
Image Cluster Compression using Partitioned
Iterated Function Systems and efficient Inter-Image

Similarity Features
Matthias Kramm

Technical University of Munich
Institute for Computer Science

Boltzmannstr. 3
D-85748 Garching

Email: kramm@in.tum.de

Abstract—When dealing with large scale image archive sys-
tems, efficient data compression is crucial for the economic
storage of data. Currently, most image compression algorithms
only work on a per-picture basis — however most image
databases (both private and commercial) contain high redundan-
cies between images, especially when a lot of images of the same
objects, persons, locations, or made with the same camera, exist.
In order to exploit those correlations, it’s desirable to apply image
compression not only to individual images, but also to groups of
images, in order to gain better compression rates by exploiting
inter-image redundancies.
This paper proposes to employ a multi-image fractal Partitioned
Iterated Function System (PIFS) for compressing image groups
and exploiting correlations between images. In order to partition
an image database into optimal groups to be compressed with
this algorithm, a number of metrics are derived based on the
normalized compression distance (NCD) of the PIFS algorithm.
We compare a number of relational and hierarchical clustering
algorithms based on the said metric. In particular, we show how a
reasonable good approximation of optimal image clusters can be
obtained by an approximation of the NCD and nCut clustering.
While the results in this paper are primarily derived from PIFS,
they can also be leveraged against other compression algorithms
for image groups.

I. INTRODUCTION

Extending image compression to multiple images has not
attracted much research so far. The only exceptions are the
areas of hyperspectral compression [1]–[3] and, of course,
video compression [4], which both handle the special case
of compressing highly correlated images of exactly the same
size.

Concerning generalized image group compression, we re-
cently researched an algorithm which works by building a
special eigenimage library for extracting principal component
based similarities between images.

While the algorithm presented in [5] is quite fast, and
manages to merge low-scale redundancy from multiple images,
it fails to detect more global scale redundancies (in particular,
similar image parts which are both translated and scaled),
and also has the problem of becoming “saturated” quite fast
(i.e., the more images in a group, the worse the additional

compression rate of the individual images), which limits the
size of possible image groups.

In this paper, we present a novel algorithm for image groups,
which is based on PIFS compression [6], and thus manages
to exploit several high-level redundancies, in particular scaled
image parts.

Compression of image sequences using PIFS was done
previously (in the context of video compression) in [7], [8].
However, in these papers, both the frames/images contributing
to one compression group as well as the order of those images
is predetermined by the video sequence. Furthermore, images
need to be of the same size, which can’t be assumed for most
real-world image databases. Here, we specify a multi-image
PIFS algorithm which works on images of arbitrary sizes, and
also allows to cluster image databases into groups so that
compression of each group is optimized.

The rest of this paper is organized as follows: We first derive
the multi-image PIFS algorithm by generalizing the single-
image PIFS algorithm. We also describe a way to optimize said
algorithm using DFT lookup tables. Afterwards, we take on
the problem of combining the “right” images into groups, by
first describing efficient ways to compute a distance function
between two images, and then, in the next session, comparing
a number of clustering algorithms working on such a distance.
The final algorithm is evaluated by compression runs over a
photo database consisting of 3928 images.

II. THE COMPRESSION ALGORITHM

PIFS algorithms work by adaptively splitting an image I
into a number of non-overlapping rectangular “range” blocks
R1 . . . Rn (using a quadtree algorithm with an error threshold
εmax), and then mapping each range block R onto a “domain”
block D (with D being selected from a number of rectangular
overlapping domain blocks D1, . . . , Dm from the same image)
which is scaled to the dimensions of R by an affine transform,
resulting in a block D̂, and is henceforth processed by a
contrast scaling c and a luminance shift l:

Rxy = cD̂xy + l (1)

The contrast and luminance parameters can either be derived
using a search operation from a number of discrete values
c1, . . . , cN and l1, . . . , lM :

cR,D, lR,D =
argmin

ci, lj

∑
x,y∈dim(R)

(ciD̂xy + lj −Rxy)2

They can also be calculated directly by linear regression:

cR,D =
|R|

∑
D̂xyRxy−

∑
D̂xy

∑
Rxy

|R|
∑

D̂2
xy−(

∑
D̂xy)2

(2)

lR,D = 1
|R| (

∑
Rxy − cR,D

∑
D̂xy) (3)

with
∑

=
∑

x,y∈dim(R).

The quadratic error between a range and its domain block
mapping is, for both cases:

ε =
∑

(cR,DD̂xy + lR,D −Rxy)2

which can also be written as

ε = c2
R,D

∑
D̂2

xy + |R|l2R,D +
∑

R2
xy − 2lR,D

∑
Rxy +

+2cR,DlR,D

∑
D̂xy − 2cR,D

∑
D̂xyRxy

(In [9], [10], the idea was brought forth to use the transform
Rxy = c(D̂xy −

∑
D̂xy) +

∑
Rxy , so that only the contrast

parameter c needs to be derived, which provides slightly better
image quality if quantization is taken into account for the
calculation of c. In our method, we however use the linear
regression model, for simplicity.)

The domain block D to be mapped to the range block R
needs to be searched in all available range blocks DI from the
image I , by minimizing:

D =
min

D ∈ DI

∑
(cR,DD̂xy + lR,D −Rxy)2 (4)

In the proposed multi-image compression method, equation
(4) is now extended to a group of images I:

D =
min

D ∈ DI

I ∈ I

∑
(cR,DD̂xy + lR,D −Rxy)2 (5)

Hence, domain blocks are collected from a number of im-
ages, and also images are allowed to cross-reference each other
(see Fig. 1). Decompression works by crosswise recursion, in
which all images are decompressed simultaneously (see Fig.
2).

In our implementation, we assume that domain blocks are
always twice the size of range blocks, similar to the algorithm
described in [11].

Fig. 1. Cross references between PIFS compressed images of an image group

Fig. 2. Crosswise recursive decompression of two images.

Notice that e.g. in [12], methods which don’t require any
searching of domain blocks were devised — They do, how-
ever, base on the assumption that a given domain block is
always most similar to it’s immediate surroundings, a fact not
extensible to multi-image compression.

Search of the domain blocks in our algorithm is performed
by preprocessing a number of relevant parameters, in particular∑

D̂xy ,
∑

D̂2
xy and

∑
Rxy and

∑
R2

xy , so that only∑
RxyD̂xy (6)

needs to be calculated for each range and domain block
combination.

The calculation of (6) as well as the preprocessing of∑
D̂xy ,

∑
D̂2

xy ,
∑

Rxy and
∑

R2
xy can be done very ef-

ficiently by using the Fast Fourier Transforms, analogous to
the covariance method used in [13], which takes advantage of
overlapping domain blocks:

RxyDxy can be calculated for all domain blocks
Di, . . . , Dm simultaneously for a given R, by preprocessing

F(Ij)C for all Ij ∈ {I1, I2, . . . , In} subsampled1 by factor 2,
and then filtering all those images using the range block (A ·B
denotes element-wise multiplication):

M = Cov(Ij , R) = F−1(F(Ij)C · F(R)) (7)

In the array M , M(u, v) will then contain
∑

RxyD̂xy for
the domain block D̂ at the position 2u, 2v in the image to be
compressed, so that the matching of a domain block against
a range block can be done in 10 flops analogous to the single
image variant presented in [13].

The algorithm hence uses one preprocessing loop and two
nested loops over all images:

Algorithm 1 MULTI-IMAGE-PIFS(I1, I2, . . . , In)

1: for Ij ∈ {I1, I2, . . . , In} do
2: Scale Ij down by 2, store result in S
3: Precalculate:
4: Fj = F(S)C

5: rj,u,v =
∑

x<u,y<v Ij,x,y for all u, v

6: r2
j,u,v =

∑
x<u,y<v I2

j,x,y for all u, v
7: dj,u,v =

∑
x<u,y<v Sx,y for all u, v

8: d2
j,u,v =

∑
x<u,y<v S2

x,y for all u, v
9: end for

10: for Ij ∈ {I1, I2, . . . , In} do
11: for all range blocks R ∈ Ij do
12: Calculate K = F(R))
13: for Ik ∈ {I1, I2, . . . , In} do
14: Calculate M = F−1(Fk ·K)
15: for all domain blocks Dk,m ∈ Ik do
16: Calculate c, l from M, rj , r

2
j , dk, d2

k

17: Quantize c, l
18: Calculate εk,m from c, l, M, rj , r

2
j , dk, d2

k

19: end for
20: end for
21: Find smallest ε from all εk,m

22: if ε > εmax then
23: Split range block R
24: else
25: Write out k, m, c, l
26: end if
27: end for
28: end for

III. IMAGE SIMILARITY

Image databases typically consist of tens of thousands of
images. The algorithm needs to compress all images in a group
as a whole2, and, more importantly, also needs to decompress
the whole group in order to retrieve a single image.

1We assume a fixed size for the Fourier transform, big enough to encompass
all images I1, . . . In. When F is applied to an image or a block smaller than
this size, it is zero-extended.

2Images can be added to a compressed file by allowing the new image
to reference the already existing images, but not vice versa. Also, adding
an image to a compressed file provides worse compression results compared
to adding the image to the initial set. It’s also slower, as all domain block
information needs to be calculated again.

Hence, it’s desirable to split the input data into manageable
clusters. Here, the opportunity presents itself to organize the
clusters in a way that compression is optimized, i.e., that
relevance is paid to the fact which images benefit most from
each other if placed into the same cluster.

In order to partition the database in such a way, a metric
specifying a kind of compression distance between to images
need to be devised (so that the clustering algorithm will know
which images are “similar” and should be placed in the same
group).

Using the normalized compression distance (NCD) from
[14], this can be expressed as

NCDI1,I2 =
CI1,I2 −min(CI1 , CI2)

max(CI1 , CI2)
(8)

with CI1,...,In the compressed filesize of compressing im-
ages I1, I2, . . . , In together, and CIk

the filesize of a compres-
sion run on just a single image.

This metric can both be interpreted as similarity between
I1, I2 as well as the quality of a cluster formed by I1, I2. A
lower value of NCDI1,I2 denotes that I1 and I2 have a more
close resemblance.

It’s important to notice that, in our case, the NCD is not
necessarily a “true” metric (The PIFS compressor is not a
“normal” compressor [14]). In particular, NCDI,I 6= 0 if
the PIFS algorithm considers only domain blocks larger than
region blocks (As in our case3). This is due to the fact that
the “second” image doesn’t contain any additional information
which improves the compression of the first image (The
domain blocks don’t differ from those already available from
the first image).
This abnormal behaviour of the metric function disappears,
however, once the images are at least slightly dissimilar
(see Fig. 3), so this doesn’t present a problem in practical
applications.

We found that at least for some clustering algorithms, it’s
sometimes more efficient and produces better results if we
work on a slightly simpler function, the function of preserved
bytes:

b+
I1,I2,...,In

= CI1 + CI2 + . . . + CIn − CI1,I2,...,In (9)

The function b+ can also be applied to image groups of
more than two images, and describes the number of bytes
that were saved by combining the images I1, I2, . . . , In into a
common cluster, which is also a more intuitive way of defining
a similarity function. The higher the value of b+

I1,I2,...,In
, the

more resemblance between I1, I2, . . . , In.
Since during clustering, a huge number of images need to

be “compared”, it’s advisable to find faster approximations to

3It’s possible for region blocks and domain blocks to be of the same size
with the algorithm still converging, as long as the mappings between images
are never circular. This can be accomplished by disallowing mappings from
any image Ij to the images Ij , Ij+1, . . . , In. Algorithm constructed using
this kind of model bear a close resemblance to the motion compensation
technique used in video compression.

Fig. 3. NCD Image similarity based on PIFS- an image is not similar to itself under the fractal NCD metric, if domain blocks are always larger than region
blocks.

the metrics (8) and (9). An obvious approach is to count the
number of mappings spanning between images (i.e., where the
domain block is in a different image than the range block), as
opposed to mappings which stay in the image (domain block
and range block are in the same image) — also see Fig. 5.
It’s also possible to, instead of counting the number of
references, calculate the sum of εIj − εI1,...,Ij−1,Ij+1,...,In for
all inter-image references (with εIj being the smallest error
for domain blocks out of image Ij , and εI1,...,Ij−1,Ij+1,...,In

the smallest error for domain blocks out of all other images),
a value which grows larger the more mapping error is reduced
by introducing more images.

This type of metric has the advantage that we don’t neces-
sarily need to evaluate all range blocks, but can randomly pick
a sample, and derive the metric only for that sample, therefore
optimizing the speed the image comparison takes.

However, it’s also a somewhat artificial approach, and
doesn’t relate too well to the PIFS compression properties
— it doesn’t take into account the extra bits we need in
order to store (more) image-to-image references, and it’s also
hard to model the error threshold behaviour, where a new
quadtree node is introduced every time a range block can’t
be sufficiently encoded on a specific scale, causing the output
stream size to increase non-linearly.

Another option is to introduce an approximation to the
NCD by subsampling the images in question by factor two, or
even four, and then calculating the NCD on the subsampled
images according to equation (8). This metric is a closer
approximation to the NCD than the other two metrics (see
Fig. 4), and is also the metric which we chose for subsequent
experiments.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02

0.
80

0.
85

0.
90

0.
95

1.
00

1.
05

subscale NCD approximation

N
C

D

Fig. 4. NCD compared with a NCD derived from images which were
subsampled by factor two in both dimensions before compression. Each dot
corresponds to an image pair, randomly selected from 128 example images.

While the subsampling and following domain block
searches can be performed quite efficiently (especially when
using the precalculations for each image introduced in the last
section), we still have to do a compression run on each image
pair, which, especially for large databases, may take some
time.

We hence also tried a different approach, and tested ap-
proximations of the “fractal similarity” using classical visual
image similarity features, like tf/idf ratios of local Gabor filter
and luminance histograms. These are features which can be
precalculated for each individual image, and furthermore can

Fig. 5. Two image pairs, which are considered more similar and less similar under the PIFS reference distance metric.

also be stored in an inverted file, for faster lookup [15].
A software package exists [16], which can be used for

extraction of these features, and for creating the inverted file
database. We applied the algorithm to the grayscaled images
only, so that the color histogram features of this package only
measured the luminance components of our test data set.

IV. CLUSTERING OF IMAGES

Using the metric b+ from the previous section, one can
create a weighted hypergraph out of the images (see Fig. 6),
i.e. a hypergraph where each weight describes the number of
bytes saved by combining the images the edge is adjacent to
into a group.

If the only goal is to optimize compression rates (i.e., the
final number of bytes the images use), we need to find the set
of edges with the maximum weight which covers all vertices.
In other words, we need to find a maximum matching for that
hypergraph (See Fig. 7).
Maximum matching for (hyper-)graphs is an NP-hard problem,
and, above all, would need all hyperweights (2n − 1 values)
in the given graph, so unfortunately, calculating the maximum

Fig. 6. A b+ weighted hypergraph. For every edge, the number of bytes saved
by combining the corresponding images is depicted.

matching is not a practical solution, and we have to find an
approximation.

Fig. 7. A maximum matching for the hypergraph from Fig. 6. By combining
the upper, left and lower image into a group, and compressing the right image
using single-image compression, the maximum number of bytes is saved.

Another problem is that since compression time grows
quadratically with the number of images in a group, it’s
inefficient to compress image groups beyond a given size.

We found that by using clustering algorithms (a type of
algorithm usually more common in the fields of data analysis
and image segmentation), we can find approximations to
the image grouping problem while using significantly less
computing time.

We considered a number of different clustering algorithms,
which all have different advantages and disadvantages, and
which will described in the following.

• MST clustering: An algorithm which calculates the
spanning tree from the distance metric, and then splits
the tree into clusters by cutting off edges. [17] [18].

• nCut clustering: A hierarchical method which treats the
complete data set as one big cluster, and then starts split-
ting the nodes into two halves until the desired number
of clusters is reached (Splitting is done by optimizing the
nCut metric [19]).

• SAHN clustering: Another hierarchical method, which in
each step, combines a node (or cluster) and another node
(or cluster), depending on which two nodes/clusters have
the smallest distance to each other. Distances between
clusters are evaluated using the sum over all distances
between all nodes of both clusters, divided by the number
of such distances [20].

• Relational k-Means: An extension of the “classical” k-
Means of multidimensional data [21], which computes
centers not by the arithmetic mean, but by finding a
“median” node with the lowest mean distance to all other
nodes [22].

• Random clustering: Distributes nodes between clusters
arbitrarily. This algorithm was included for comparison
purposes.

We did a comparison run of the aforementioned clustering
algorithms on a small image database (128 images) using both

NCD metric
Algorithm Clusters Compressed Size Nodes per Cluster
SAHN 6 3792729 94 / 16 / 8 / 4 / 4 / 2
MST 6 3823392 123 / 1 / 1 / 1 / 1 / 1
k-Means 6 3852738 96 / 8 / 8 / 8 / 4 / 4
nCut 6 3864332 43 / 51 / 13 / 10 / 6 / 5
Random 6 3989745 24 / 24 / 24 / 22 / 20 / 14

Gabor filter metric
Algorithm Clusters Compressed Size Nodes per Cluster
MST 6 3880176 123 / 1 / 1 / 1 / 1 / 1
SAHN 6 3964413 69 / 45 / 10 / 2 / 1 / 1
nCut 6 3976120 28 / 25 / 21 / 19 / 18 / 17
k-Means 6 3987852 42 / 35 / 25 / 9 / 9 / 8
Random 6 3989745 24 / 24 / 24 / 22 / 20 / 14

TABLE I
COMPARISON OF DIFFERENT CLUSTERING ALGORITHMS ON A SAMPLE

SET OF 128 IMAGES

the Gabor filter metric as well as the full NCD metric, in
order to evaluate how much difference a more precise distance
metric makes. The results are depicted in Table I.

For the tested data set, the MST and SAHN algorithms
provide the best compression efficiency. MST unfortunately
accomplishes that by creating a somewhat degenerated so-
lution, which consists of removing the five images most
dissimilar to the rest of the set, and creating a big cluster
consisting of the remaining 123 images (MST therefore also
creates the configuration which takes longest to compress).
SAHN provides more evenly balanced clusters, which can be
compressed faster. An even more evenly balanced configura-
tion is created by nCut, however at the cost of slightly less
compression efficiency.

It’s worthwhile to note that the rough approximation to the
NCD, using Gabor features, only results in a slight trade-off
concerning compression efficiency, but has the advantage of
greatly accelerating the speed with which the clustering is done
— for 128 images, 1

2128 ·128+128 = 8320 compression runs
otherwise need to be performed on single images and image
pairs. For the feature based metric, on the other hand, only a
few inverted file lookups are necessary [23].

While in the small sample set of 128 images, compressing
an overlarge image group is still feasible, for larger image
databases, care needs to be taken that clusters don’t exceed be-
yond a maximum size. As the time needed for the compression
is determined by the largest cluster in a given configuration
(The algorithm is O(n2)), care needs to be taken that the
algorithm in question doesn’t generate degenerate solutions
(like the MST configuration from Table I) when processing
larger data sets.

We accomplish this by recursively applying the clustering
algorithm again to all image groups which are beyond a given
threshold. For this evaluation, a maximal cluster size of 16
will henceforth be used. Furthermore, in order to prevent
against excessive fragmenting, we iteratively combine pairs
of groups which together are below that threshold into a
common group. Some of the algorithms (like RACE) tend
to create more balanced clusterings, and as such need fewer

Random:
-1061157

nCut:
+1126455

SAHN:
+1463063

MST:
+1601029

kMeans:
+1660952

-1000000

-500000

0

500000

1000000

1500000

Saved Bytes for different
clustering algorithms (3928 images)

Fig. 8. Compression result difference of our 3928 sample images against the
filesize of single image compression, for different clustering algorithms.

postprocessing than others (like MST or Greedy), which need
several postprocessing iterations.

As some of the mentioned clustering algorithms are too
expensive to apply on a large data set (e.g. nCut needs to solve
a generalized Eigenvalue problem for a matrix of size n × n
in order to cluster n images), we also fragment the data into
chunks before the initial clustering. We used a chunk size of
256 in our experiments. This only applies to the MST, SAHN
and nCut algorithms.

Using those algorithm improvements, we tested a data set
of 3928 sample images4, the results are depicted in Fig. 8.

We note that using an arbitrary clustering (Random), the
compressions results are worse than with single-image com-
pression. This happens because with more images in a given
image group, also number of bits needed to encode the the
inter-image differences grows. This puts further emphasis
to the fact that in order to successfully apply multi-image
compression, it’s crucial to first cluster the images into well-
matching groups.

We also note that technically superior algorithms (like nCut
or SAHN) which can only be applied to subsets of the data are
apparently less attractive than easier algorithms, like Relational
k-Means, which can work on the full data set.

V. CONCLUDING REMARKS

In this paper, we derived a new image cluster compres-
sion algorithm based on Fractal Partitioned Iterated Function
Systems (PIFS) for multi-image compression, which is able to
outperform its single-image variant considerably. We also pre-
sented methods for splitting image databases into manageable

4We used images from our own image library, in particular a
set consisting of agricultural images, containing both landscape,
machinery and indoor photographs. The images are accessible at
http://mediatum2.ub.tum.de/node?id=11274&files=1.
The total size of the (uncompressed) images is 4.8 Gb.

groups for compression with said algorithm. Using a feature-
based metric, very large image databases can be partitioned
into manageable clusters for being compressed with the multi-
image PIFS algorithm. If the number of images is smaller and
further compression efficiency is needed, the images can be be
clustered using a more expensive metric, which clusters images
using an approximation of the the Normalized Compression
Distance (NCD) and produces better cluster configurations, at
the cost of more computing time.

VI. FURTHER RESEARCH

The presented algorithm can easily be extended to irregular
partitions, which in previous research have shown much better
coding results [24].

We also would like to compare the compression rates of the
algorithm with other (single-image) compression strategies,
like JPEG2000 or JPEG XR. For these comparisons to be
informative, the fractal coder also needs to employ a compet-
itive empirical model for encoding the inter-image inter-block
distances.

Furthermore, since apparently a connection exists between
PIFS compressibility (and the simplified metrics) of two
images and shared visual features of those images, an in-
teresting research field is the approximation of visual image
distinguishability using PIFS based NCD, similar to [25]. For
this, the PIFS algorithm would optimally also support more
fine-grained scaling and maybe even rotation.

We also plan to develop a number of other image cluster
compression algorithms using different strategies, also extend-
ing into the field of lossless image compression.

ACKNOWLEDGMENT

This work is part of the IntegraTUM project, which was
realised under partial funding by the German Research Foun-
dation (DFG) from 2004 to 2009, and also funded (in the
same amount) in the context of TUM’s InnovaTUM program,
with further substantial contributions by the permanent staff
of the Technical University of Munich (TUM) and the Leibniz
Supercomputing Centre (LRZ).

REFERENCES

[1] J. Saghri, A. Tescher, and J. Reagan, “Practical transform coding of
multispectral imagery,” 2005, pp. 32–43.

[2] J. Lee, “Optimized quadtree for karhunen-loeve transform in multispec-
tral image coding,” Image Processing, IEEE Transactions on, vol. 8, pp.
453–461, 1999.

[3] Q. Du and C.-I. Chang, “Linear mixture analysis-based compression for
hyperspectral image analysis,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 42, pp. 875–891, 2004.

[4] L. Torres and E. Delp, “New trends in image and video compression,”
Proceedings of the European Signal Processing Conference (EUSIPCO),
pp. 5–8.

[5] M. Kramm, “Compression of image clusters using Karhunen Loeve
transformations,” in Electronic Imaging, Human Vision, vol. XII, no.
6492, 2007, pp. 101–106.

[6] M. Barnsley and A. Sloan, “A better way to compress images.” Byte,
vol. 13, no. 1, pp. 215–223, 1988.

[7] M. Lazar and L. Bruton, “Fractal block coding of digital video,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 4, no. 3,
pp. 297–308, 1994.

[8] K. Barthel and T. Voye, “Three-dimensional fractal video coding,” Image
Processing, 1995. Proceedings., International Conference on, vol. 3,
1995.

[9] C. Tong and M. Wong, “Adaptive approximate nearest neighbor search
for fractal image compression,” Image Processing, IEEE Transactions
on, vol. 11, no. 6, pp. 605–615, 2002.

[10] S. Furao and O. Hasegawa, “A fast and less loss fractal image cod-
ing method using simulated annealing,” Proceedings of Seventh Joint
Conference on Information Sciences, 2003.

[11] M. Nelson, The data compression book. M&T Books.
[12] S. Furao and O. Hasegawa, “A fast no search fractal image coding

method,” Signal Processing: Image Communication, vol. 19, no. 5, pp.
393–404, 2004.

[13] H. Hartenstein and D. Saupe, “Lossless acceleration of fractal image
encoding via the fast Fourier transform,” Signal Processing: Image
Communication, vol. 16, no. 4, pp. 383–394, 2000.

[14] R. Cilibrasi and P. Vitani, “Clustering by Compression,” Information
Theory, IEEE Transactions on, vol. 51, no. 4, pp. 1523–1545, 2005.

[15] D. Squire, W. Müller, H. Müller, and T. Pun, “Content-based query of
image databases: inspirations from text retrieval,” Pattern Recognition
Letters, vol. 21, no. 13-14, pp. 1193–1198, 2000.

[16] “GiFT - Gnu Image Finding Tool,” http://www.gnu.org/software/gift/.
[17] Y. Xu, V. Olman, and D. Xu, “Minimum Spanning Trees for Gene

Expression Data Clustering,” Genome Informatics, vol. 12, pp. 24–33,
2001.

[18] A. Jain, M. Murty, and P. Flynn, “Data clustering: A review,” ACM
Computing Surveys, vol. 31, 1999.

[19] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 8, pp. 888–905, 2000.

[20] W. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods,” Journal of Classification, vol. 1, no. 1,
pp. 7–24, 1984.

[21] D. Keim and A. Hinneburg, “Clustering techniques for large data sets
— from the past to the future,” Conference on Knowledge Discovery in
Data, pp. 141–181, 1999.

[22] A. Hlaoui and S. Wang, “Median graph computation for graph clus-
tering,” Soft Computing-A Fusion of Foundations, Methodologies and
Applications, vol. 10, no. 1, pp. 47–53, 2006.

[23] M. Rummukainen, J. Laaksonen, and M. Koskela, “An efficiency
comparison of two content-based image retrieval systems, GiFT and
PicSOM,” Proceedings of international conference on image and video
retrieval (CIVR 2003), Urbana, IL, USA, pp. 500–509, 2003.

[24] M. Ruhl, H. Hartenstein, and D. Saupe, “Adaptive partitionings for
fractal image compression,” Proc. IEEE Int. Conf. Image Processing,
vol. 3, pp. 310–313, 1997.

[25] N. Tran, “The normalized compression distance and image distinguisha-
bility,” Proceedings of SPIE, vol. 6492, p. 64921D, 2007.

