be achieved using the collected data. 
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I. INTRODUCTION 

Autonomous mobile robots are used in a large variety of 
outdoor field applications, such as agriculture, environmental 
monitoring, military applications, etc. Knowledge of the 
environment, such as the terrain type, can be used as important 
information for efficient navigation [1, 2]. 

Terrain classification for wheeled mobile robots is usually 
performed using cameras [3, 4], lasers [3], and inertial sensors 
[2, 5-9], but sound-based recognition was also reported in 
related works [10]. The fusion of different sensor types can be 
also applied [2, 3]. Some approaches using walking robots for 
classifying terrains also exist [11]. 

The most used inertial sensors in the case of mobile robots 
are the accelerometer and the gyroscope. Accelerometers 
measure linear acceleration along one or more axes, while 
gyroscopes measure angular velocity around one or more 
axes. These sensors can be applied for control [12-14], 
position and orientation estimation [15-16], etc. 

In related works, which apply inertial sensors for terrain 
classification, mostly only vibrations recorded by 
accelerometers were applied [2, 6-8]. The use of gyroscopes 
together with accelerometers was also reported in the 
literature [9]. 

In [2], only the Z-axis of the accelerometer was utilized to 
classify 5 pavement types. The Root Mean Square (RMS) 
feature was used during classification, and the results showed 
above 80% accuracy. 

The authors of [6] proposed a Recurrent Neural Network 
(RNN)-based method, which did not apply any feature 
computation on the signals of the three-axis sensor. An 
average accuracy of roughly 85% was achieved for the dataset 
consisting of 14 terrain types. 

Vicente et al. extracted altogether 523 features using 
Power Spectrum Density (PSD)-based and 11 different 
statistical features to classify 4 indoor surface types [7]. The 
size of the feature vector was reduced using the Principal 
Component Analysis (PCA) algorithm. 

In [8], different time domain and frequency domain 
features were extracted from the signals of the Z-axis, which 
were recorded with 100 Hz. A Laplacian Support Vector 
Machine (LapSVM) was used to classify 6 outdoor terrain 
types. 

The authors of [9] applied more than 800 features 
extracted from measurements recorded using an 
accelerometer and a gyroscope. The Linear Bayes Normal 
Classifier was applied to classify indoor terrain types into 4 
classes.In this study, frequency domain-based features 
extracted from inertial sensor signals are applied for the 
classification of outdoor terrain types. Based on related works, 
it was reasonable to test the applicability of the inertial sensor 
types in this application. The effect of the processing window 
size is also tested, since it can affect the reaction time during 
transitions between different terrain types.  

II. EXPERIMENTAL SETUP 

A. Measurement System 

A wheeled mobile robot, which can be seen in Fig. 1, was 
constructed for collecting measurement data. The robot has 
four wheels, of which two are driven. The size of the mobile 
robot is 158 x 255 x 45 mm, the distance between the wheels 
is 132 mm in width and 116 mm is length, and the mass of the 
mobile robot is 595 g. 

An ESP32 board is used for motor control through an 
L9110 controller, communication with the sensors and storage 
of the measurement data. Measurement data are stored on an 
SD card. 

The robot is equipped with a 9 degrees of freedom (9DoF) 
inertial sensor board, which is made up of an ADXL345 tri-
axial MicroElectroMechanical System (MEMS) 
accelerometer, an ITG3200 tri-axial MEMS gyroscope, and 
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an HMC5883L tri-axial magnetometer. The ADXL345 can 
measure up to ± 16 g in 13-bit resolution with the highest 
sampling rate of 3.2 kHz, while the gyroscope features a 16-
bit analog-to-digital converter, and it can measure angular rate 
in a range of ± 2000 deg/s with 8 kHz frequency. In this study, 
only the accelerometer and the gyroscope are utilized.  

B. Data Acquisition 

The prototype measurement system was used to collect 
data, which can be used later to construct the classifier. 

Data acquisition was done on 6 different outdoor terrains, 
which can be seen if Fig. 2, and are the following: 

1. Concrete 

2. Grass 

3. Pebbles 

4. Sand 

5. Paving stone 

6. Synthetic running track 

 The applied sampling frequency for both sensors was 500 
Hz. One measurement session was 4.5 s long and data for all 
six classes were recorded in 7 sessions, which means 31.5 s 
for all terrain types.  

III. CLASSIFICATION ALGORITHM 

The proposed classification algorithm, which can be seen 
in Fig. 3, consists of four stages. In the first stage, error 
compensation is performed on the measurements. Windowing 
is performed in the second stage, while feature extraction on 
the data in the processing window is performed in the third 
stage. In the fourth stage, the classifier determines the terrain 
type using the extracted features. 

A. Error Compensation 

The deterministic errors are compensated in this phase 
using calibration parameters obtained utilizing an 
evolutionary algorithm-based method [17]. The algorithm 
applies measurements recorded in different stationary 
orientations to compute the required parameters. 

B. Windowing 

Windowing is performed using fixed window sizes and 
constant shift sizes. Multiple processing window sizes were 
tested to explore its effect on the recognition efficiency, which 
are 128, 256, and 512 samples, which means nearly 0.25 s, 0.5 
s, and 1 s in the case of the applied 500 Hz sampling 
frequency. To construct more training and validation data, the 
utilized shift size was 32 samples. 

C. Feature Extraction 

Features are extracted using the measurements in the 
processing window. The algorithm uses only frequency 
domain features, which can possibly carry important 
information of the terrain type. The transformation from time 
domain to frequency domain was done using the Fast Fourier 
Transform (FFT) algorithm. The selected features are the 
following [18]: 

• Spectral energy (ENE) – The spectral energy can be 
computed as: 

 ENE = ∑ 𝑌𝑖
2𝑀

𝑖=1  () 

where M is the number of points in the frequency axis, 
and Yi is the value of the amplitude spectrum at the given 
frequency index. 

• Median frequency (MDF) – The frequency which divides 
the spectrum into two regions with equal amplitude. 

 ∑ 𝑌𝑖
MDF
𝑖=1 = ∑ 𝑌𝑖

𝑀
𝑖=MDF =

1

2
∑ 𝑌𝑖
𝑀
𝑖=1  () 

 

Fig. 1. Wheeled mobile robot used for data acquisition. 

 

Fig. 2. Tested outdoor terrain types: a) concrete; b) grass; c) pebbles; d) 

sand; e) paving stone; f) synthetic running track.  

 

Fig. 3. Parts of the classification algorithm. 



• Mean frequency (MNF) – This frequency is also called 
central frequency (fc), and it can be calculated using the 
following equation. 

 MNF = ∑ 𝑓𝑖𝑌𝑖
𝑀
𝑖=1 ∑ 𝑌𝑖

𝑀
𝑖=1⁄  () 

where fi is the frequency at the given index.  

• Mean power (MNP) – The average power of the spectrum 
(4). 

 MNP = ∑ 𝑌𝑖
𝑀
𝑖=1 𝑀⁄  () 

• Peak magnitude (PKM) – The highest amplitude in the 
spectrum. 

• Peak frequency (PKF) – The frequency at which the PKM 
occurs. 

• Variance of the central frequency (VCF) – The variance 
of the central frequency can be defined using (5). 

 VCF =
1

∑ 𝑌𝑖
𝑀
𝑖=1

∑ 𝑌𝑖(𝑓𝑖 − 𝑓𝑐)
2𝑀

𝑖=1  () 

D. Classifier 

Various classification methods can be applied in such 
pattern recognition applications. E.g., SVMs [8], fuzzy rule-
based classifiers [19], the k-Nearest Neighbour (k-NN) 
method [20], decision trees or Classification Trees (CT) [20], 
Multi-Layer Perceptron (MLP) neural networks [20], the 
Naïve Bayes Classifier (NBC) [20], etc. 

MLP classifiers were applied in this research, which are 
feedforward Artificial Neural Networks (ANNs). These 
classifiers proved to be very applicable for online 
classification tasks [20]. In MLPs, neurons are organized into 
three or more layers, an input, an output, and one or more 
hidden layers. Each layer is fully connected to the next one 
using weighted connections. A neuron has an activation 
function that maps the sum of its weighted inputs to the output. 
These ANNs are usually trained using the backpropagation 
algorithm. 

The input of the MLP is composed of the computed 
features, and a neuron is assigned to each class in the output 
layer. To make the network easily implementable on the used 
hardware, only one hidden layer is utilized, which is tested 
with different number of neurons in the layer, to find the 
optimal configuration. The hyperbolic tangent sigmoid 
transfer function was used in the hidden layer, while the linear 
activation function was applied in the output layer. 

IV. EXPERIMENTAL RESULTS 

A. Classification 

Measurements from 4 of the 7 sessions were used as 
training datasets, and the remaining 3 sessions for the 
validation of the trained classifiers with unknown data. 

All 7 selected feature types were extracted for signals of 
all three sensor axes, so, altogether 21 features were computed 
for each sensor type. 

The training of the MLP neural networks was tested using 
1-15 hidden layer neurons. The 70% of the training data were 
used as training inputs, and the remaining 30% as validation 
inputs for the training method. 

The highest output at the neurons of the output layer was 
determined as the class of the current terrain type. 
Classification efficiency was calculated using the following 
equation: 

 𝐸(%) =
𝑁𝑐

𝑁𝑠
∙ 100, () 

where E is the recognition rate in percentages, Nc is the 
number of correctly classified samples, and Ns is the number 
of all samples in the dataset. 

To explore the capability of the two sensor types in this 
application, they were tested separately and together in the 
case of all processing window sizes. In later comparison, for 
each setup, the results with highest recognition efficiency on 
validation data were chosen, which are the sessions which 
were not used during the training of the MLPs. 

B. Performance Evaluation 

The obtained classification efficiencies on training and 
validation datasets per used sensor types can be seen in Table 
I and Table II, respectively. 

A convergence in recognition rate was noticed for all 
setups in the case of required hidden layer neurons, which 
means that the tested numbers are sufficient.  

The achieved classification efficiencies show a rising 
tendency by increasing the size of the processing window. In 
the case of training datasets, above 99% can be achieved using 
both sensors, even when the smallest window size is applied. 
The effect of the window size is bigger when only one sensor 
is used. Between the smallest and the biggest window size an 
increase of around 3.5% can be noticed in the case of the 
gyroscope, while in the case of the accelerometer, the 
efficiency increases by more than 6.5%. A stronger effect can 
be noticed at unknown data. The difference between the 
recognition rates is 5.08% and 13.87% for the gyroscope and 
the accelerometer, respectively. The increase is smaller, 
around 2.5%, when the two sensors are used together. 

If only one sensor is utilized, it can be noticed that the 
gyroscope provides higher efficiencies than the 
accelerometer. In the case of training data, the difference is 
3.17% for the smallest window, 2.45% for the medium sized 
window, and 0.08% for the largest applied window. In the case 
of validation data, the differences are much more significant, 
17.58%, 14.55%, and 8.79% for the small, medium, and large 
windows, respectively. It can be also stated based on the 
results, that the fusion of the two sensor types provides the 
highest recognition rates. Using both sensors, compared to the 
results obtained with the gyroscope data, the increase is below 
3% in the case of training data, because, even with the smallest 
window, above 96% classification efficiency can be achieved 
using the gyroscope. The difference is bigger in the case of 
unknown data, especially for the smallest window size, where 
the difference is 4.48%. The difference is below 2% in the case 
of the two larger windows. 

The highest achieved recognition rate on validation data 
was 99.70%, which was obtained by fusing the data of the two 
sensors and applying the largest window. Using only one 
sensor, the gyroscope provided 97.78% using the largest 
processing window. In the case of the smallest window, 
97.18% can be achieved by using the data of the two sensors 
together, and 92.70% with the gyroscope. The accelerometer, 
which is the most widely used sensor type in this application, 



provided only 88.99% and 75.12% with the largest and 
smallest window, respectively. 

The gyroscope and the two sensors together provide above 
90% efficiencies on unknown samples, thus, the number of 
misclassifications is small. In the case of the accelerometer, it 
is important to investigate between which classes do the 
misclassifications occur and where does the increasing of the 
processing window size help. Table III shows the recognition 
rates per class on validation data in the case when only data 
from the accelerometer were utilized with the smallest and the 
largest processing windows. The overall recognition rates 
were 75.12% and 88.99%, respectively. Table IV and Table V 
show the confusion matrices for the same setups. The 
corresponding terrain types to class numbers are the same as 
given in section II.B. It can be seen from Table III, that grass 
was recognized in both setups with 100% efficiency, while 
only 2.49% and 4.91% improvement was obtained by 
increasing the processing window size in the case of pebbles 
and synthetic running track, respectively. Significant 
improvement, almost 20%, can be noticed for concrete and 
sand, while nearly 30% was obtained in the case of paving 
stones. The confusion matrices show that above 20% 
misclassification rate occurs between concrete and paving 
stone, which almost totally disappears by increasing the 
window width. In the case of pebbles, which is the class with 
the lowest recognition rates, 64.18% and 66.67%, 33.33% of 
the samples were classified as grass with the smallest window, 
while by increasing the window size this rate decreased to 0% 
and a 33.33% misclassification rate appeared at class 6, which 
was 0.5% with the smallest processing window size. 

TABLE I.  CLASSIFICATION EFFICIENCIES ON TRAINING DATASETS 

Window 

width 

Sensor 

gyroscope accelerometer 
gyroscope + 

accelerometer 

128 96.33% 93.16% 99.13% 

256 98.68% 96.23% 100% 

512 99.85% 99.77% 100% 

 

TABLE II.  CLASSIFICATION EFFICIENCIES ON VALIDATION DATASETS 

Window 

width 

Sensor 

gyroscope accelerometer 
gyroscope + 

accelerometer 

128 92.70% 75.12% 97.18% 

256 97.09% 82.54% 98.68% 

512 97.78% 88.99% 99.70% 

 

TABLE III.  RECOGNITION RATES PER CLASS (%) ON VALIDATION 

DATA WHEN ONLY ACCELEROMETER MEASUREMENTS WERE USED WITH THE 

SMALLEST AND THE LARGEST PROCESSING WINDOWS  

Window 

width 

Class 

1 2 3 4 5 6 

128 70.64 100.00 64.18 69.10 63.18 83.57 

512 98.79 100.00 66.67 87.88 92.12 88.48 

 

TABLE IV.  CONFUSION MATRIX (%) ON VALIDATION DATA WHEN 

ONLY ACCELEROMETER MEASUREMENTS WERE USED WITH THE SMALLEST 

PROCESSING WINDOW  

 
Target class 

1 2 3 4 5 6 

O
u

tp
u

t 
c
la

ss
 

1   0.50 9.00 22.39 0.50 

2   33.33 2.49   

3      1.00 

4 8.46  1.49  13.43 14.93 

5 20.90   16.92   

6   0.50 2.49 1.00  

TABLE V.  CONFUSION MATRIX (%) ON VALIDATION DATA WHEN 

ONLY ACCELEROMETER MEASUREMENTS WERE USED WITH THE LARGEST 

PROCESSING WINDOW  

 
Target class 

1 2 3 4 5 6 

O
u

tp
u

t 
c
la

ss
 

1    5.45 3.03  

2       

3       

4 1.21    4.85 11.52 

5    6.67   

6   33.33    

V. CONCLUSION 

In this paper, a novel method was proposed for the 
classification of different terrain types for wheeled mobile 
robots. The classification algorithm applies spectral features 
and MLP neural networks. The inertial sensors were tested 
separately and together, and different processing window 
sizes were also tested.  

The results show that significantly higher recognition rates 
can be achieved using the signals of the gyroscope sensor than 
with using only the accelerometer. The classification 
efficiencies increase by fusing the two sensor types. 

The classification efficiencies show a rising tendency by 
increasing the processing window size, but even with the 
smallest tested window size, 92.70% can be achieved on 
validation data utilizing only the gyroscope, and 97.18% 
applying both sensors. The highest classification efficiencies 
on unknown data were obtained using the largest window size, 
which were 97.78% and 99.70% with the gyroscope and the 
fused data, respectively. 

Future goals include the expansion of the algorithm with 
different indoor terrain types, the testing of the effect of 
different speeds on the algorithm, and finding the features 
with the highest effect. 
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