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Abstract—This work aims to identify abnormal behaviors
from the analysis of humans or vehicles’ trajectories. A set
of normal trajectories’ prototypes is extracted by means of a
novel unsupervised learning technique: the scene is adaptively
partitioned into zones by using the distribution of the training
set and each trajectory is represented as a sequence of symbols by
taking into account positional information (the zones crossed in
the scene), speed and shape. The main novelties of this work are
the following: first, the similarity between trajectories is evaluated
by means of a kernel-based approach. Furthermore, we define a
novel and efficient kernel-based clustering algorithm, aimed at
obtaining groups of normal trajectories. The proposed approach
has been compared with state-of-the-art methods and it clearly
outperforms all the other considered techniques.

I. INTRODUCTION

In the last decades we have witnessed a growing need
for security in many public environments, which has lead
to a proliferation in the number of control systems and,
consequently, in the presence of acquisition peripherals. In
particular, cameras represent a suitable solution for their
relative low cost of maintenance, the possibility of installing
them virtually everywhere and, finally, the ability to analyze
complex events.

For these reasons, a deep analysis has been recently con-
ducted in order to realize control systems able to automatically
generate alarms. Most of researches recently conducted in
the field of behavior analysis has focused on the recognition
of simple activities (i.e. running, waving, jumping) in high
resolution videos, by exploiting the details of human body
[1]. The main problem in such an approach lies in the fact that
in a lot of real applications detailed information related, for
instance, to the pose or to the clothing colors of people are not
available. As a matter of fact, in these situations, objects are in
a far-field or video has a low-resolution: the only information
that a video analytic system is reliably able to extract is a noisy
trajectory. This consideration has recently drawn the scientific
community to store [2] [3] and analyze [4] moving objects’
trajectories in order to understand their behaviors, identifying
abnormal ones. In fact, in a lot of real contexts trajectories
provide the control system with enough elements to detect an
anomalous behavior inside a scene: think, as an example, to
a person who moves in the opposite direction of a crowd or
who follows a path that the system has never seen.

The architecture of a system for behavior understanding
is usually based on the following steps: learning phase and
operating phase. The learning phase aims at defining rules or
at extracting prototypes of normal trajectories. The definition
of rules is strongly dependent on the environment and, at the
same time, on the knowledge that the human operator has
about the possible (ab)normal behaviors [5]. On the other
hand, the extraction of prototypes for (ab)normal trajectories
can be performed by following one of this two models [6]:
supervised and unsupervised. Techniques trained in supervised
mode [7] assume the availability of a training data set with
labeled instances of normal as well as abnormal trajectories.
However, such an approach has a significant drawback: abnor-
mal instances are usually far fewer compared to normal ones
in the training set, so implying that the prototypes extracted
for abnormal trajectories are not accurate and representative.
Furthermore, it is impossible to predict all abnormal behaviors
inside a complex scenario.

Techniques operating in unsupervised mode [8] do not re-
quire labeled data since they make the implicit assumption that
normal instances are far more frequent than abnormal ones.
An unsupervised learning phase makes the control system
context-independent and can be easily applied in different real
environments, since it does not use human knowledge. This is
a very important and not negligible feature, since it allows the
system to autonomously understand dynamics within a scene.

For all these reasons, we propose an unsupervised approach,
where an abnormal trajectory refers to something that the
control system has never (or rarely) seen. However, a system
that raises an alarm for each trajectory which has not been
seen before risks to generate too many false alarms: the system
needs to identify a normal trajectory as one enough similar to
one or more trajectories that the system already knows. For this
purpose, we propose a learning phase based on the following
steps, as depicted in Figure 1a:
• Trajectory extraction: the tracking algorithm detailed

in [9] is applied in order to extract moving objects’
trajectories from a video for a long time period.

• Trajectories representation: the scene is partitioned into
zones according to the distribution of trajectories; starting
from this, each trajectory is represented as a sequence of
symbols, according to the zones crossed in the scene.



• Trajectories similarity: similarity between two trajecto-
ries is evaluated by using a kernel-based method. The
main advantage in this choice lies in the fact that we
may combine these kernels with a large class of clustering
and machine learning algorithms, which can be expressed
using only scalar product between input data.

• Clustering: Given the kernel, a novel clustering algorithm
is applied in order to extract clusters of trajectories
inside the scene. Each cluster encodes a type of normal
trajectories, dynamically extracted from the scene.

Once extracted the prototypes of normal trajectories, the
control system can start the operating phase, depicted in Figure
1b: for each detected abnormal trajectory, it raises an alarm.
In particular we propose to subdivide the operating phase in
the following steps:
• Trajectory extraction: the trajectory is extracted from a

video by using the tracking algorithm detailed in [9].
• Trajectory representation: the extracted trajectory is

represented as a sequence of symbols.
• Classification: the trajectory is compared with the pro-

totypes of each cluster and a similarity value is obtained
for each comparison.

• Decision: the computed similarity values are processed;
if such similarities are sufficiently high the trajectory
is considered normal (3), otherwise it is considered
abnormal (7). In this way, the proposed system is able
to identify both rare and atypical trajectories: the former
refer to something that does not appear in the training
set (or only rarely appears); the latter consider all those
trajectories differing in a slightly but significant way from
a group of normal trajectories.

In this paper we focus on the learning phase: Subsection
II-A shows the algorithm used to adaptively partition the
scene into zones, while trajectories representation is presented
in Subsection II-B. Some details about the metric used to
evaluate the similarity are provided in Subsection II-C, while
Section III provides a description of the proposed clustering
algorithm. Experimental results, which confirm the efficiency
of the proposed method, are finally presented in Section IV.

II. THE PROPOSED METHOD

A trajectory t can be seen as a sequence of k spatio-temporal
points pi = [pi

x, pi
y, pi

t ]: t =< p1, p2, ..., pk >. This representa-
tion has two main drawbacks: first, a trajectory results in a very
large amount of data to be managed; second, row data are more
sensible to noise and tracking errors, and thus a filtering of
each trajectory is needed before use. Furthermore, if a system
considers the similarity between row data, it can introduce non
relevant differences between trajectories. For example, many
trajectories on a garden path may be considered as similar
independently of the exact position of people on the path.

For this reason, a common representation of a trajectory
consists in a reduced sequence of symbols, namely a string,
aiming to preserve only the discriminant information and to
reduce the space required to store trajectories.
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Fig. 1: Learning phase (a) and operating phase (b).

The discriminant information to be preserved is strongly
influenced by the aim of the system: as a matter of fact, in
order to verify, for instance, if a person is moving in the
opposite direction of a crowd or if a vehicle is driving on the
emergence line on the highway, the most discriminant feature
is the sequence of zones crossed by the moving object. Such
scenarios can be labeled as constrained: the moving objects
are expected to follow given paths within the scene.

From these considerations, we need to partition the scene
into a set of zones, hence associating a single symbol to a
sequence of points and eliminating non discriminant informa-
tion. The criterion adopted to subdivide the scene certainly
influences the performance of the entire system. As a matter
of fact, on one hand it strongly affects the time needed for the
computation of similarity between trajectories; on the other
hand, it could decrease the reliability of the system if the
chosen number of zones is not sufficiently representative of
the scene. The simplest way could be to divide the scene
using a fixed-size uniform grid. The main drawback of an
uniform grid, however, is that each zone has an uneven
statistics, causing only a suboptimal statistical segmentation
of trajectories. Furthermore, it is evident that the distribution
of trajectories in the scene highlights region of interests, in
which the major parts of trajectories lie and for which we
need an higher level of detail.

In order to overcome these limitations, we propose an
adaptive method aimed at minimizing the mean error made
when assimilating a trajectory to its zone (Section II-A). As a
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Fig. 2: Tree-structured vector quantization obtained recursively
partitioning the scene into N = 8 zones.

consequence of this partitioning criterion, areas in the scene in
which most of trajectories lie are represented with an higher
number of zones.

A. Scene Partitioning

Initially, the scene is represented by a single zone Z1. The
scene partitioning algorithm aims at dividing Z1 into a fixed
number N of zones. The main idea behind our algorithm is
to exploit the distribution of the training set by taking into
account the density, as in the clustering algorithm proposed
in [10]. Each zone (Zi)i∈{1,...,N} is represented by using its
statistical properties (mean, major axis and covariance matrix);
the proposed method works by recursively splitting a selected
zone by a set of planes (cutting planes) at a chosen position
(cutting position). In the following, more details about this
algorithm will be provided since an enhanced kernelized
version of it will be introduced in Section III.

Let p be a generic point in the scene. We define f(p) as the
number of trajectories passing through p in the image.

Using function f (.) and our zone’s representation, we define
the statistical property of a zone Zi (cardinality |Zi|, Mean µi
and Covariance Covi):

|Zi|= ∑
p∈Zi

f (p) µi =
∑p∈Zi f (p)p
|Zi|

Covi =
∑p∈Zi f (p)p• pt

|Zi|
−µi •µt

i.

(1)

A splitting strategy is based on the definition of the follow-
ing steps:
• The selection of the next cluster to be split;
• The selection of the cutting axis (i.e. the direction normal

to each cutting plane);
• The selection of the cutting position (i.e. the location of

the cutting plane along the cutting axis).
Since the set of all possible partitions into N zones is too

large for an exhaustive enumeration, an heuristic needs to
be applied. In particular, we decided to use the following
heuristics, detailed in [11].

Splitting Strategy: Each zone Zi is recursively split into two
sub-zones until the N final zones are obtained. This bipartition-
ing strategy generates a tree-structured vector quantization, as
shown in Figure 2. Each leaf of the tree represents a zone of
the scene.

Cluster Selection: At each iteration, a single leaf of the
tree-structured vector quantization is selected and then split
into two zones. Therefore, the choice of the zone to be
split plays a crucial role. Our algorithm attempts to mini-
mize the total squared error T SE induced by the partition
P = {Z1, ...,ZN}:

T SE(P) =
N

∑
i=1

SE(Zi), (2)

where SE(Zi) is the squared error of one zone Zi computed
as follows:

SE(Zi) = ∑
p∈Zi

||µi− p||2. (3)

In order to minimize T SE(P), the algorithm splits the zone
Z with the maximum squared error, since its contribution to
the T SE(P) is the largest. It has been shown in [12] that
this strategy corresponds to a good compromise between the
computational time and the final quantization error.

Cutting Axis: Given a zone Zi to be split, we need to
determine the location of the cutting plane. As in [11], we
decide to split along the axis with the greatest variance, namely
the major axis.

Cutting Position: Once chosen the cutting axis, we need to
select the optimal cutting position t? to subdivide the zone Zi
into two sub-zone Z1

i
? and Z2

i
?. In particular, we choose the

value able to maximize the decrease of the total squared error
induced by the split:

SE(Zi)−
[
SE(Z1

i )+SE(Z2
i )] (4)

Let m and M be respectively the minimum and the maximum
projections of Zi on the cutting axis. It can be proved [11] that
the maximization of Equation 4 can be reached by computing
the optimal cutting position t? as follows:

t? = arg max
t∈[m,M]

[
δ(t)

1−δ(t)
||µi−µ1

i ||2
]
, (5)

where µi and µ1
i denote respectively the mean of Zi and Z1

i
?

and δ(t) is defined as δ(t) = |Z1
i |
|Zi| . It is worth noting that if

δ(t) = 1/2, the zone is divided into two sub-zones with the
same cardinality.

An example of the output of the proposed scene partitioning
method is provided in Figure 3: starting from the trajectory
distribution in Figures 3a and 3b, we show the partition of the
scene by using different values of N = {20,50}.

B. Trajectory representation

Once partitioned the scene into zones, a trajectory can be
segmented into l segments: t = {< s1, ...,sl >}, where the j-th
segment is defined as the sequence of points lying in the same
zone Zk: s j = {pi ∈< pa, ...pb > |pi ∈ Zk}.
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Fig. 3: Partition of the scene starting from the training set depicted in (a) represented by the frequency map in (b). The
quantization algorithm is applied with different values of N: (c) N=20, (d) N=50.

Finally, the operator α(•) allows us to map the j-th segment
into a symbol of our alphabet, each symbol identifying the
passing through a zone. It means that the trajectory t can be
now defined as t = {< α(s1), ...,α(sl)>}.

Once obtained the information about the zones crossed in
the scene, additional features are extracted in order to improve
the reliability of the proposed system. For each segment, in-
formation about the speed v and the shape s of the trajectories
are taken into account by means of the operator θ(•). In
particular, we use the Bernstein Polynomial Approximation
to model each trajectory into a zone:

s =
cs

∑
i=0

= as
i · ti v =

cv

∑
i=0

= av
i · ti. (6)

In our experiment, cs is bounded by 3 and cv is bounded by 2.
The operator θ(•) is then computed as the vector composed
by the ai values: θ(•) = [as

1, ...,a
s
cs ,a

v
1, ...,a

v
cv ].

Thanks to this representation, each trajectory can be seen
as t = {< α(s1), ...,α(sl)>,< θ(s1), ...,θ(sl)>}.

Although the operator α(•) gives to our method the most
important contribution, the shape of the trajectory is an im-
portant feature, since it contributes to distinguish trajectories
lying in the same zones but with very different shapes. We
can think, for instance, to a person which moves with a very
irregular shape but following a common path.

C. Trajectories similarity

The complexity and the different typology of information to
take into account to represent a trajectory result in a complex
strategy to verify the similarity between trajectories. In fact,
we need to manage a string for the position and a sequence
of numerical values for the speed and the shape, respectively
obtained by means of the α(•) and the θ(•) operators.

In the last years, a lot of different methods based on dynamic
programming have been proposed in order to evaluate the sim-
ilarity between two sequences. These algorithms are based on
similarity criteria such as the Dynamic-Time-Warping (DTW)
score [13], the Smith Waterman algorithm [14] and the edit-
distance [15]. However, the main problem lies in the fact that,
although these methods are able to compute a similarity value,
they do not define a metric. In order to solve these problems,
we propose a novel similarity metric based on kernels: the
main advantage is that the problem can then be formulated

in an implicit vector space on which statistical methods for
pattern analysis can be applied.

In particular, we construct our kernel starting from the Fast
Global Alignment Kernel (FGAK) proposed in [16]. The main
idea of all global alignment kernels is to measure the similarity
between two sequences by summing up scores obtained from
local alignments with gaps of the sequences.

An alignment between two sequences x = {x1, ...,xn} and
y = {y1, ...,ym} of length n and m respectively is a pair of
increasing integral vectors (π1,π2) of length p < n+m, such
that 1 = π1(1)≤ ...≤ π1(p) = n and 1 = π2(1)≤ ...≤ π2(p) =
m, with unary increments and no simultaneous repetitions. Let
A(n,m) be the set of all the possible alignments between the
two time series of lengths n and m.

The global alignment kernel (GAK) is defined as:

kGA(x,y) = ∑
π∈A(n,m)

|π|

∏
i=1

k(xπ1(i),yπ2(i)). (7)

It can be shown [16] that kGA is a positive definite kernel
if k and k/(1+k) are positive definitive kernels. Furthermore,
the GAK avoids the diagonal dominance of the Gram matrix.
Diagonal dominance is an undesirable property, since it im-
plies that all the points in a training set are nearly orthogonal
to each other in the corresponding feature space.

Starting from the representation of our trajectories, we need
to define a kernel which is able to properly combine all
the different features related to a trajectory. In particular, we
defined the following kernels.

Toeplitz Kernel: In order to speed up the computation of the
kernel, we use the triangular kernel for integers, also known
as Toeplitz kernel:

w(i, j) =
(

1− |i− j|
T

)
, (8)

where T is the order of the kernel. The main advantage in the
use of the triangular kernel is that it allows to only consider
a smaller subset of alignments.

Dirac Kernel: In order to evaluate the similarity between
two strings α(x) and α(y) encoding the sequences of zones
respectively traversed by trajectories x and y, we use a dirac
kernel δ(α(xi),α(yi)), defined as:

δ(α(xi),α(yi)) =

{
0 if α(xi) 6= α(yi)

1 if α(xi) = α(yi)
(9)
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Fig. 4: Graph-based representation of the scene. Each zone is
represented by a vertex and each border between two zones is
represented by an edge. The weight of each edge is determined
by the length of the corresponding border.

The Dirac Kernel is combined with the Toeplitz Kernel so
obtaining:

kZ(xi,y j, i, j) = w(i, j)•δ(α(xi),α(y j)). (10)

Weighted Dirac Kernel: The main lack of this similarity
evaluation lies in the fact that the proximity of two zones is not
considered. In order to overcome this limitation by taking into
account adjacency relationships between zones, a weighted
version of the dirac kernel is also exploited:

kWZ(xi,y j, i, j) = w(i, j)•δw(α(xi),α(y j)). (11)

Zones are mapped into a non-oriented weighted graph G =
{V,E,w}, whose vertices V = {V1, ...,VN} identify zones and
whose edges E = {E1, ...,EL} identify proximity of two zones.
Each edge is associated to a weight ev1,v2 , identifying the
number of pixels separating two zones. An example is shown
in Figure 4:

δw(α(xi),α(yi)) =


0 if α(xi) 6= α(yi)

and eα(xi),α(yi) /∈ E
eI

α(xi),α(yi)
if eα(xi),α(yi) ∈ E

1 if α(xi) = α(yi)

(12)

where eI
α(xi),α(yi)

is a normalized version of eα(xi),α(yi), obtained
by dividing eα(xi),α(yi) by the length of the longest zone’s
border.

Speed and Shape Kernel: The evaluation of the similarity
related to the velocity and to the shape is based on the
following kernel:

kSS(θ(xi),θ(yi)) = e−φσ(θ(xi),θ(yi)), (13)

where

φσ(θ(xi),θ(yi)) =
1

2σ2 ||θ(xi)−θ(yi)||2+

log

(
2− e−

|θ(xi)−θ(yi)||2 |
2σ2

)
. (14)

This last kernel is used instead of the Gaussian one in order
to guarantee the p.d. of kGA [16]. The combination of these
two last kernels is defined as:

k(W )ZSS(xi,y j, i, j) = k(W )Z(α(xi),α(y j))• kSS(θ(xi),θ(yi)).
(15)

Starting from Equation 7, products of any of the 4 kernels
(kZ , kWZ , kZSS and kWZSS) can be considered to obtain the final
kernel kGA. Finally, a normalization of the kernel is performed
in order to normalize kernel’s values in the interval [0,1].
Therefore, the final normalized kernel kN

GA is:

kN
GA(xi,y j, i, j) =

kGA(xi,y j, i, j)√
kGA(xi,xi, i, i)∗ kGA(y j,y j, j, j)

. (16)

III. CLUSTERING

From a general point of view, the goal of a clustering
algorithm is to find a fixed number NC of groups that are
both homogeneous and well separated, that is, trajectories
within the same group should be similar and entities in
different groups dissimilar. The clustering can be performed
with different aims; for instance, in [17] a density-based
clustering algorithm has been considered in order to discover
common sub-trajectories by means of a partition-and-group
framework. As our method, this algorithm performs a sub-
sampling of trajectories. However, our method considers all
possible sub-samplings of two trajectory when computing
their similarity (Eq. 7) while [17] performs one sub sampling
based on a MDL criterion. We indeed consider that sub-
sampling should be based on trajectory comparisons rather
than on an a priori compromise between preciseness and
conciseness. Moreover, [17] aims to determine clusters of
trajectories roughly following a same line for a period while
our method aims to determine clusters of globally similar
trajectories up to some short parts.

In the last decades, a lot of graph-based clustering algo-
rithms [18]–[20], like Spectral Clustering or Cut-Clustering,
have been exploited. Although these techniques seem to pro-
vide good results, they do not allow to readily verify if a novel
trajectory belongs to a cluster, that is our main objective.

In order to avoid this restriction, k-means approach and its
derivative methods are most frequently used. In particular,
the Kernel k-mean [21] is a generalization of the standard
k-means algorithm: the input data are mapped into a higher
dimensional feature space through a non-linear transformation
and then k-means is applied in feature space. In this way,
this algorithm allows to separate the non linearly separable
clusters. However, the main problem of such an approach
consists in the initialization, which strongly influences the
performance of this method since the algorithm converges to
the local minimum closest to the initial condition.

In [22] an improved version of the basic Kernel k-means,
the Global Kernel k-means, has been proposed. The main idea
is that a near-optimal solution with k clusters can be obtained
by starting with a near-optimal solution with k− 1 clusters
and initializing the kth cluster appropriately based on a local
search. During the local search, N initializations are tried,
where N is the size of the data set. The k−1 clusters are always
initialized to the k−1-clustering problem solution, while the
kth cluster for each initialization includes a single point of the
data set. The solution with the lowest clustering error is kept
as the solution with k clusters. Since the optimal solution for



the 1-clustering problem is known, the above procedure can
be applied iteratively to find a near-optimal solution to the
M-clustering problem. It is clear that the main drawback of
the Global Kernel k-means is the high computational cost, as
experimental results conducted will show in Section IV.

In order to overcome these limitations, we introduce a novel
and efficient kernelized clustering algorithm. The proposed
clustering algorithm is based on the splitting methods pre-
sented in Section II-A: the cluster with the maximum squared
error is selected and then split into two different clusters
along the major axis. However, the main novelty refers to the
kernelization of the considered algorithm.

Thanks to the chosen heuristics, the partitioning of the
space into NC clusters is performed by a sequence of NC−1
iterations. It is an important and not negligible feature, since
a lot of recently proposed clustering algorithms [22] are very
expensive from a computational point of view, as we will show
in Section IV.

Given the cluster C containing all the trajectories belonging
to the training set, let us consider a generic cluster Ct ⊂ C.
This cluster is encoded by the following vector of R|C|:

Λ
i
Ct
=

{
1 if i ∈Ct

0 otherwise
(17)

Finally, K is the Gramm Matrix of the training set, defined by
Ki j = (kN

GA(si,s j))i j.
As mentioned in Section II-A, our clustering algorithm

builds a sequence of partitions P1, . . . ,Pn of C, with P1 = {C}
and Pn enconding a partition of C into n clusters. The following
heuristics have been selected for each step:

Cluster Selection: For each iteration k, the cluster Ct of Pk
with the maximum squared error SE(Ct) is selected.

SE(Ct) = ∑
s∈Ct

||ψs−µt ||2 = |Ct |−
1
|Ct |

Λ
t
Ct

KΛCt , (18)

where ψs is the projection of the string s in the Hilbert space
implicitly defined by kN

GA. Equation 18 may be evaluated in
O(|Ct |2), with |Ct | denoting the cardinality of Ct [23].

Cutting Axis: Once selected the cluster Ct , we need to
chose a cutting plane to obtain clusters C1

t and C2
t : the

optimum cutting plane aims at minimizing SE(C1
t )+SE(C2

t ).
In particular, we decided to cut the cluster along the major

axis, obtained by means of a Kernel PCA [24]. The Gramm
Matrix K is first diagonalized and the centered matrix K′ =
(K−1Ct ·K−K ·1Ct +1Ct ·K ·1Ct ) is obtained, with 1Ct being a
|Ct | by |Ct | matrix for which each element takes value 1/|Ct |.

The first eigenvector α, satisfying: λα = K′α is then com-
puted. For each trajectory s, the projection of ψs on the major
axis α is obtained by:

< α,ψs >=
|Ct |

∑
i=1

αik(si,s). (19)

Thanks to the computed projections, trajectories belonging to
Ct are ordered along the major axis in order to obtain the
optimum cutting position.

Cutting Position: Given the selected cluster Ct and its
cutting axis, the cutting position t? is computed in the range
[m,M], being m and M respectively the minimal and the
maximal projection of Ct on the major axis by means of
Equation 5.

It can be shown [23] that ||µ− µt ||2 can be computed as
follows:

||µ−µt ||2 =
1
|C|2

etKe− 2
|Ct ||C|

etKΛCt +
1
|Ct |2

Λ
t
Ct

KΛCt , (20)

where |C| denotes the cardinality of cluster C.
We can note that this operation must be performed for each

point in the range [m,M]. Since it requires multiple matrix
multiplications, it results in a high computational cost. Let p
denotes the next trajectory to add to Ct in order to obtain Ct+1
(Ct+1 =Ct∪{p}). It can be shown [23] that ||µ−µt+1||2 can be
efficiently updated from ||µ−µt ||2. In particular, the first term

1
|C|2 etKe is constant since it does not depend on the partition
induced by t. Let be ΛCt+1 = ΛCt + δp, being δp the vector
of zeros containing a single 1 at position p. The second term
etKΛCt+1 of equation 20 may be defined iteratively as follows:

etKΛCt+1 = etKΛCt +
n

∑
i=1

k(i, p). (21)

Note that the second term of equation 21 may be precomputed.
Equation 21 is thus evaluated in constant time. Finally, the last
term Λt

Ct+1
KΛCt+1 becomes:

Λ
t
Ct+1

KΛCt+1 = Λ
t
Ct

KΛCt +2 ∑
i∈Ct

k(i, p)+ k(p, p). (22)

Using equations 21 and 22, we significantly reduce the
computational cost of our algorithm: as a matter of fact, the
evaluation of ‖µ−µt+1‖2 only requires to compute, for each
iteration, values ∑i∈Ct k(i, p) and k(p, p) this last term being
equal to 1 since we use a normalized kernel.

Stop Condition: In our context, the clustering algorithm is
used to initialize the system during its unsupervised learning
phase. It means that the number of clusters can not be fixed
a priori, since the system has not any knowledge about
the environment. For this reason, we choose to use as stop
condition a lower bound on the mean squared error (MSE)
made when assimilating one trajectory to its cluster:

MSE(Ct) =
SE(Ct)

|Ct |
. (23)

In this way, the system does not need knowledge of the human
operator about the environment, but is able to determine the
optimum number of clusters starting from the distribution of
trajectories.

IV. EXPERIMENTAL RESULTS

The proposed method has been validated on the MIT
trajectories dataset [25], a standard and freely available dataset
composed by 40.453 trajectories obtained from a parking lot
scene within five days. Starting from the entire dataset D, a
subset D∗ of trajectories belonging to vehicles (10.335) has



been manually extracted by an expert (see Figure 3a) and the
proposed system has been evaluated. The experiments have
been conducted on a MacBook Pro equipped with Intel Core
2 Duo running at 2.4 GHz.

The experimentation has been conducted into two different
steps: the former aims to validate the proposed kernels, high-
lighting advantages and disadvantages of each by means of a
visual interpretation. The latter is a quantitative and qualita-
tive experimentation conducted over the clustering algorithm,
aimed at confirming the efficiency of the proposed method if
compared with other state of the art methods.

As for the first step, it is interesting to note that kernels
induce metrics. This means that a quantitative comparison
of different kernels is not possible outside a regression or
classification task with a ground truth which is not available
for this data set. We thus only perform a qualitative evaluation
based on visual comparisons. Such an experiment has been
performed over the dataset D∗, aiming at extracting the M
most similar trajectories with respect to the one shown in
Figure 5a (M=30). An example of our different kernels at
work is shown in Figure 5. It is worth noting that the Weighted
Dirac Kernel (Figure 5c) s less sensitive than the Dirac Kernel
(Figure 5b) to small variations in the position of trajectories. It
is a very desirable property, especially in the operating phase,
since it allows to reduce the number of false positive. On the
contrary, the combination of Weighted Dirac Kernel, Gaussian
and Toeplitz ones (Figure 5d) increases the reliability of the
evaluation by taking into account the shape of trajectories.

As for the second step, a qualitative evaluation of the
proposed method over the dataset D∗ is shown in Figure 6,
where some of the obtained clusters are depicted in a tree
structure.

In order to have a quantitative measure, we compute the
C-index [26]. It is defined as:

C =
S−Smin

Smax−Smin
, (24)

where S is the sum of distances over all pairs of objects form
the same cluster, n is the number of those pairs and Smin is
the sum of the n smallest distances if all pairs of objects are
considered. Likewise Smax is the sum of the n largest distances
out of all pairs. The C-index ranges from 0 to 1 and the
optimum value is 0. The above mentioned index has been used
to compare the proposed method with other state of the art
approaches. In particular, we considered the traditional Kernel
k-mean with its two improved versions, the Global Kernel k-
means [22] and the Fast Global Kernel k-means [22].

A comparison in terms of C-Index and computational cost is
shown in Tables Ia and Ib. Note that the results of the Kernel
k-mean (in terms of C-index and time) is obtained by taking
the minimal c-index and overall time over 200 different trials,
in order to limit the dependency of the results from a particular
initialization.

The value that we obtained, equal to 0.0580 if the similarity
value is computed by using the Dirac Kernel, while it is equal
to 0.0799 when using a Weighted Dirac Kernel instead of a

Method (Dirac Kernel) C-Index Time (secs)
Proposed Method 0.0580 947.18

K-Means 0.3907 15.946
Global K-Means 0.1282 3.45 ·104

Fast Global K-Means 0.1877 67.882

(a)

Method C-Index Time (secs)(Weighted Dirac Kernel)
Proposed Method 0.0799 1055.98

K-Means 0.4203 12.783
Global K-Means 0.1376 3.45 ·104

Fast Global K-Means 0.2868 75.201

(b)

TABLE I: Comparison of the proposed method with other state
of the art approaches, in terms of C-index and computational
cost. The similarity between trajectories is computed by using
the Dirac Kernel (a) and the Weighted Dirac Kernel (b).

simple Dirac Kernel. In both cases, the efficiency of our tech-
nique is confirmed, since the proposed method outperforms the
other considered approaches. Furthermore, the computational
cost is not too expensive if we consider that this algorithm
does not need to work in real time, since it is only used at the
start-up of the system.

V. CONCLUSIONS

We propose an unsupervised method able to deduce prop-
erties of a scene from a set of trajectories. Starting from a set
of normal trajectories acquired by means of a video analysis
system, our method represent each trajectory by a sequence of
symbols associated to relevant features of trajectories (crossed
zones, shape and speed in each zone). This quantization is
obtained by partitioning the scene into a fixed number of
adaptive zones. Similarity between trajectories is evaluated
by means of a fast alignment global kernel. Trajectories are
then grouped into homogenous clusters encoding normal tra-
jectories. Experiments have been performed on a real dataset
and the obtained results, compared with other state of the art
methods, confirm the efficiency of the proposed approach.
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