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Abstract—People communicate with those who have the same
background or share a common interest by using a social
networking service (SNS). News or messages propagate through
inhomogeneous connections in an SNS by sharing or facilitating
additional comments. Such human activity is known to lead to
endogenous bursting in the rate of message occurrences. We
analyze a multi-dimensional self-exciting process to reveal depen-
dence of the bursting activity on the topology of connections and
the distribution of interaction strength on the connections. We
determine the critical conditions for the cases where interaction
strength is regulated at either the point of input or output for
each person. In the input regulation condition, the networkmay
exhibit bursting with infinitesimal interaction strength, if the
dispersion of the degrees diverges as in the scale-free networks.
In contrast, in the output regulation condition, the critic al value
of interaction strength, represented by the average numberof
events added by a single event, is a constant1 − 1/

√
2 ≈ 0.3,

independent of the degree dispersion. Thus, the stability in human
activity crucially depends on not only the topology of connections
but also the manner in which interactions are distributed among
the connections.

I. I NTRODUCTION

In these days, people send messages or share news in a
social networking service (SNS). Message occurrences exhibit
bursting in their occurrence rate in response to major events
such as earthquakes or the world cup results. It is known
that bursting may also occur rather spontaneously through
word-of-mouth communication, even if there are no triggering
major events [1]–[4]. The emergence of such spontaneous
or endogenous bursting activity may depend not only on
the topology of connections among people, such as random,
small-world, or scale-free (Fig. 1), but also crucially on the
distribution of interaction strength among the connections [5]–
[8]. Here, we analyze simple model system to reveal the
generic dependence of bursting activity on such network
parameters. In the model system, each event is idealized as a
point event, by ignoring complex details and simplifying such
that every event has equal probability of having influence on
other nodes; events are generated stochastically, wherebyeach
event is derived from an underlying rate, allowing spontaneous
occurrence; every node is influenced by the events in the
connected nodes in a manner such that the underlying rate for
generating future events is modified (typically increased). The
above-mentioned process may be mathematically formulated
as the self-exciting process or the Hawkes process [9], which

has been widely applied to the analysis of earthquakes [10],
genome sequences [11], neuronal activity [12], [13], urban
crime [14], [15], and human activity [16]–[19].

(a)

(c)

(b)

Fig. 1. Different kinds of network topology. (a) random network (Erdős-
Rényi model); (b) small-world network (Watts and Strogatzmodel); (c) scale
free network (Barabási-Albert model).

When applying a network model to the analysis of human
activity, the nodes, edges, and events occurring at nodes,
respectively correspond to persons, their relation or con-
nections, and messages dispatched from individual persons.
Generally, the strength of interaction is not homogeneous over
the connections between persons as illustrated in the following.

In an SNS, the number of friends of each person ranges
widely from a few to thousand [20]–[23]. The “popular” peo-
ple who have a large number of friends may be more influential
than “unpopular” people who have fewer friends. Regarding
the susceptibility to information, however, there would not
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be a large difference between individual persons, because a
single person has limited capacity for information processing
and cannot read and react to all of the received messages.
We simplify this situation as “input regulated,” such that the
input interaction from each sender to the person of interest
is scaled inversely proportional to the degree (the number
of connections) of the receiver node. In this situation, the
interaction is generally not bidirectionally symmetric (Fig. 2
(a)).

The distribution of interactions could be different in other
situations. When considering the infection caused by diseases,
there may not be large differences in the susceptibility between
connections; the probability of getting infected from a single-
chance encounter would be independent of the total number
of people encountered. In this case, the interaction is not
regulated by the number of connections, but would be nearly
constant.

As a case opposite to the interactions in an SNS, we may
consider a process in which every person donates a fixed
amount of money to connected people and such donations lead
to other donations. In such a case, the amount of donation per
acceptor is smaller if a donor is a popular person having a
large number of friends. We may idealize that the interaction
is “output regulated,” such that the output interaction from the
person to each receiver is scaled inversely proportional tothe
degree of the sender or the donor (Fig. 2 (b)).

In this study, we analyze the conditions for networks to
exhibit endogenous fluctuation in their event occurrence rates
by comparing these two extreme conditions, “input regulated”
and “output regulated.” This paper is organized as follows.
In section 2, we introduce the self-exciting process, with the
simple derivation of average event occurrences. In section3,
we introduce the condition on which the rate fluctuation can
be detected from the event series. In section 4, we apply
the detectability condition on the self-exciting process to
analytically obtain the critical interaction strength above which
the system exhibits fluctuation or bursting in the occurrence
rate of events. In section 5, we compute the critical conditions
of the interaction strength for population activity. In section
6, we apply it to two types of networks with input regulated
and output regulated interactions. In section 7, we discussthe
results.

II. M ULTI -DIMENSIONAL SELF-EXCITING PROCESS

The manner in which persons (nodes) are interacting with
messages (events) is described by the multi-dimensional self-
exciting process proposed by Hawkes [9], which may be
represented as,

λi(t) = ρi +

N
∑

j=1

αij

∑

k

f(t− tkj ), (1)

whereλi(t) represents the rate of event occurrence in theith
node at timet. ρi is the original base rate.tkj is the occurrence
time of the kth event in thejth node.αij is the expected
number of events increased inith node by the influence of

(b) Output regulated

(a) Input regulated

Fig. 2. Two types of asymmetric interactions. (a) Input regulated condition:
Each node is influenced from connected nodes with susceptibility inversely
proportional to the degree of the receiver node. (b) Output regulated condition:
Every node influences with susceptibility inversely proportional to the degree
of the sender node.

a single event ofjth node (Fig. 3(a)).f(t) is the kernel
function representing the time course of the supplementary
probability, satisfying the causality,f(t) = 0 for t < 0, and
the normalization,

∫

∞

0
f(t)dt = 1.

Events are derived randomly in time from an underlying rate
according to inhomogeneous Poisson process. This process can
be realized by repeating Bernoulli trials for generating events
with the probability ofλ(t)δt in every small interval ofδt
(Fig. 3(b)).

Given an interaction matrixA ≡ {αij}, the average
occurrence rates〈λ〉 ≡ {〈λ〉i} are obtained from base rates
ρ ≡ {ρi} as

〈λ〉 = ρ+A〈λ〉. (2)

The system may exhibit pandemic explosion in the event
occurrences in the following situations: if interactions make
a single event induce more than one events on an average, or
equivalently if the largest eigenvalue of the interaction matrix
A exceeds unity. Otherwise, all nodes keep generating events
in finite rates given by [13],

〈λ〉 = Cρ, (3)
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Fig. 3. Multi-dimensional self-exciting process. (a) Interaction between
nodes. The rate of event occurrence ofith node,λi(t), is modulated according
to events generated atjth andj′th nodes. (b) Event generation. Events{tk

i
}

are derived randomly from the underlying rateλi(t).

whereC represents effective interactions,

C ≡ (I −A)
−1

. (4)

III. E STIMATING THE RATE FLUCTUATION

In the self-exciting process, the rate for generating events in-
evitably fluctuates over time due to the influence of generated
events, as in Eq.(1). Given a series of events, the underlying
rate may be inferred using rate estimators such as a time
histogram. A histogram may be optimized by selecting the bin
size so that the mean integrated squared error (MISE) between
the underlying rateλ(t) and the histogram̂λ(t) is minimized.
Here the MISE is defined as,

S = lim
T→∞

1

T

∫ T

0

〈

(

λ(t)− λ̂(t)
)2
〉

dt, (5)

where T is the entire observation interval and the bracket
〈·〉 represents the ensemble average over possible realization
of the stochastic process. It is possible to determine the
optimal bin size∆∗ solely from a series of events, even if
the underlying rateλ(t) is not known [24].

However, it may occur that the rate fluctuation is “drowned
out” by the irregular occurrence of events, if the fluctuation in
the underlying rate is small or rapidly fluctuating over time.
This can be confirmed by the fact that the optimal bin size

for a histogram diverges, because the divergence implies that
any histogram of a finite bin size produces a larger error than
simply assuming a constant rate. Otherwise, the fluctuating
rate can be “detected” properly.

One of the authors obtained the condition under which an
optimal bin size diverges or not [25], [26]. It can be shown
(see APPENDIX) that the MISE optimal binsize is finite if
the rate fluctuationδλ(t) ≡ λ(t)− 〈λ〉 satisfies the following
condition:

∫

∞

−∞

〈δλ(t+ s)δλ(t)〉ds > 〈λ〉, (6)

and otherwise the optimal bin size diverges, implying that the
rate fluctuation cannot be estimated properly from a series
of events derived from the underlying rate. This detectability
condition in Eq.(6) derived from the MISE optimization of a
histogram turned out to be identical to the one derived from
the marginal likelihood maximization of the Bayesian rate
estimator [27], implying that this may be a universal bound.

IV. T RANSITION IN THE SELF-EXCITING PROCESS

In the preceding section, we revealed that the condition for
estimating the rate fluctuation is given in Eq.(6) in terms of
the autocorrelation of the underlying rate,

φ(s) ≡ 〈δλ(t+ s)δλ(t)〉
= 〈λ(t+ s)λ(t)〉 − 〈λ〉2. (7)

The Fourier transform of the autocorrelation

φ̃ω ≡
∫

∞

−∞

φ(t) exp (−iωt)dt, (8)

or equivalently the power spectrum of the rate fluctuation was
obtained by Hawkes [9]. For the one-dimensional Hawkes
process (N = 1, αij = α), the power spectrum is obtained
as [28],

φ̃ω =

(

1

(1− αf̃ω)(1 − αf̃−ω)
− 1

)

〈λ〉, (9)

where f̃ω≡
∫

∞

−∞
f(t) exp (−iωt)dt is the Fourier transform

of the kernel function.
Because the condition for detecting fluctuation is given in

terms of the autocorrelation of rate fluctuation, Eq.(6), or

φ̃0 =

∫

∞

−∞

〈δλ(t+ s)δλ(t)〉ds > 〈λ〉, (10)

the condition for the self-exciting process to exhibit bursting
is obtained in combination with Eq.(9) as

1

(1− α)
2
> 2. (11)

It should be noted that the bursting condition is given indepen-
dent of the time course of the supplementary probabilityf(t),
because the computation ofφ̃0 requires only the normalization
condition for the kernel,̃f0 =

∫

∞

−∞
f(t)dt = 1. Thus the rate

fluctuation in the one-dimensional self-exciting point process
is detectable or inferable (if excitability is larger than critical



value) or undetectable (if excitability is smaller than thecritical
value). The critical value is given by [28]

αc = 1− 1/
√
2 ≈ 0.3. (12)

Note that this bursting transition occurs even if the excitability
is much smaller thanα = 1, at which the pandemic explosion
of events occurs.

In our previous study [28], we have extended the theory
to multi-dimensional self-exciting processes to discuss the
detectability of fluctuating activity in networks given in Eq.(1).
We represent the pairwise correlation of the rate fluctuation by
a matrixφ(s) ≡ {φij(s)} given the elements,

φij(s) ≡ 〈δλi(t+ s)δλj(t)〉
= 〈λi(t+ s)λj(t)〉 − 〈λi〉〈λj〉. (13)

Similar to the one-dimensional process, we may obtain the
Fourier image of the correlation matrix̃φω [29]. In particular,
we may obtain the Fourier zero-mode as

φ̃0 = CΛCT −Λ, (14)

whereΛ ≡ diag (〈λ〉) = diag (Cρ).
The fluctuating condition for each node in event generation

is obtained by applying the inequality given in Eq.(6) to the
element ofφ̃0. Using the correlation given in Eq.(14), we
obtain the condition forith node’s activity to fluctuate, as

(

CΛCT
)

ii
> 2Λii = 2〈λi〉. (15)

V. BURSTING TRANSITION IN POPULATION ACTIVITY

Even in a situation where fluctuations are not detectable
from any single nodes, in which case the inequality given
in Eq.(15) does not apply for every node, it may occur that
fluctuation is estimated from the summed activity of multiple
nodes (Fig. 4). This is because the signal to noise ratio may
increase by superposing noisy data. To see whether this may
occur for the activity of the entire population, we examine the
estimation condition for the summed rate given as

N
∑

i=1

λi(t). (16)

The correlation of the summed rates are given by

Φ(s) ≡
∑

i,j

〈δλi(t+ s)δλj(t)〉 =
∑

i,j

φij(s), (17)

where
∑

i,j represents the sum over all element pairs,
∑N

i=1

∑N

j=1
. Accordingly the integration of correlation is

Φ̃0 =
∑

i,j

{φ̃0}ij . (18)

Thus the condition for the summed activity to fluctuate over
time is given as

∑

i,j

(

CΛCT
)

ij
> 2

∑

i,j

Λij = 2
∑

i

〈λi〉. (19)

VI. FLUCTUATION IN TWO TYPES OF ASYMMETRIC

INTERACTIONS

To elucidate the difference in bursting conditions between
different types of asymmetric interactions, we simplify the
situation such that the mean rates for messaging are identical
for all people,〈λi〉 = constant, fori = 1, 2, · · · , N . In this
situation, the condition for the rate fluctuation given in Eq.(19)
is

1

N

∑

i,j

CCT =
1

N

∑

i

∑

j

∑

ℓ

CiℓCjℓ

=
1

N

∑

ℓ

(

∑

i

Ciℓ

)2

> 2. (20)

Note that we need regulation of the interaction strength to
avoid a pandemic explosion, wherein we may obtain the finite
effective interaction given in Eq.(4). This may be secured if
interactions are regulated at the input or output, as shown in
the below.

The critical condition for the above-mentioned transition
may be obtained analytically via mean field approxima-
tion [30], in which the probability that the node of degreek0
is linked to the node of degreek results in a value independent
of k0, given as

P (k|k0) =
k

〈k〉P (k), (21)

where〈k〉 ≡∑k kP (k) is the average degree of a node.

A. Input regulation condition

The condition that the input to each node is regulated
is represented in such a way that the influence in each
interaction is scaled inversely proportional to the numberof
input connections,

αi,ℓ = α/ki, (22)

where ki is the degree ofith node (the receiver) andα is
a constant representing the entire input that a single node is
receiving. For the case that the degree of the sender (ℓth node)
is kℓ, we compute the summand in Eq.(20):

∑

i

Ciℓ =
∑

i

(I +A+A2 + · · · )iℓ. (23)

Terms appearing in Eq.(23) are obtained as
∑

i

(I)iℓ = 1,

∑

i

(A)iℓ = α
∑

k

kℓ
k
P (k|kℓ) =

αkℓ
〈k〉 ,

∑

i

(

A2
)

iℓ
= α2

∑

k2

k1
k2

P (k2|k1)
∑

k1

kℓ
k1

P (k1|kℓ)

=
α2kℓ
〈k〉 ,



(a) (b)

Estimated

rate

Fig. 4. Event occurrences in individual nodes and the summedevent series. (a) The case in which fluctuations are not detectable from any single nodes. (b)
Summed event series may exhibit fluctuation in the occurrence rate.

and we obtain
∑

i

(I +A+A2 + · · · )iℓ =

1 +

∞
∑

n=1

kℓ
〈k〉α

n = 1 +
kℓ
〈k〉

α

1− α
. (24)

By replacing the average over individual nodes1
N

∑

ℓ in
Eq.(20) by the average over the distribution of degrees
∑

kℓ
P (kℓ), we obtain

1

N

∑

ℓ

(

∑

i

Ciℓ

)2

=
∑

k

P (k)

(

1 +
k

〈k〉
α

1− α

)2

=
〈k2〉
〈k〉2

(

α

1− α

)2

+
1 + α

1− α
(25)

The critical valueαc for the endogenous fluctuation can be
obtained by solving

〈k2〉
〈k〉2

(

α

1− α

)2

+
1 + α

1− α
= 2. (26)

The solution of the above equationαc is identical to the critical
interaction of a one-dimensional self-exciting process1−1/

√
2

if all nodes have identical degrees,〈k2〉 = 〈k〉2. However, the
critical interactionαc decreases with the degree dispersion,
〈k2〉/〈k〉2 (Fig. 5). The scale-free networks characterized by
the degree distributionP (k) ∝ k−γ with 2 < γ < 3, which
are known to be prevalent among social networks [20], exhibit
divergence in the degree dispersion〈k2〉, while the mean
degree is finite. Thus, the scale-free networks may exhibit
endogenous fluctuation with infinitesimal interaction under the
input regulation condition.

Figure 6(a) demonstrates the critical interactionsαc com-
puted for uniform, random, small-world, and scale-free net-
works ofN = 10000. In this small system,αc of the scale-free
network is still close to that of the uniform connections, though
it vanishes in the limit of infinite dispersion. The fractions of
nodes that exhibit fluctuation in individual event series are
also displayed in Fig. 6(a). It should be noted that most nodes

10
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0.25

0.3

〈k2〉/〈k〉2

αc

Fig. 5. The critical interactionαc depending on the dispersion of the degrees
or the numbers of connections〈k2〉/〈k〉2 .

do not exhibit fluctuation even though the summed events
exhibit bursting. Among three kinds of networks, a small-
world network tends to have fluctuating nodes with the smaller
interactions than others.

B. Output regulation condition

The condition that the entire output to each node is regulated
is represented in such a way that the influence in each
interaction is scaled inversely proportional to the degreeof
ℓth node (the sender),

αi,ℓ = α/kℓ. (27)

In this case, the terms appearing in Eq.(23) are obtained as
∑

i

(I)iℓ = 1,

∑

i

(A)iℓ = α,

∑

i

(

A2
)

iℓ
= α2,

and we have
∑

i

(I +A+A2 + · · · )iℓ =
1

1− α
. (28)
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Fig. 6. Critical interactionsαc for two types of asymmetric interactions
computed for uniform, random, small-world, and scale-freenetworks (N =
10000). (a) Input regulated condition. (b) Output regulated condition. The
fractions of nodes that exhibit fluctuation in individual event series are also
displayed.

Accordingly, the condition for the fluctuation being visible is

1

N

∑

i,j

CCT =
1

(1− α)2
> 2, (29)

and we haveαc = 1− 1/
√
2 ≈ 0.3.

Figure 6(b) demonstrates that the critical interactionsαc

is identical among three kinds of network topology in the
output regulated condition. In the scale-free network, a few
nodes start to exhibit fluctuation even whenα is close toαc.
However, it requires the largestα to make a majority of nodes
fluctuate in the scale-free network, in comparison with other
networks.

Popular

Unpopular

Typical

12

3

1

2

3

Fig. 7. Event series sampled from popular, typical, and unpopular nodes.
A scale free network of sizen = 300, with the excitabilityα = 0.7. The
degrees of the (1) popular, (2) typical, and (3) unpopular nodes sampled here
are 28, 7, and 1, respectively.

VII. D ISCUSSION

In this study, we demonstrated that the self-exciting point
process undergoes a transition through which the rate fluctua-
tion can be detected. In particular, we compared two types of
asymmetric interactions in which the total strength of influence
is regulated at either input or output. In the input regulation
condition, the critical interaction strength decreases with the
dispersion of the degrees or the number of connections at
individual nodes. The endogenous fluctuation may appear
with infinitesimal interaction if the degree dispersion diverges.
Contrastingly, in the output regulation condition, the critical
interaction strength is constant, identical to that of the one-
dimensional Hawkes process and is independent of the degree
dispersion. In this way, the endogenous bursting induced by
interactions among nodes depends not only on the topology
of connections, but also on the manner in which each node is



interacting.

APPENDIX

Here we derive the critical condition for an optimal his-
togram to be constant, in the case that the bin size of a his-
togram is selected upon the principle of minimizing the MISE
between the histogram and the underlying rate, according to
Ref. [25], [26].

1/Δ

S(Δ)

0

1/Δ∗

1/Δ∗

αc α

Fig. 8. Transition in the bin size of MISE-optimal histograms. (top) The
MISE S(∆) plotted against the inverse of the binsize,1/∆ for various
excitation α. (bottom) The inverse optimal binsize,1/∆∗, plotted against
the excitation levelα.

The MISE between the underlying rateλ(t) and the his-
togram λ̂(t) is given in Eq.(5). In each bin of size∆, the
histogram λ̂(t) is a constant whose height is the number
of eventsK divided by the bin size∆. Thus the MISE is
transformed as

S =

〈

1

∆

∫ ∆

0

(

λ2(t)− 2K

∆
λ(t) +

K2

∆2

)

dt

〉

. (30)

The expected number of events in each interval is given by
integrating the underlying rate:〈K〉 =

∫∆

0
λ(t)dt. Because

events are independently drawn, the Poisson relation holds:
〈

K2
〉

= 〈K〉2 + 〈K〉. Inserting these relations into Eq.(30),
we have

S = φ(0) +
〈λ〉
∆

− 1

∆2

∫ ∆

0

dt

∫ t

−t

φ(s)ds, (31)

whereφ(s) ≡ 〈λ(t+ s)λ(t)〉 − 〈λ〉2 is the correlation of the
rate fluctuation, or

φ(s) = 〈δλ(t+ s)δλ(t)〉 , (32)

whereδλ(t) ≡ λ(t) − 〈λ〉 , is the temporal fluctuation of the
rate.

For a homogeneous Poisson process for whichφ(s) = 0,
the MISE is a monotonically decreasing function,S = 〈λ〉 /∆,
and therefore, the optimal bin size diverges.

By contrast, the MISE of inhomogeneous point processes
may have a minimum at some finite∆. Based on the second
order transition in which the minimum appears continuously
from the infinite∆ or infinitesimal1/∆ (Fig. 8), the condition
for the transition is given as

dS

d(1/∆)

∣

∣

∣

∣

∆=∞

< 0. (33)

This can be summed up as a condition of the rate fluctuation,
given in the inequality (6), on condition that

∫

∞

0
sφ(s)ds is

finite.
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