Copyright © 2007 IEEE

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the terms and constraints invoked by each
author's copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

&/n«éﬂt f%é’/y /75»/73—-7 HbeC 266

0 FEB -ER -

Searching services ‘“on the Web™": A public Web services discovery approach

Chen Wu and Elizabeth Chang
Digital Ecosystems and Business Intelligence Insritute
Curtin University of Technology, Perth 6845, Australia
{Chen.Wu, Elizabeth.Chang}@ cbs.curtin.edu.au

Abstract

With the surge of Service-Oriented Architecture
(SOA) and Web services, service discovery has become
increasingly crucial. Public Web services that are
available “on the Web" provide unlimited values for a
great number of online service consumers and
developers. However, the public UDDI Business
Registry — the primary service discovery mechanism
over the Internet — has been shur down permanently
since 2006. This has raised serious problems for public
Web services discovery. In this paper, we propose a
WSDL-based public Web service discovery approach.
It provides a simple-to-use yet effective Web service
discovery mechanism that can retrieve relevant Web
services directly from the Internet to suffice various
requirements. The major contributions of this paper
include: (1) a review on the state-of-the-art WSDL-
based Web services discovery approaches: (2) the
unique WSDL crawling and manipulation algorithms
catering for the Vector Space Model, and (3) a proof-
of-concept prototype — an online Web services search
engine — based on the proposed approach.

1. Introduction

Gartner [1] has reported that, by the year 2010, 80%
of application software profits growth will be driven by
products based on Service-Oriented Architecture
(SOA). This will bring all the SOA benefits such as
loose-coupling, flexibility, process composability, etc.
into most commercial software products. Moreover,
with the rising evolution of SaaS (Software-as-a-
Service), increasing software or even hardware will fit
into the SOA paradigm. Various service users (e.g.
designers, developers, consumers, etc.) need to know,
in a cost-effective manner, what kind of services is
available “on the Web”, what their detailed capabilities
are, and how they can be used under different business
contexts. This has made service discovery of

paramount importance. Service discovery paves the
way for conducting further important SOA activities

such as service binding, sharing. reusing, and
composing in a dynamically changing business
environment.

However, the public UDDI Business Registry — the
primary service discovery mechanism over the Internet
— has been shut down permanently since January 12,
2006' due to several reasons [2-5]. This has made the
most important public Web services discovery
mechanism missing from the Web services community.
It does not mean public service registry will totally give
way to “private registries”. As suggested in [6], the
central registry will continue to be a universally-known
reference for many companies that “cannot serve a
request locally”. This is because most private registries
would focus on a specific, closed domain such as the
corporate network. Hence, in an open, loosely-coupled,
demand-driven business environment, a dedicated
public Web service registry is still essential to SOA.

In this paper, we will propose a WSDL-based Web
service discovery approach, aiming to provide simple
yet effective Web service discovery mechanism that
can retrieve relevant Web services from the Internet to
serve a wide range of users such as service consumers,
service developers, service deployers, and service

brokers. The solution leverages well-established
research models from research fields including:
Information Retrieval (IR), Natural Language

Processing (NLP), XML Retrieval, etc. in order to fully
utilise texts contained in the service description —
WSDL files.

The rest of this paper is structured as follows.
Section 2 presents the conceptual framework and
details the service discovery approach. Evaluation
results are presented Section 3. Section 4 provides a
succinct review on the related work. The paper
concludes in Section 5.

: http//uddi. microsoft.com/about/ FAQshutdown. htm

2. The Discovery Approach

The overall service discovery approach is
illustrated in Figure 1 consisting of four major steps.
Due to the page limit, we will focus on the first two
steps in which original work has been carried out. The
last two steps can be realised using many existing
Vector Space Model (VSM)-based search engine
techniques. The basic idea is thus to convert the service
discovery problem into the classic VSM indexing and
searching problem while reserving unique features (e.g.
structural information) in WSDL documents.

Consumer &ol.ﬂ Pm:uk-n
WSDL files
WSDL
Web ul ’ URL Server
Frepracessar

‘ Content Extraction W
.
WaDL
Search anmml. Expansion
Processor
Handler (
Lnguishic Analyss |
VectorSpace Model

L m .lndvxﬂ

WEDL Indices

Figure 1 The overall approach

2.1. WSDL Crawling and Preprocessing

Crawling is an essential function for a Web search
engine as it provides primary input for indexing and
searching. In general, web crawlers utilise the graph
structure of the Web to move from one page to another.
When thinking of applying Web crawling techniques
into WSDL, several characteristics distinguish the
crawling algorithm. First, there are no links in WSDL
files that can connect one WSDL file with another.
Aiming at describing a single Web service, WSDL is
not meant to be used for connecting different Web
services. Hence, the crawler cannot simply generate
more WSDL pages out of several seeds WSDL files.
This problem has made crawling WSDL files become
difficult and different from existing crawling
approaches relying on ‘graph search problem’ analysis
[7]. Moreover, assuming the link mechanism can be
solved at the later stage, how to determine the initial
seed pages that can later produce more WSDL files
remains an open issue.

Previous studies [4. 5] have suggested that three
discovery candidate sources can be utilised for service
retrieval: UDDI Business Registry, public Web
services registries, and customised commercial search
engines. As indicated by existing studies and practices
[2, 3. 5] and [4], UBR has several critical problems
{e.g. unknown ranking mechanisms, missing
verification and business models, the ‘experimental’
nature, etc.), which have made “UDDI registries are not
good start” [5]. Moreover, the permanent shutdown of
the public UDDI has made UBR unavailable to start
with.

Public Web services registries are online service
registries that usually do not comply with the UDDI
specification. According to [5], these online registries
in fact host more available Web services that can be
remotely invoked and used by service consumers.
Therefore, they are more widely used amongst Web
services development communities. The main problem
is that they do not include Web services which are
available but not yet registered. Moreover, the numbers
of registered services provided by these registries are
“vague and imprecise” [4]. The quality of these
registered Web services can be worse given that only
60% of these registered services are valid, leaving
almost half of these registered Web services
unreachable [5].

Customised commercial search engines generally
provide large numbers of online Web services in the
form of WSDL files. For example, Google indicates
that over 25,600 WSDL files are found from its index
when searching for “FILETYPE:WSDL”. However,
the validity of these WSDL files cannot be guaranteed
as Google does not support WSDL file format. Hence,

WEDL URLs Distribution [size = 22 863) Google Valid
12%

Google
Invalid
1%

Unfetchabie
46%

Figure 2 The conceptual model

many non-WSDL (e.g. HTML) files are also included
in the result lists simply because their file names end
with “.WSDL"”. According to our experiment (Figure
2). only 12% of Google results are invalid WSDL files.
This does not include many returned URLSs that cannot
reference to a file representation at all. Moreover, due
to the restricted use of official Google API, only the

first 1,000 files from the result list are available for the
same query (e.g. “FILETYPE:WSDL”). Thus,
technically, one can only obtain approximately 120
valid WSDL files from Google’s huge (nearly 10
billion) web page index.

Therefore, we have employed a hybrid approach
that utilises both public Web services registries and the
Google search engine. First, we directly collect WSDL
file sources [5] with roughly one thousand valid WSDL
files. For Google, we designed an algorithm that
utilised an English dictionary to enumerate the word
list that contains 57, 046 English word entries. For each
word entry, it conducts the Google query, attempting to
search all relevant WSDL-like files that also contain
this word as evaluated by Google. Theoretically, this
will bring totally 57, 046 X 1,000 WSDL files from
Google. However, in practice, most word entries do not
return any results, and most words have returned less
than 10 files. Moreover, many URLs are returned more
than once under different word entries. The algorithm
has returned totally 22,103 URLs (Figure 2) that can
potentially generate WSDL files. Compared to 25,600
files reported in [4]. this algorithm has covered
approximately 86% of the entire WSDL files collection
indexed by Google.

The next step is to dereference each URL in order to
fetch the content of the WSDL file. In our algorithm, a
number of independent crawlers work in parallel to
download WSDL files based on URLs fed by the
URLServer. All crawlers are available in the
CrawlerPool, which reuses idled crawlers in order to
control the resource consumption. Each crawler is
realised as an autonomous working thread. The
algorithm first retrieves a list of URL and allocates
them to each crawler as a separate job. For each job,
the crawler fetches the WSDL file given the URL and
saves it to a specified location. In our experiment, this
algorithm has fetched totally 10,255 WSDL files.

WSDL Preprocessing is crucial in that many WSDL
files from Google are invalid. Therefore, we designed
an algorithm to scrutinise these WSDL files. We then
categorise these invalid WSDL files into three different
groups. This way, we can afterwards conduct an
analysis on the nature of these invalid WSDL files,
which in turn can improve the crawling algorithm. At
this stage, this is particularly useful for discovering
more WSDL links out of HTML files that had been
mistakenly identified as WSDL files by Google. Each
WSDL file is parsed by a regular WSDL parser. When
encountering invalid WSDL files, the algorithm checks
whether it appears to be a HTML file. If yes, it is then
sent to an HTML parser in attempt to find out some
HTML links that might point to ‘real” WSDL files.

These potential WSDL links are sent to URLServer,
waiting for the next round of crawling.

Based on results collected from both crawling and
preprocessing, we provide the WSDL file distribution
in Figure 2. The number of WSDL URLSs is 22,863, of
which Google focused crawling provides 22,103 URLs,
the remaining 760 URLs come from [5]. The original
data source in [5] was reported to contain 1,544 valid
WSDL URLs. However, some of them duplicate with
the URLs obtained from Google. Moreover, some are
not reachable (e.g. all services from the registry
‘Salcentral.com’ are not available anymore) during the
time of our experiment. Overall, this leaves only 760
valid public Web services registry-based URLs in our
experiment, which amounts to 3% of the total URLs.

As shown in Figure 2, only 12% of the URLs point
to retrievable and valid WSDL files. This number is
almost the same as invalid WSDL URLs (11%). This
means that nearly half of the ‘real’ (vs. HTML) WSDL
files on the Internet are invalid, putting the quality of
public WSDL files in to a question. Future research can
be done in order to gain better understanding of the
reasons for the half invalid WSDL files. As the largest
hitherto Web search engine, Google has returned 6439
HTML files where WSDL files are desired, taking up
to 28% of the whole sample URLs. This is because
Google has not yet rigorously indexed the WSDL files,
including all HTML files with “"WSDL"” suffix in the
result list. However, these HTML files provide entries
to many ‘hidden” WSDL files connected by HTML
links. A very promising research direction is thus to
analyse all these “WSDL portal-like” HTML pages and
to infer the relation between them and WSDL files in
order to create the WSDL focused crawling without
using Google. Finally, it is clear that almost half (46%)
of the URLs are not reachable during the time of
fetching. This problem can be caused by many factors
such as slow network connection, DNS failure/timeout,
firewall restriction, or even temporarily server
shutdown, etc.

2.2. WSDL Processing

2.2.1. Content Extraction. A decision has to be made
as to which XML nodes (e.g. elements, attributes,
comments, etc.) will be extracted. Let us consider the
stock price WSDL” in WSDL 1.1 specification as an
example. Presumably, the name attribute of an XML
element represents the semantics for that particular
element. Hence, the value (i.e. “nmtoken”) of attribute

? Due to the page limit, refer to hitp//www w3 org/TR/wsdl#_style

“name” is important. For example, the value (e.g.
“GetLastTradePrice””) of the “name” attribute for
element <operation /> carries useful information
implying the purpose of this operation at the lexical
level. Therefore, values (i.e. “nmtoken™) of attributes
“name” are extracted from a number of important
WSDL elements — “definitions”, “message”, “part”,
“portType”, “operation”, “input”, “output”, “service”,
and “port”. Moreover, the value of “uri” attribute for
element “targetNamespace” is also extracted to identify
the service provider. It can also be used for matching
two “nmtoken” from different WSDL files but with the
same namespace. For the implementation purpose, the
WSDL file needs to be parsed into object model, which
in turn gives rise to all the extracted value of name
tokens.

Note that the value (i.e. “gname”) of attribute
“element” for element “part” is also extracted for
capturing the data structure of the parameters sent to
and from the service operations. This leads to the
recursive extraction of underlying data types for this
element and/or type. In this example, the value (i.e.
“body”) of attribute “name” for element “part” gives
little useful information representing the real meaning
of the input message part. Nevertheless, values (i.e.
“TradePriceRequest” and “TradePrice”) of attribute
“element” provide very valuable data in understanding
the meaning of two message parts. Delving into the
data structure of these two elements defined within the
WSDL element “types” and “schema”. one can find
more important lexical information of these two
message parts by extracting the value of attribute
“name” for element “element”. Thus, in the case of
“TradePriceRequest”, the element value is
“tickerSymbol”. For “TradePrice”, “price™ is extracted.
Thus, by solely exploring lexical information, one can
speculate that this Web services takes as input the stock
ticker symbol, and returns as output the price of the
corresponding stock. The related operation name
“GetLastTradePrice” also supports this proposition.

2.2.2. Fragment Expansion. In preparing XML
documents for full-text information retrieval, Lehtonen
[8] has raised two major issues — fragment selection
and fragment expansion. Section 4.2.1 has mainly dealt
with the issue of fragment selection, where “nmtokens”
in various WSDL elements have been extracted for
further processing. In this section, we focus on the
second issue fragment expansion, a process during
which plain texts extracted from XML nodes are
manipulated (e.g. addition, removal, reordering, etc.) in
order to improve the retrieval precision. The basic idea
of fragment expansion is to retain some important

structure-related information before XML markup is
removed to produce plain texts. This is motivated by
the concern that XML-stripped texts often have little
metadata (e.g. structural) information that, if otherwise
presented. could be crucial in determining the retrieval
precision. Following this idea, we define as follows two
primary objectives of fragment expansion (FE) for
WSDL-based service retrieval.

First, FE shall provide different weights to term
occurrences at different WSDL locations. For example,
“nmtokens” appearing in some WSDL elements are
generally more significant than others in expressing the
overall capability of a Web service. Consider two Web
services A and B. Suppose A can provide
comprehensive weather information (e.g. temperature,
humidity, wind, waves, trend, climate comparison, etc.)
for geographic regions all over the world. Service B, on
the other hand, focuses on delivering local tourism
information such as hotels, flights, restaurants, banks,
and weather forecasts. It is clear that Web service A is
more relevant than B in response to service requests
such as ‘weather report’. However, this cannot be
guaranteed since the frequency of the word ‘weather’ in
Service A might be exactly the same as in Service B.
Second, FE shall retain some important structural
information to cater for service retrieval at various
levels of granularity. It is evident that converting all
token names from WSDL elements into plain texts will
eliminate all structural information, which sometimes
determines the service relevance to a user query. This
is particular the case when searching the WSDL
element “<operation />", where words in an operation
name constitute a complete independent business
meaning.

In order to achieve these two objectives, we have
utilised three techniques introduced in [8] -
Reduplication, Reordering, and Addition.
Reduplication is useful to achieve the first objective of
FE - ie. to provide different term weights based on its
WSDL locations. As analysed earlier, tokens in
elements such as “<service />" and “<porttype />" are
generally more important than others in describing the
overall capability of a Web service. Therefore, these
tokens are reduplicated in order to increase their
relative weights by doubling the raw frequency of
tokens in important elements. Since the whole tokens
will be duplicated, duplication will not break the
original term sequence in name tokens.

Reordering of WSDL elements and name tokens is a
strategy to delimit the phrase found in the word
sequence. This is helpful in separating “<operation/>"
from other WSDL elements in order to retain self-
descriptive phrases in “<operation/>" name tokens.

Elements in WSDL files are reordered so that all
“<operation/>" elements are placed at the end of
WSDL files. This way, tokens used in “<operation/>"
are separated and distinguishable from other elements.
On the other hand. reerdering is also useful to bring
structurally-related WSDL elements ‘closer’ in the
plain texts for the purpose of proximity queries. For
example, the “<part />" element “TradePriceRequest™
needs to be relocated to the place right before the data
type element “tickerSymbol”. As a result, a phrase
query such as ‘trade symbol’ is more likely to retrieve
this service due to the proximity between these two
words. In a nutshell, the appropriate reordering that
rearranges the original positions of WSDL elements
can improve service retrieval precision.

Addition provides more subtle impacts in separating
phrases from the same type of WSDL elements. A Web
service often has several operations. It is still
problematic to differentiate terms from two adjacent
operations once all XML markups have been removed.
Addition aims to insert extra metadata such as position
increment information before and after each occurrence
of the operation name tokens. Consider an example in
which a Web service has three operation tokens:
“upload Image”, “decode MP3", and “download
Music™. Addition will conceptually convert tokens into
manipulated texts as: “{3} upload {1} image ({3}
decode {1} MP3 {3} download {1] Music {3}". Here,
number {1} stands for the default one position
increment between two successive terms during the
tokenisation. The number “{3}” are artificially placed
to represents three position increments, which imply a
big gap between two terms.

2.2.3. Linguistic Analysis. Once extracted and
expanded, these raw name tokens cannot be utilised
directly due to various reasons such as the sub-
language patterns, machine-generated code, or
programming conventions, etc. Therefore, they need to
be converted to natural languages before being indexed
using IR models. The most important * linguistic
technique is fokenisation, by which a name token is
split into a sequence of smaller meaningful terms by a
special tokeniser. For example. the operation name
“GetLastTradePrice” shall be tokenised into four
sequential terms — “Get”, “Last”, “Trade”, and “Price™.
Seemingly, such a tokenisation appears as
straightforward as to detect the lower case letters and
upper case ones in the name token. However, the
problem can become more complicated when
considering name tokens such as

? due to the page limit, we omit other techniques here

“GetMyeBayServices”, “AUD2USD", or
“downloadMP3Music”. For example, applying the
simple capital letter rule for the first token gives the
result “Get”, “Mye”, “Bay”, and “Services”. This is not
desirable since the company name “eBay” is
mistakenly split into two different terms. As a result, a
service retrieval on “eBay” cannot match this operation,
Take the second name token as another example. It is
acceptable to generalise a rule that uses digit (e.g. *27)
as the separator to delimit acronyms “AUD” and
“USD"”. However, this rule does not work properly for
the third name token, which will be unfortunately
decomposed into separate terms — “download”, “MP”,
“37, and “Music”. Hence, it will miss out all user
queries on “MP3”, the feature all this operation is
about.

The tokenisation is based on the Maximum
Marching Algorithm (MMA). which has been widely
used for Chinese segmentation studies [9, 10]. The
basic idea of MMA is to use an external word list (e.g.
a Chinese dictionary) to verify the possible word
tokens parsed out from the unsegmented text. The
algorithm starts from the first character in a text and
reads in one character at a time to form the ‘character
sequence’ ¢s. After reading each character, it attempts
to find in the word list the longest word w that starts
with the current character sequence ¢s. If w can be also
found in the text (i.e. the remaining part of w also
matches the following characters read from the text),
the MMA marks a boundary at the end of w and starts
again from the following character using the same
longest word matching strategy until reach the end of
the character sequence. If none matching words can be
found in the word list, the first character in the
character sequence cs itself will be identified as a
single word. Table 1 demonstrates some tokenisation
results.

Table 1 tokenisation results

WSDL Names WSDL Tokens
Downloadi2Profile download, 12, Profile
findeCommerceWebsite find, eCommerce, Website

_getDNACombo get, DNA, Combo

editP3PPolicies edit, P3P, Policies

getADSL2Specification get, ADSL2, Specification
submitAdhocQuery submit, Adhoc, Query
arg(arg, 0

2.3. WSDL Indexing

Indexing refers to the process of creating and
maintaining such a critical data structure, which allows
fast searching over large amounts of data. It takes as

inputs tokenised and lemmatised terms with their
associated occurrences information in each document
and generates as outputs the compiled data
arrangement with pre-aggregated information
optimised for fast searching. The data structure of
inverted index is consistent with the notion of trerm-
document matrix, which consists of term vectors as
matrix rows and document vectors as matrix columns.

2.4. WSDL Searching

During the service retrieval, the well-crafted index
data structure will be looked up and fully utilised in
order to find WSDL files containing words in the query
from service consumers and brokers. In a typical
service retrieval scenario, a service consumer submits
his or her service query via the Web user interface to
search intriguing Web services. In response, the service
retrieval module (e.g. a search engine) analyses and
converts the query into tokens. which are then
compared with terms in the inverted index in order to
find term occurrences. The list of occurrences is
returned to the service consumer through the Web UL
[11] has generalised three major steps for searching on
an inverted index — Vocabulary search, Retrieval of
occurrences, and Manipulation of occurrences.
Therefore, we have built the process of service retrieval
based on these three steps. Furthermore, an extra effort
has been conducted for service relevance ranking based
on the Cosine Similarity. We have thus added this
important VSM activity as the fourth step — Ranking of
occurrences. The search engine Ul and the sample
searching result is shown in Figure 3.

3. Evaluation

In this section, we provide the evaluation result from
our experiments regarding the matchmaking
performance and the scalability of the search engine.
To test the matchmaking performance, we carry out 10
queries that contain the most frequently entered query
terms that had been captured by the search engine’s
logging system. We then measure the Precision and
Recall respectively. We finally calculate the average
precision values [11] at each recall level as shown in
the Precision-Recall curves as shown in Figure 4. For
the scalability test, we measure the average time
duration and memory consumption during the
searching process given the increasing number of
service consumers. The result is shown in Figure 5. It
can be seen that both time and space complexity are
linear and thus the behaviour of the search engine is not
sensitive to changes in system loads.

vahtiat credtcad [Seann
Resutts 1.4 of 4 % volidate cradit casd e TE
Credit Card Vakdator

Vahdates » cadt cord numbet snd sxpieabion dees
V- BT T« Tryt - Faagaack Mo Rating
mizp TR T 150 55 BE ANSOLSE0mal TRt T Vaktts el

Credit Card N W

Validste Amentas Express, MasterCard and VISA credit card numbers A serace to validate credd cand numbeny
r x £ 4 Fradhack to Rating

SraF oA

AT edt CTand Nonter Vantsior opd

190 Be

VakdateCrediiCard
Vikdate sy credt cwvd rumbee(Master Cawd Viga Amex (INERS) Please anter card type a3 VISA of MASTERCA!
nsA TERCARD o [(SNERS o AMEL Plazse enti cand Typo a5 VISA o MASTERCARD

ruody - 1nyt - Fyngisack Ny Rating

Lie - purp 0058 T H4D L SOEAANEOR ANl acn NV asdaand el Tand e

CreaCatdvakdator

Thes websarace proada 3 lacilly 1o valigate credt cand Pieass ey card type as VISA or MASTERCARD o DHER
33 VISA or MASTERCARD or DINERS or AMEX. Pieasa enter card type 25 VISA or MASTERCARD or DINERS .
inass - 3t F s Mo Ratuyg

VECL/ S35 Teetrad Tragit Cand'vnl da o wad

5 Witg S 7 1EG 50 ROB 1YY

Figure 3 Result for searching “validate credit card”

120%

100%
Matchmaking Performance

B

Precision

0% 0% 4% 60 RO 100

Recall

Figure 4 Result for searching “validate credit card”

Timllndll.!:rv"‘
NEREERRERR

i of Service Consumer

Figure 5 Searching scalability test result

4. Related work

In this section, we classify existing service
discovery methods into two categories (Figure 6):
WSDL-based and Ontology-based. The rationale is that

WSDL is the defacto standard for representing a Web
service's functional capability and technical
specifications “on the wire™ [12]. It is then natural to
discern service discovery methods that centre upon
WSDL with those do not. It should be noted that these
two categories are not absolutely orthogonal with each
other. For example, in the ontology-based method
WSDL-S [13], annotation have been made to reference
to a domain ontology through the standard WSDL
extension mechanism. Hence, we define that WSDL-
based refers to those methods that take regular WSDL
files ‘as-is’ without further augmenting. Ontology-
based methods, on the other hand, aim to provide a
‘semantically enriched” version of WSDL files in order
to automate complicated tasks such as service
composition. In this section, we succinctly survey
WSDL-based approaches. Interested readers can refer
to [14] for an thorough understanding of ontology-
based approaches.

‘Web Service Discovery

- e =
WSDL-based Ontology-based
Text Structure Semantics >OWL-S
Kevword Tree WordNet —>WSDL-3
Stnng Graph Concent lattice > WSMO
IR maodel Signature [Text mining

Figure 6 A summary of Web services discovery methods

Text-based method is the most straightforward way
to conduct Web service discovery. The most widely
used text-based is the keyword matching built in the
UDDI public registry. The UDDI APl allows
developers to specify keywords of particular interests
and it then returns a list of Web services whose service
description contains those keywords. Beyond the literal
keyword matching, research in XML schema matching
([15]) has applied various string comparison algorithms
(e.g. prefix, suffix, edit distance) to match those
interchangeable keywords but with slightly different
spellings. This method is particularly useful for
scientific Web services where many special terms,
jargons, and acronyms are widely used in their service
descriptions. For example, a bioinformatics Web
service might have an operation called ‘DNACombo’.
which shall be relevant to a user search ‘DNA
Combination’. The literal keyword method cannot tell
the equivalence between Combo and Combination.

Similar to our work, several recent efforts have
utilised IR models. Authors in [16] used the VSM to
build a Web service search engine. [17] has attempted
to leverage LSA, a variant of VSM, to facilitate web
services discovery. However, both [16] and [17] rely
on existing UDDI public registries. Hence, our work is
different in that we have implemented a focused Web
service crawling mechanism which does not
exclusively rely on UDDI registries. Therefore, our
experiment data set is purely obtained from the ‘Web’
with the public Web services nature. More
importantly, different from [16] and [17], the texts used
in our approach is extracted, analysed. and expanded
directly from WSDL elements rather than service
description written in natural languages. Unlike natural
languages, WSDL is far more structural and compact.
Towards that end, the VSM-method in [18, 19] has
used the pattern of letter cases to split a long WSDL
element into separate tokens. However, we have found
such a heuristics is insufficient when facing a large
amount of irregular, non-word WSDL terms and
acronyms. Therefore. in our approach, we add a WSDL
Processor component dedicated to deal with language
and structural features of WSDL files.

WSDL with its embedded XML schema data types
contains important structural information. Previous
studies have attempted to use it to assist service
discovery. For example, in [20], a WSDL file is treated
as a structural tree that can be compared based on the
structures of the operations’ input/output messages.
which in turn, is based on the comparison of the data
types delivered contained in these messages. Likewise,
the interface similarity defined in [21] is computed by
identifying the pair-wise correspondence of their
operations that maximizes the sum total of the
matching scores of the individual pairs. More recently,
the author in [19] also calculated the similarity of
complex WSDL concepts given similarity scores for
their sub-elements. Using the maximum-weighted
bipartite matching [22] algorithm from the graph
theory, the author defined a number of coefficiencies to
determine the ultimate structural similarity score
between two parts in a matching pair. Most of these
WSDL structural matching methods are inspired from
the signature matching [23], a software component
retrieval method from software engineering research.

Although a standard WSDL does not provide
semantic information, identifiers of messages and
operations do contain information that can potentially
be used to infer the semantics. This can be supported
by an external lexical database such as the WordNet",
For example, when comparing two operations in [20],

* http-//wordnet.princeton.edu

WordNet is used for deriving the synonyms for the
semantic similarity calculation. The lexical similarity
defined in [21] and [24] is also based on the concept
distance computed from the WordNet sense hierarchy.
Interestingly, research in [19] indicates that using
WordNet may bring many false correlations due to its
excessive generality. In this work, the author reports
that VSM has achieved the overall best performance.
outweighing the WordNet based semantic similarity
method. The author also discussed that this might be
caused by the ambiguity of the terms used in service
specifications.

5. Conclusion

Service discovery is a key aspect in the SOA
research community. In this paper, we have proposed a
Web services discovery approach based on the public
WSDL corpus and IR models. We first provided a
focused literature review on the state-of-the-art WSDL-
based Web services discovery approaches. We then
present the conceptual model of our approach, which
includes four essential steps: WSDL crawling, WSDL
processing, WSDL indexing, and WSDL searching.
While the first two steps produce the WSDL corpus
using Web crawling and XML retrieval techniques, the
last two steps leverage the Vector Space Model to
conduct service indexing and searching. The approach
also leads to a proof-of-concept prototype — the public
Web services search engine. The matchmaking and
scalability experiment results are also presented and
evaluated. For future work, we are looking at
introducing semantic mechanism (i.e. WordNet or
Ontology) into the search engine in order to enhance
the recall of the matchmaking performance.

7. References

[1] D. W. Cearley, J. Fenn, and D. C. Plummer,
"Gartner's Positions on the Five Hottest IT Topics and
Trends in 2005," Garmer report, vol. GO0125868, 2005.

2] D. Chappell, "Who Cares About UDDI?." Addison
Wesley, 2002.
3] U. Ogbuji, "UDDI 3.0?7 Who really cares?”
Oreilly, 2005.
[4] D. Bachlechner, K. Siorpaes, D. Fensel, and I

Toma, "Web Service Discovery - A Reality Check,"” DERI,
Galway 1/17/2006 2006.

[5] J. Fan and S. Kambhampati. "A Snapshot of Public
Web Services,” ACM SIGMOD Record. vol. 34, pp. 24 - 32,
2005.

[6] L. Baresi and M. Miraz, "A Distributed Approach
for the Federation of Heterogeneous Registries,” presented at

Fourth International Conference on Service Oriented
Computing, Chicago, USA, 2006.

[7] G. Pant, P. Srinivasan, and F. Menczer, "Crawling
the Web," 2003.
[8] Lehtonen, "“Preparing Heterogeneous XML for

Full-Text Search,” ACM Transactions on Information
Systems, vol. 24, 2006.
[9] J-S. Chang and K.-Y. Su. "An Unsupervised
Iterative Method for Chinese New Lexicon Extraction,"
International Journal of Computational Linguistics, Chinese
Language Processing, 1997.
[10] L. Tao, "Elektronische Tokenisierung fuer das
Chinesische. Master thesis.” Uni-muenchen., 2001.
[11] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval: Addison Wesley, 1999.
[12] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “"Web Services Description Language (WSDL)
1.1, 2001.
[13] "Web Service
1tp:ffvwww.w3.org/Submission/WSDL-S/.
[14] J. Cardoso and A. Sheth, "Semantic Web Services,
Processes and Applications.” in Semantic Web and Beyond:
Computing for Human Experience, R. Jain and A. Sheth,
Eds.: Springer, 2006.
[15] H. H. Do and E. Rahm, "COMA - A system for
flexible combination of schema matching approaches,”
presented at 28th VLDB Conference, Hong Kong, China,
2002.
[16] C. Platzer and S. Dustdar, "A vector space search
engine for Web services," presented at Third IEEE European
Conference on Web Services, Sweden, 2005.
[17] A. Sajjanhar. J. Hou, and Y. Zhang, "Algorithm for
Web Services Matching,” presented at APWeb, 2004,
[18] N. Kokash, W.-J. v. d. Heuvel, and D. A.
Vincenzo, "Leveraging Web Services Discovery with
Customizable Hybrid Matching,” Technical Report,
University of Trento, vol. DIT-06-042, 2006.
[19] N. Kokash, "A Comparison of Web Service
Interface Similarity Measures,” University of Trento 2006.
[20] E. Stroulia and Y. Wang, "Structural and Semantic
Matching for Accessing Web Service Similarity,”
International Journal of Cooperation Information Systems,
vol. 14, pp. 407 - 437, 2005.
[21] J. Wu and Z. Wu, "Similarity-based Web Service
Matchmaking," presented at IEEE International Conference
on Service Computing, 2005.
[22] L. Lovasz and M. D. Plummer, Marching Theory.
North-Holland: Elsevier Science Publisher, 1986.
[23] A. Zaremski and J. Wing, "Signature Matching of
Software Components,” ACM Transactions on Software
Engineering and Methodology, pp. 333-369, 1997.
[24] Z. Zhuang, P. Mitra, and A. Jaiswal, "Corpus-
based web services matchmaking,” presented at Workshop on
Exploring Planning and Scheduling for Web services, Grid,
and Autonomic Computing, 2005.

Semantics,”

