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Abstract—People communicate with those who have the same has been widely applied to the analysis of earthquakes [10],
background or share a common interest by using a social genome sequences [11], neuronal activity! [12].] [13], urban
networking service (SNS). News or messages propagate thighu crime [14], [15], and human activity [16]=[19]
inhomogeneous connections in an SNS by sharing or facilitiaig e R
additional comments. Such human activity is known to lead to
endogenous bursting in the rate of message occurrences. We
analyze a multi-dimensional self-exciting process to rew depen- (a)
dence of the bursting activity on the topology of connectios and
the distribution of interaction strength on the connectiors. We
determine the critical conditions for the cases where integiction
strength is regulated at either the point of input or output for
each person. In the input regulation condition, the networkmay
exhibit bursting with infinitesimal interaction strength, if the
dispersion of the degrees diverges as in the scale-free neiks.
In contrast, in the output regulation condition, the critical value
of interaction strength, represented by the average numbeiof
events added by a single event, is a constant— 1/\/5 ~ 0.3,
independent of the degree dispersion. Thus, the stabilitppihuman
activity crucially depends on not only the topology of connetions
but also the manner in which interactions are distributed anong
the connections. (C)

(b)

¢
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I. INTRODUCTION

In these days, people send messages or share news in a
social networking service (SNS). Message occurrencedigxhi A/
bursting in their occurrence rate in response to major event
such as earthquakes or the world cup results. It is known
that bursting may also occur rather spontaneously through }
word-of-mouth communication, even if there are no triggeri
major events[[i1]-[4]. The emergence of such spontaneous
or endogenous bursting activity may depend not only on
the topology of connections among people, such as random, _ ) B
small-world, or scale-free (Figl 1), but also crucially dret 59 Diferrt knds of newer topocoy. o random oot (e,
distribution of interaction strength among the connedifi}~ free network (Barabasi-Albert model).

[8]. Here, we analyze simple model system to reveal the

generic dependence of bursting activity on such networkWhen applying a network model to the analysis of human
parameters. In the model system, each event is idealized asctivity, the nodes, edges, and events occurring at nodes,
point event, by ignoring complex details and simplifyingsu respectively correspond to persons, their relation or con-
that every event has equal probability of having influence arections, and messages dispatched from individual persons
other nodes; events are generated stochastically, whesaty Generally, the strength of interaction is not homogeneees o
event is derived from an underlying rate, allowing spontarse the connections between persons as illustrated in thexfimitn
occurrence; every node is influenced by the events in theln an SNS, the number of friends of each person ranges
connected nodes in a manner such that the underlying rateviadely from a few to thousand [20]=[23]. The “popular” peo-
generating future events is modified (typically increasé@tle ple who have a large number of friends may be more influential
above-mentioned process may be mathematically formulatbdn “unpopular” people who have fewer friends. Regarding
as the self-exciting process or the Hawkes prodéss [9],whithe susceptibility to information, however, there wouldt no
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be a large difference between individual persons, becausea Input regulated
single person has limited capacity for information proaegs

and cannot read and react to all of the received messages. O
We simplify this situation as “input regulated,” such thhet

input interaction from each sender to the person of interest O
is scaled inversely proportional to the degree (the number

of connections) of the receiver node. In this situation, the

interaction is generally not bidirectionally symmetridgH2
(a))-
The distribution of interactions could be different in athe
m

3e()3 e

situations. When considering the infection caused by disga
there may not be large differences in the susceptibilityeen O
connections; the probability of getting infected from agbn e —— — ~

chance encounter would be independent of the total number
of people encountered. In this case, the interaction is nqt
regulated by the number of connections, but would be near%)
constant. O

As a case opposite to the interactions in an SNS, we may O
consider a process in which every person donates a fixed Q
amount of money to connected people and such donations lead &
to other donations. In such a case, the amount of donation per n
acceptor is smaller if a donor is a popular person having a reY
large number of friends. We may idealize that the interactio m
is “output regulated,” such that the output interactiomfrthe O
person to each receiver is scaled inversely proportionti¢o O
degree of the sender or the donor (Fiy. 2 (b)). O

In this study, we analyze the conditions for networks to ~— - )
exhibit endogenous fluctuation in their event occurrentesra n m
by comparing these two extreme conditions, “input regafate
and “output regulated.” This paper is organized as follow5ig. 2. Two types of asymmetric interactions. (a) Input tetrd condition:
in section 2, we introduce the self-exciting process, with t Sicn, 04 [ Fuenced fom comected nodes wth susdapimersely
simple derivation of average event occurrences. In se@jonEvery node influences with susceptibility inversely prajooral to the degree
we introduce the condition on which the rate fluctuation caf the sender node.
be detected from the event series. In section 4, we apply
the detectability condition on the self-exciting process t

analytically obtain the critical interaction strength abavhich a su;gle event Ofg.th rt'ﬁdet. (Fig. [B(a)).f (ft)thls the I|<ernelt
the system exhibits fluctuation or bursting in the occureenéunC lon representing the ime course of the Supplementary

rate of events. In section 5, we compute the critical coongi probability, satisfying the causality(t) = 0 for ¢ < 0, and

. . o0
of the interaction strength for population activity. In 8en theEnor:nallza(tjlor?JOdf(t)élt _I 1.‘ time derlvi t
6, we apply it to two types of networks with input regulated vedn_ S Te. re]zrlve ran Omg”.] Ime Irom an l#nh_erylng rate
and output regulated interactions. In section 7, we distluss according to INNOMOJENEOUS FOISSON Process. TNiS proaess ¢
results. be realized by repeating Bernoulli trials for generatingres

with the probability of A\(¢)ot in every small interval ofdt
II. MULTI-DIMENSIONAL SELF-EXCITING PROCESS (Fig.[3(b)).

. . . . .. Given an interaction matrixAd = {a;;}, the average
The manner in which persons (nodes) are interacting with o !
: ; . ! occurrence rategA\) = {(\);} are obtained from base rates
messages (events) is described by the multi-dimensiotfal se _ {p:} as
exciting process proposed by Hawkes [9], which may o= 1

represented as, A =p+ AN &)
N The system may exhibit pandemic explosion in the event
Ai(t) = pi + ZO‘U Z f(t— tf), (1) occurrences in the following situations: if interactionske
i—1 % a single event induce more than one events on an average, or

equivalently if the largest eigenvalue of the interactioatinx
A exceeds unity. Otherwise, all nodes keep generating events
in finite rates given by [13],

where ), (t) represents the rate of event occurrence inithe
node at time. p; is the original base rate’; is the occurrence
time of the kth event in thejth node.a;; is the expected
number of events increased ith node by the influence of (A) = Chp, 3)



(@) for a histogram diverges, because the divergence imples th
any histogram of a finite bin size produces a larger error than
simply assuming a constant rate. Otherwise, the fluctuating
rate can be “detected” properly.

One of the authors obtained the condition under which an
optimal bin size diverges or not [25], [26]. It can be shown
(see APPENDIX) that the MISE optimal binsize is finite if
the rate fluctuatiodA(t) = A(t) — (A\) satisfies the following
condition:

(OA(t + 8)dA(t))ds > (N), (6)
@ [ | | | and otherwise the optimal bin size diverges, implying that t
g p» rate fluctuation cannot be estimated properly from a series
of events derived from the underlying rate. This detecitgbil
condition in Eq[(6) derived from the MISE optimization of a
(b) histogram turned out to be identical to the one derived from
A the marginal likelihood maximization of the Bayesian rate
estimator [[27], implying that this may be a universal bound.

Ai(t)
IV. TRANSITION IN THE SELFEXCITING PROCESS

1t t In the preceding section, we revealed that the condition for
estimating the rate fluctuation is given in Ed.(6) in terms of
| | the autocorrelation of the underlying rate,

- o(s) = (SA(t+s)A(1))
At + $AWD) — (V). @)

The Fourier transform of the autocorrelation

{t}

A (£)t

Fig. 3.  Multi-dimensional self-exciting process. (a) hatgtion between
nodes. The rate of event occurrencetafnode,\; (t), is modulated according

to events generated gth andj’th nodes. (b) Event generation. Evenﬁt%“} N 00
are derived randomly from the underlying raxe(t). bw = / o(t) exp (—iwt)dt, (8)
—0o0
o . or equivalently the power spectrum of the rate fluctuatios wa
whereC represents effective interactions, obtained by Hawkes[[9]. For the one-dimensional Hawkes
C=(- A)’l, @) process iV = 1, a;; = «), the power spectrum is obtained
as [28],
I1l. ESTIMATING THE RATE FLUCTUATION ~ 1
In the self-exciting process, the rate for generating es/gmt P = <(1 —aof )1 — af ) - 1) M), ©)
w —Ww

evitably fluctuates over time due to the influence of gendrate B

events, as in EqJ1). Given a series of events, the undegrlyiwhere f,= ffooo f(t)exp (—iwt)dt is the Fourier transform
rate may be inferred using rate estimators such as a tiwfethe kernel function.

histogram. A histogram may be optimized by selecting the bin Because the condition for detecting fluctuation is given in
size so that the mean integrated squared error (MISE) batwéerms of the autocorrelation of rate fluctuation, Eg.(6), or
the underlying rate\(¢) and the histogranf\(t) is minimized.

Here the MISE is defined as, b0 = / (OA(t + 5)0A(t))ds > (N), (10)
T A 9 e
S = lim l/ <(/\(t) - /\(t)) >dt, (5) the condition for the self-exciting process to exhibit ling
Treo 0 is obtained in combination with EQI(9) as
where T is the entire observation interval and the bracket 1

(-) represents the ensemble average over possible realization — > 2 (11)

of the stochastic process. It is possible to determine the (1-a)

optimal bin sizeA* solely from a series of events, even ifit should be noted that the bursting condition is given iretep

the underlying rate\(¢) is not known [24]. dent of the time course of the supplementary probabjiit),
However, it may occur that the rate fluctuation is “drowneblecause the computation ¢f requires only the normalization

out” by the irregular occurrence of events, if the fluctuatio condition for the kernelf, = ffooo f(t)dt = 1. Thus the rate

the underlying rate is small or rapidly fluctuating over timefluctuation in the one-dimensional self-exciting point gees

This can be confirmed by the fact that the optimal bin side detectable or inferable (if excitability is larger tharitical



value) or undetectable (if excitability is smaller than thiical VI. FLUCTUATION IN TWO TYPES OF ASYMMETRIC
value). The critical value is given by [28] INTERACTIONS

a.=1-1/vV2=0.3. (12) To elucidate the difference in bursting conditions between
, , N ) . different types of asymmetric interactions, we simplifyeth
Note that this bursting transition occurs even if the eXsity  gjy,ation such that the mean rates for messaging are i@éntic
is much smaller tham = 1, at which the pandemic explosions,. 4 people, (\;) = constant, fori = 1,2,---, N. In this
of events occurs. situation, the condition for the rate fluctuation given in E§)

In our previous study! [28], we have extended the theoyy
to multi-dimensional self-exciting processes to discuss t ) )
detectability of fluctuating activity in networks given irggI). el cct - _— C.oC

L . " - [IASE 14
We represent the pairwise correlation of the rate fluctudbip N Z N 21: ZJ: ZE: ’
a matrix¢(s) = {¢i;(s)} given the elements,

) 2
Gii(s) = (ON(t+8)dN; (1)) N Z (Z Cig> > 2. (20)
4 1

= (it +5)A;(0)) — (M) (Aj)- (13) _ _ .

o ] ] ~ Note that we need regulation of the interaction strength to
Similar to the one-dimensional process, we may obtain tQgoid a pandemic explosion, wherein we may obtain the finite
Fourier image of the correlation matrig, [29]. In particular, effective interaction given in EG4). This may be securied i
we may obtain the Fourier zero-mode as interactions are regulated at the input or output, as shown i

0,J

(ZBO _ CACT _ A, (14) the belOW N . -
The critical condition for the above-mentioned transition
where A = diag ((A)) = diag (Cp). may be obtained analytically via mean field approxima-

The fluctuating condition for each node in event generatigion [30], in which the probability that the node of degrae
is obtained by applying the inequality given in Kd.(6) to thés linked to the node of degréeresults in a value independent
element of¢g. Using the correlation given in EQ.{L4), weof kg, given as

obtain the condition foith node’s activity to fluctuate, as k
P(klko) = =< P(k), (21)

(CACT),. > 2A; = 2(\;). (15) (k)

V. BURSTING TRANSITION IN POPULATION ACTIVITY where (k) = 3 kP (k) is the average degree of a node.

Even in a situation where fluctuations are not detectablg |npyt regulation condition
from any single nodes, in which case the inequality given N ) )
in Eq.[I5) does not apply for every node, it may occur that The condmon. that the input to each n_ode is regulated
fluctuation is estimated from the summed activity of muésipliS represented in such a way that the influence in each
nodes (Fig[®). This is because the signal to noise ratio m@t,eractlon is _scaled inversely proportional to the numbfer
increase by superposing noisy data. To see whether this nffaigtt connections,
occur for the activity of the entire population, we examihe t o = afki, (22)

estimation condition for the summed rate given as
where k; is the degree ofth node (the receiver) and is

XN:/\»(t) (16) a constant representing the entire input that a single nede i
— A receiving. For the case that the degree of the sertlenpde)
= is k¢, we compute the summand in EqgJ)20):

> Ciu=> (I+A+A>+-)y. (23)

K2

The correlation of the summed rates are given by

P(s) = Z<5/\i(t +5)dA;(t)) = Z ¢ij(s),  (17)
.5 ]
where Zi,j represents the sum over all element pair;r,erms appearing in E.(p3) are obtained as

ZZN:I Z;V:l- Accordingly the integration of correlation is Z(I)if = 1,
Do = {do}ij- (18) : kq ke
i,j z; (A)y = azk: EP(/C“{J@) RN
Thus the condition for the summed activity to fluctuate over Ky ky
time is given as > (A%, = ) k_QP(k2|kl) > k—lP(k1|k4)
7 ko k1
Z (cach),, > 2ZAU =2 Z()@. (19) ok
(29 1,7 K2

(k)
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Fig. 4. Event occurrences in individual nodes and the sumenedt series. (a) The case in which fluctuations are not @étecfrom any single nodes. (b)

Summed event series may exhibit fluctuation in the occuerente.

and we obtain

E (IT+A+A* - )y = 0.25
> kg kz «

1 E Lan =14 2L 24

+n:1< )a (k) 1 @) e

By replacing the average over individual nodéﬁzé in

Eq.(20) by the average over the distribution of degrees

>k, P(ke), we obtain

(e

vE(ze)

;P(k) <1+<%m>2

(k?)

(25)

0.15

0.05

10 10"

(k2)/(k)?

Fig. 5. The critical interactiomx. depending on the dispersion of the degrees
or the numbers of connectiori&?) /(k)2.
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The critical valuea. for the endogenous fluctuation can bg, not exhibit fluctuation even though the summed events
obtained by solving exhibit bursting. Among three kinds of networks, a small-
(k?) a \2 world network tends to have fluctuating nodes with the smalle
— +
w (3)

interactions than others.

The solution of the above equatien is identical to the critical B. Output regulation condition
interaction of a one-dimensional self-exciting procbsg/\/ﬁ The condition that the entire output to each node is regdlate
if all nodes have identical degred#:?) = (k)2. However, the is represented in such a way that the influence in each
critical interactiona, decreases with the degree dispersioffjteraction is scaled inversely proportional to the degoée
(k?)/(k)? (Fig.[B). The scale-free networks characterized bith node (the sender),
the degree distributiod (k) o« k£~ with 2 < v < 3, which (27)
are known to be prevalent among social networks [20], ekhibi o )
divergence in the degree dispersigh?), while the mean In this case, the terms appearing in Eg.(23) are obtained as
degree is finite. Thus, the scale-free networks may exhibit Z(I)i’f
endogenous fluctuation with infinitesimal interaction urithe Z
input regulation condition. Z (A),

Figure[6(a) demonstrates the critical interactienscom- - it
puted for uniform, random, small-world, and scale-free- net . 9 9
works of N = 10000. In this small systen,. of the scale-free Z (A )ie = a,
network is still close to that of the uniform connectiongugh ‘
it vanishes in the limit of infinite dispersion. The fractionf and we have
nodes that exhibit fluctuation in individual event series ar Z(I+A+A2 )i
also displayed in Fid.16(a). It should be noted that most sode ,

2

1+«
1 —«

=2

(26)

Q0 = Oé/kg.

(28)
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Fig. 6. Critical interactionsa. for two types of asymmetric interactions

computed for uniform, random, small-world, and scale-fne¢works (V =
10000). (a) Input regulated condition. (b) Output regulated dtod. The
fractions of nodes that exhibit fluctuation in individualeet series are also
displayed.

Accordingly, the condition for the fluctuation being visbis

1 1
N;CCTZ

> 2,
(1-a)

(29)

and we havey. =1 —1/v2 = 0.3.
Figure[®(b) demonstrates that the critical interactions
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Fig. 7. Event series sampled from popular, typical, and pofao nodes.
A scale free network of size = 300, with the excitabilitya = 0.7. The
degrees of the (1) popular, (2) typical, and (3) unpopulatescsampled here
are 28, 7, and 1, respectively.

VII.

In this study, we demonstrated that the self-exciting point
process undergoes a transition through which the rate #uctu
tion can be detected. In particular, we compared two types of
asymmetric interactions in which the total strength of ieflae
is regulated at either input or output. In the input regolati
condition, the critical interaction strength decreaseth whe
dispersion of the degrees or the number of connections at
individual nodes. The endogenous fluctuation may appear
with infinitesimal interaction if the degree dispersioneatiyes.

DISCUSSION

is identical among three kinds of network topology in th€ontrastingly, in the output regulation condition, theticail
output regulated condition. In the scale-free network, \a feinteraction strength is constant, identical to that of time-o

nodes start to exhibit fluctuation even wherns close toc..

dimensional Hawkes process and is independent of the degree

However, it requires the largestto make a majority of nodes dispersion. In this way, the endogenous bursting induced by
fluctuate in the scale-free network, in comparison with othanteractions among nodes depends not only on the topology
networks. of connections, but also on the manner in which each node is



whered(s) = (A(t + s)A(t)) — (\)? is the correlation of the
rate fluctuation, or

9(s) = (BA(t + 5)A(1)) (32)
redA(t) = A(t) — (A), is the temporal fluctuation of the

interacting.

APPENDIX

Here we derive the critical condition for an optimal his-
togram to be constant, in the case that the bin size of a hiﬁ%
. - S e
togram is selected upon the principle of minimizing the MISr te

between the histogram and the underlying rate, according OFc.>r a homogeneous Poisson process for which) = 0

Ref. [23], [26]. the MISE is a monotonically decreasing functish= (\) /A,
A and therefore, the optimal bin size diverges.

By contrast, the MISE of inhomogeneous point processes
may have a minimum at some finit®. Based on the second
order transition in which the minimum appears continuously
from the infiniteA or infinitesimall /A (Fig.[8), the condition
for the transition is given as

ds

m A=c0o
This can be summed up as a condition of the rate fluctuation,
given in the inequality[{(6), on condition thg(goo so(s)ds is
finite.

S(A) <0. (33)
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