
HAL Id: hal-01386375
https://hal.science/hal-01386375

Submitted on 10 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Measuring Inconsistencies Propagation from Change
Operation Based on Ontology Partitioning

Mouhamadou Gaye, Sall Ousmane, Bousso Mamabou, Moussa Lo

To cite this version:
Mouhamadou Gaye, Sall Ousmane, Bousso Mamabou, Moussa Lo. Measuring Inconsistencies Prop-
agation from Change Operation Based on Ontology Partitioning. SITIS ’12 : The 8th International
Conference on Signal-Image Technology & Internet Systems, 2016, �10.1109/SITIS.2015.18�. �hal-
01386375�

https://hal.science/hal-01386375
https://hal.archives-ouvertes.fr

Measuring inconsistencies propagation from change operation based on ontology

partitioning

Mouhamadou Gaye

Numerical Analysis and Computer Laboratory – UFR Applied

Sciences and Technology

Gaston Berger University, UGB

Saint-Louis, SENEGAL

gaye.mouhamadou@ugb.edu.sn

Mamadou Bousso

Department of Computerized Management Organisations -

UFR Economic and Social Sciences
Thies University

Thies, SENEGAL
mbousso@univ-thies.sn

Ousmane Sall

Department of Computer Science - UFR Science and

Technology
Thies University

Thies, SENEGAL

osall@univ-thies.sn

 Moussa Lo

Numerical Analysis and Computer Laboratory – UFR Applied

Sciences and Technology

Gaston Berger University, UGB

Saint-Louis, SENEGAL

moussa.lo@ugb.edu.sn

Abstract—Inconsistency measure is an activity related to the

ontology evolution. Being a coherent entity, an ontology must

change and a modification operation in ontology could generate

inconsistencies in its other parts. It is then important to measure

these inconsistencies and follow the impact propagation. In this

paper, we propose an inconsistency measure of an ontological

change and its propagation effects on the other entities of the

ontology. The measure is based on the weight of the dependencies

between concepts in a community. Ontology is divided into

communities which are a set of concepts that have preferential

relations. To follow the impact propagation, we propose a process

that uses the Change-and-Fix’ approach to mark the impacted

entities.

Keywords—Inconsistency; Measure; Community; Evolution;

Propagation; Ontology

I. INTRODUCTION

 Ontology evolution refers to the process of modifying

ontology in response to a change in its conceptualization [6].

As a coherent entity, ontology may evolve and each change

operation on components may bring inconsistency to other

taxonomic and semantic components. It is then important to

measure the degree or level of inconsistency of an entity

change operation to one ontology, in order to define

appropriate actions that will steer the system to a consistent

state. An inconsistency measure quantifies the contribution of

each axiom or element of a knowledge base in all

inconsistencies produced in this base. It gives a schema of the

inconsistency severity in the knowledge base. Many

measurement approaches have been published. [7] proposes a

method for inconsistencies reduction by splitting formulas

while the approach proposed in [17] defines a degree of

inconsistency of a DL-Lite ontology using a method called the

"three-valueSd semantics". The algorithm proposed a PTIME

complexity measure. Shapley values are the support of

inconsistency measure proposed in [9] whose model is

independent of any reasoning language. The approach in [5]

presents a method for measuring the inconsistency based on

the Dempster-Shafer theory of evidence. The algorithm

calculates inconsistencies brought by each atom, each formula,

each set of formulas and derives ontology inconsistency from

these measurements. In [3] the proposed approach combines

the Shannon entropy measure of the satisfiability concept and

quantity of information provided after an ontology change

operation. The weakness of the proposed method is that

Shannon entropy doesn’t clearly allow a comparison of

ontology structural and semantic information before and after

a change operation. We proposed in [13], a change modeling

approach based on Hoare axiomatic semantics that allow

satisfiability tests depending on different operations. However,

we don’t address the assessment of the impact on dependent

entities.

 In this paper, we propose an inconsistency measure of an

ontological change and its propagation effects on ontology

entities. The measure is based on weight dependencies

between concepts in a community. Ontology is divided into

syntactic communities, which are a set of concepts that have

preferential relations. There are different works on partitioning

large ontologies. Stuckenschmidt and Schlicht [14] or Grau

and al. [8] decompose ontology into independent sub-blocks to

facilitate maintenance, visualization, validation or reasoning.

Noy and Musen [10] allow user to extract portions of

ontologies centered on one or several concepts and specify

mailto:gaye.mouhamadou@ugb.edu.sn
mailto:mbousso@univ-thies.sn
mailto:osall@univ-thies.sn
mailto:moussa.lo@ugb.edu.sn

relationships between them. Our decomposition method is

based on the approach in [16] where concept hierarchies are

used to extract. We propose a propagation process that marks

the impacts flow of ripple effects resulting from changes. We

apply our approach to the Food Ontology [18].

 The rest of the article is organized as follows. We start by

giving some basic notions about our model. In Section 3, we

describe a community detection algorithm and process for

entities dependency calculation. Section 4 and section 5 are

respectively devoted to inconsistency measure definition and

impact propagation description. A validation of the approach

based on Food Ontology is given in section 6 and we conclude

with a summary and outlook.

II. PRELIMINARIES

A. Formal model of ontology

 Several models exist for ontology representation such as the

lexical model. In this article, we use the lexical model

formalized in [12]. A model of lexical ontology is defined as a

set O = <S, L> where S is the structure and L the lexical level.

Thus, the structure of an ontology O with which a lexicon is

associated is the tuple:

S = {C, R, A, T, CARR, HC, σR, σCARR, σA, σT} where:

 C, A, T, CARR are respectively sets containing, the

concepts of ontology, the relations of attribute, the

types of attribute and characteristics of associative

relations;

 R ⊆ (C x C) is associative relations set. It makes it

possible to define the semantic types of relations

connecting the concepts of ontology in (C x C);

 HC hierarchy (taxonomy) of concepts: HC ⊆ (C x C),

HC(Ci, Cj) means that Ci is a sub-concept of Cj, for

subsumption relations between ontology concepts;

 σR: R → C x C is the signature of an associative

relation. We will note σR (Ci, Rk, Cj) the signature of

the associative relation Rk between the concepts Ci

and Cj;

 σA: A → C x T is the relation of attribute signature, T

is composed of the simple types. It is noted as σA(Ci,

Ak, Tj) specifying the relation of attribute between a

concept Ci and a Ak attribute having values of the Tj

type;

 σT : A → T is the signature of the relation associating

with an attribute Ak, the Tj type in the form σT(Ak,

Tj) specifying that the Ak attribute is associated with

values of the Tj type;

 σCARR: R → CARR is the relation specifying the

characteristic of an associative relation. We will,

thus, note an associative relation Rk transitive by

signature σCARR(Rk, Trans).

Example 1: Consider ontology O1 on the auto mechanics

defined as follows:

C = {Lorry, Vehicle, Engine, Box, Doors, Wheels, Cylinder,

Petrol, Radiator, Water, Diesel}

R = {is_composed, is_formed, carry_away, turns, consumes,

cools}

A = {costs}

T = {string}

SHC = {Hc(Lorry, Vehicle), Hc(Diesel, Petrol)}

SσR = { σR(Vehicle, is_composed, Box), σR(Vehicle,

is_composed, Doors), σR(Vehicle, is_composed, Box),

σR(Vehicle, is_composed, Engine), σR(Vehicle, is_composed,

Wheels), σR(Engine, is_formed, Cylinder), σR(Engine,

is_formed, Radiator), σR(Box, carry_away, Engine),

σR(Engine, consumes, Petrol), σR(Engine, consumes, Water),

σR(Water, cools, Radiator), σR(Engine, turns, Wheels)}

SσA = {σA(Diesel, costs, « 1.05 euro »)}

TABLE I. BASIC AND GENERAL ASSERTIONS

Id Assertion Signification
P

o
sitiv

e
 A

sse
r
tio

n
s

+Ci  (Ci C)

+Ri  (Ri R)

+Ai  (Ai A)

+Ti  (Ti T)

+CARRi  (CARRi CARR)

+HC(Ci, Cj)  (Ci  C Cj C) / HC(Ci, Cj)

+R(Ci, Rk,Cj)  (Ci C, Cj C Rk R) / R(Ci, Rk,Cj)

+CARR(Ci,CARRi)
 (Ci C CARRi CARR) /

CARR(Ci,CARRi)

+A(Ci,Aj,Tk)  (Ci C, Aj A ∧Tk T) / A(Ci,Aj,Tk)

N
e
g
a

tiv
e
 A

sse
r
tio

n
s

-Ci ¬ (CiC)

-Ri ¬ (RiR)

-Ai ¬ (AiA)

-Ti ¬ (TiT)

-CARRi ¬ (CARRiCARR)

-HC(Ci, Cj)  (Ci C) (Cj C) : ¬HC(Ci, Cj)

-R(Ci, Rk,Cj)
(Ci C)(Cj C)(Rk R) : ¬R(Ci,
Rk,Cj)

-CARR(Ci,CARRi)
(Ci C)(CARRi CARR) :

¬CARR(Ci,CARRi)

-A(Ci,Aj,Tk)
(Ci C) ∧ (AjA) ∧ (TkT) :

¬A(Ci,Aj,Tk)

-HC(*,Ci)  (Ck C) : ¬HC(Ck, Ci)

-HC(Ci,*)  (Ck C) : ¬HC(Ci, Ck)

-CARR(Ri, *)  (CARRi CARR) : ¬CARR(Ri, CARRi)

-A(*, Ai, Tj)
 (Ck C) ∧(AiA) ∧(TjT) : ¬A(Ck,

Ai, Tj)

-A(*, Ai, *)  (Ck C) (Tj T) : ¬A(Ck, Ai, Tj)

-A(Ck, *, *)  (Ai A) (Tj T) : ¬A(Ck, Ai, Tj)

-A(*, *, Tj)  (Ck C) (Aj A): ¬A(Ck, Ai, Tj)

-R(Ci, *, *)  (Ck C) (Rj R): ¬R(Ci, Ri, Ck)

-R(*,Rk, *)  (Ci C) (Cj C) : ¬R(Ci, Rk, Cj)

III. IDENTIFYING COMMUNITIES

 The partitioning method is inspired by approach proposed

in [16]. This approach enables a decomposition of an ontology

based on the structure of the hierarchy of concepts. Our

method uses subsumption and associative relationships

between nodes in the ontological graph in the decomposition

criteria.

A. Dependency graph

 We start by creating a weighted graph.

Definition 1 ontological weighted graph

 An ontological weighted graph is a tuple G = (E, Γ, W)

where E is a set of concepts, Γ an application from E to P(E),

where P(E) contains all the set included in E and W a

weighting function determining the relationship between an

element in E and an element in P (E).

 Ontology concepts are linked by subsumption relationships

Hc, associative relationships σR and attribute relationships σA.

For each type of relationship between two concepts Ci and Cj,

we assign a weight pij according to the direction of

propagation flow impact:

 if Hc(Ci, Cj) then pji = 1 and pij = 0 ;

 if σR(Ci, Rk, Cj) then pji = 1 and pij = 0.

We don’t address in our approach attribute relationships and

these values are justified by the results of our work in [12]. We

considered that three relationships can spread impacts to the

target entities. The subsumption relationship Hc(Ci, Cj)

indicates that any change on Cj can impact Ci. In the same

paper, it was established that for associative relationships

σR(Ci, Rk, Cj), change on Cj can impact Ci except for the

equivalence relationships. For the attribute relationship σA(Ci,

Ak, Tj), a change in the attribute Ak may have consequences

for the concept Ci that uses it.

Définition 2 Weight of a dependency

Let G = (E, Γ, W) be an ontological weighted graph, Ci and Cj

two concepts of E. We define the weight of the dependence

between the concepts Ci and Cj as follows:









N

k

pkipik

pjipij

1

Cj) w(Ci,

 (1)

N is the number of concepts to which Ci is connected in G.

This weight will be used in the algorithm for communities’

detection on ontology.

Fig. 1. Ontological weighted graph of the ontology in example 1

B. Partitioning graph

 Ontology identification communities’ can be seen as a

problem of building concepts clusters. The particularity is that

a concept can belong to one or more communities. Managing

evolution of large ontologies is not an easy task. This

subdivision into communities makes managing very large

ontologies for example in medicine or biology easier,

particularly the inconsistency measure and the impact

propagation.

Définition 3 Community

 A community is a set of concepts that share more intra

properties inside more than outside of the community.

We use in our approach the Line Islands algorithm defined in

[1] to break ontology into communities. This algorithm

determines the maximum of lines separation in an ontological

graph. The number of lines separation is variable, depending

on the size of the ontology.

Définition 4 Edge island

 A set of nodes V is an edge island if:

- It is a singleton or;

- The subgraph corresponding is a connected graph such

that:

VclckVcjVci

ClCkwCjCiw



,

),(min),(max

 (2)

Edge island V ⊆ G is regular edge island, if stronger condition

holds:

VclckVcjVci

ClCkwCjCiw



,

),(min),(max

Algorithm1 Partitioning ontology

Input: G = (E, Γ, W) a ontological weighted graph, maxCties

maximum number of communities

Output: counter the number of communities obtained.

1 min = 1

2 max = |E| - 1

3 islands = {{v} : v ∈ E}

4 for all i ∈ islands do i.port = 0 (vertex with the smallest

weight)

5 sort E in decreasing order according to the weight w

6 for all e(u, v) ∈ G do

7 i1 = island ∈ islands : u ∈ island

8 i2 = island ∈ islands : v ∈ island

9 if i1 i2 then

10 island = new Island()

11 island.port = e

12 island.subisland1 = i1

13 island.subisland2 = i2

14 islands = islands ∪{island}\{i1,i2}

17 endif

18 endfor

19 candidates = ∅

20 while islands = ∅ do

21 select island ∈ subislands

22 subislands = subislands \{island}

23 if |island| < min then

24 delete island

25 else if |island| > max then

27 islands = islands ∪ {island.subisland1,

island.subisland2}

28 delete island

29 else

30 candidates = candidates ∪ {island}

31 endif

32 endif

33 endwhile

34 for all module ∈ candidates do
35 expand(module, maxCties)
36 partition(maxCties, module, counter)
37 endfor

The proposed algorithm like those which make a depth search

in a graph is an O(n+m) complexity with n the number of node

and m the number of arcs., so it’s linear.

Note that with this algorithm a concept can’t belong in more

than one community and an isolated concept doesn’t form a

community. Isolated concepts are linked to communities with

which they are closest. This is calculated using dependency

weight.

IV. INCONSISTENCIES MEASUREMENT

 We start by giving basic change operations that are listed in

the following table. The used assertions are defined in table 1.

TABLE II. EXAMPLES OF BASIC OPERATIONS

Id Basic operations Pre-

condition

Invariant Post-

condition

1

CreateConcept(Ci)

-Ci

-HC (*,Ci)

-σR(*, *, Ci)

+Ci

2

DeleteConcept(Ci)

+ Ci
-HC (*,Ci)
-σR(*, *, Ci)

- Ci

3 CreateAssociative

Relation(Ri)

-Ri

-σCARR(Ri,*)

-σR(*,Ri, *) + Ri

+σCARR(Ri,

CARRi)

4 DeleteAssociative

Relation(Ri)

+ Ri -σCARR(Ri,*)

-σR(*,Ri, *)

- Ri

5

CreateProperty(Ai,Ti)
-Ai -σA(*,Ai,Ti)

-σT(Ai, *)
and + Ti

+ Ai

+σT(Ai, Tj)

6

DeleteProperty(Ai)

+Ai -σA(*,Ai,Ti)

-σT(Ak,*)
and + Ti

- Ai

Definition 5 Free Subset

 Let K be a knowledge base. We define Free(K) as the set

contains the formulae in K that are not involved in any

inconsistency.

 The inconsistency measure is based on weight of the

dependencies in a community. Modification operations

concerned are simple changes such as creating and deleting

entities. In [15], Stojanovic shows that any complex change

can be transform into atomic changes and so we don’t need to

address complex changes. We specified in [12] that each

operation is associated with a whole of assertions declined in

three possible cases:

 If the pre-condition and the invariant are checked,

then the operation can be carried out without

propagation of impacts;

 If the pre-condition is not checked, then the operation

is not checked and there is no impact on the

ontological components;

 If the pre-condition is checked and that the invariant

is not then checked the operation is carried out and

there is an impact propagation process that we

propose to measure.

 A modification operation is modeled like a triplet

Δ=<Op, Args, Assert> representing the operation, its

arguments and Assert =< Pre, Inv, Post> for pre-conditions,

invariant conditions, post-conditions as in table 2. The

inconsistency measure of the operation Δ consists in

measuring the base inconsistency K that contains the negation

of the invariant set Inv defined in table 2.

A. Measuring inconsistency in the community

Definition 6

Let be Op(x) a modification operation such as CreateEntity(x)

or DeleteEntity(x). The inconsistency measure of an entity

modification Op(x) in a community C can be defined as

follows:









C

Ke

exw

vu,

v)w(u,

),(

Inv)Ic(K Ic(Op(x))

 (3)

where C represents a community, Inv the invariant of the

operation Op and K the set that contains the negation of the

invariant set Inv.

Proposition

 Ic is a measure in K.

Proof:

 We must prove the three assertions:

1. Consistency: Ic(K) = 0 if K is consistent.

2. Monotony: If KK’, then Ic(K) ≤ I(K’).

3. Free Formula Independence: For all α Free(K); I(K)

= Ic(K\{ α }).

 Let be K the invariant negation of a modification operation

Op(x).

1. Ic(Op(x)) = Ic(K) = 0   u  K, w(x, u) = 0









N

k

pkipik

pjipij

1

= 0 with Ci = x and Cj = u

 pjipij  = 0  x has no defined relation in K

 K is consistent.

2. Let KK’, then :

Ic(K’) =









C

Ke

exw

vu,

'

v)w(u,

),(

=



 



 



C

Ke KeKe

exwexw

vu,

,'

v)w(u,

),(),(

=









C

Ke

exw

vu,

v)w(u,

),(

+









C

KeKe

exw

vu,

,'

v)w(u,

),(

= I(K) +









C

KeKe

exw

vu,

,'

v)w(u,

),(

  I(K) in the fact

that 
 KeKe

exw
,'

),( 
Cvu,

v)w(u,

3. Let be α ∈ Free(K), then Ic({α }) = 0 from the

consistency.

Or Ic(K) = Ic(K\{ α }) + Ic({α }), therefore

Ic(K) = Ic(K\{ α }).

Example 2: Suppose that a deletion operation concept Box in

the ontology O1 in example 1 is done. The concept Box is in

the community C = {Lorry, Vehicle, Doors, Box, Engine,

Wheels} that shows the following figure:

Fig. 2. Communities of the ontology in example 1

And then the assertions are:

 Pre-condition = {+Box};

 Post-condition = {- Box};

 Invariant = {–HC(*,Box), –HC(Box, *), -σA(Box, *,

*), -σR(Box, *, *)}.

The negation Invariant is :

K = {+HC(*,Box), +σA(Box, *, *), +σR(Box, *, *)}

K = {+HC(Ci, Box), +σA(Box, Rk, Cj), +σR(Box, Ak, Cl)}

K = {σR(Vehicle, is_composed, Box), σR(Box, carry_away,

Engine)}

Ic(DeleteConcept(Box)) =









C

Ke

exw

vu,

v)w(u,

),(

Ic(DeleteConcept(Box)) =






C

EngineBoxwVehicleBoxw

vu,

v)w(u,

),(),(

or 
Cvu,

v)w(u, = 1.64

thus

Ic(DeleteConcept(Box)) =
64.1

50.00 
= 0.30

B. Measuring inconsistency in the ontology

 We consider here the inconsistency of a modification

operation in the ontology.

Definition 7 Inter-community relationship

Two communities C and C’ are connected if there exist a Ci ∈

C and Cj ∈ C’ such as w(Ci, Cj)  0.

Definition 8

 Let be Op(x) a modification operation such as

CreateEntity(x) or DeleteEntity(x). The impact inconsistency

measure of an entity modification Op(x) in the ontology O can

be defined as follows:

N

CrelNbxOpC
o

)(_*))((I
 (Op(x))I 

 (4)

where O designs the ontology, C represents the community

that contains the entity x, Nb_rel(C) number of communities

that C is connected and N number of communities in O.

Example 3: The deletion operation concept Box in the

ontology O1 in example 1 gives:

Io(DeleteConcept(Box)) =
3

2*30.0
= 0.2

V. CHANGES PROPAGATION

 In this section, we propose an algorithm that takes an

ontology and a change operation as inputs and gives as output

the inconsistencies propagation path in the ontology. All

concepts that take account in these inconsistencies are marked.

This algorithm is based on ‘Change-and-Fix’ approach

proposed by Rajlich [11] and Deruelle [4] for change impact

analysis.

Algorithm 2 Change propagation

Input: O an ontology, Op a modification operation

Output: P a set of marked concepts

1 ExecuteOperation(Op)

2 Inv = Op.invariant

3 P = ∅

3 for all Condi ∈ Inv do

4 if (false(Condi)) then

5 mark(Condi)

6 P = P ∪ Condi

7 endif

8 endfor

The following table shows how to mark a condition.

TABLE III. ASSERTIONS FOR MARKING

Id Assertion Signification

1

markConcept(Ci)

∀(Cj ∈ C) if HC(Cj, Ci) then

markRelation(HC(Cj, Cj))

∀(Cj∈ C) and ∀ (Rk ∈ R)

if σR(Cj, Rk, Ci) then

markRelation(σR(Cj, Rk, Cj))

2

markRelation(Rk)

∀(Cj ∈ C) and ∀(Cj ∈ C)

if σR(Cj, Rk, Cj) then

markRelation(σR(Cj, Rk, Cj))

3 markProperty(Ak) ∀(Cj ∈ C) if σA(Cj, Ak, Tj) then

markRelation(σA(Ci, Ak, Tj))

4 markRelation(HC(Cj, Ci)) if (Cj not marked) then

markConcept(Cj)

5

markRelation(σR (Ci, Rk, Cj))
if (Cj not marked) then

markConcept(Cj)

6

markRelation(σA (Cj, Ak, Tj))

if (Ak not marked) then

markConcept(Ak)

7 markRelation(HC(*, Cj)) ∀(Ck ∈ C) if (HC(Ck, Cj)) and
(Ck not marked) then

markConcept(Ck)

8 markRelation(σA(*, Ai, Tj)) ∀ Ck ∈ C, if (σA(Ck, Ai, Tj)) and
(Ck not marked) then
markConcept(Ck)

9 markRelation(σA(*, *, Tj)) ∀ Ck ∈ C, ∀ Ai ∈ A
if (σA(Ck, Ai, Tj)) then
if (Ck not marked) then
markRelation(σA(Ck, Ai, Tj))
if (Ai not marked) then
markRelation(σT(Ai, Tj))

10 markRelation(σR(*, *, Ck)) ∀ Rj ∈ C, ∀ Cj ∈ C:
if (σR(Cj, Rj, Ck)) then
if (Ci not marked) then
markConcept(Cj)

11 markRelation(σR(*,Rk, *)) ∀ Cj ∈ C, ∀ Cj ∈ C: if (σR(Cj, Rk,
Cj)) then
if (Cj not marked) then
markConcept(Cj)

VI. VALIDATION

 We implemented the approach first on the Food Ontology.

This ontology describes the different types of food that exist.

It contains 63 concepts. We used the Pajet tool [2] to partition

ontology and view its different communities. We first create

the .net file that Pajet takes as input by transforming the .owl

file. We construct the adjacency weighted matrix of the

ontological graph m (m[i][j] contains w(Ci, Cj) defined in (1)).

Thus, we obtained 10 communities that are shown in the

following figure.

Fig. 3. Communities obtained with food ontology

To view the change propagation process, we used the

adjacency matrix M constructed as follows.

Let be Ci and Cj two concepts of G, then:

 if Hc(Ci, Cj) then Mji = 1 and Mij = 0 ;

 if σR(Ci, Rk, Cj) then Mji = 1 and Mij = 0.

When a modification operation occurredon a concept Ci, the

marking process determines all concepts Cj such as Mij = 1.

This process is repeated until there is no concept to be marked.

In figure 4 we show the change propagation resulting from the

deletion of the concept Box in ontology O1 proposed in

example 1. The concepts with value 1 are marked.

Fig. 4. Change propagation resulting for the deletion of the concept

Box

VII. CONCLUSION

 In this paper, we present an inconsistency measure of an

ontology change operation and its propagation effects on

ontology entities. The measure is based on dependencies

weight between concepts in communities. Ontology is divided

into syntactic communities, which are a set of concepts that

have preferential relations. The communities’ identification is

guided by subsumption and associative relationships between

nodes in the ontological graph.

 In future work, we plan to complete the development of this

framework on large ontology like Gene Ontology and propose

algorithms for planning inconsistency resolution based on

markovian methods.

REFERENCES

[1] Batagelj, V.: Analysis of large networks-islands. Presented at Dagstuhl
seminar 03361: Algorithmic Aspects of Large and Complex Networks
(2003)

[2] Batagelj, Vladimir and Andrej Mrvar. 1998. “PAJEK -- Program for
large network analysis.” Connections, 21:47-57.

[3] Bousso, M. Sall, O., Thiam, M., Lo, M., Touré, E. H. B.: Ontology
Change Estimation Based on Axiomatic Semantic and Entropy
Measure. IEEE Conference- Track Signal and Image Technology of the

8th International Conference on Signal-Image Technology and Internet-
Based Systems (SITIS 2012) 25-29, November (2012). J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Vol. 2.
Oxford: Clarendon, 1892, 68–73. [3x] L. Dongmei, L. Youfang, H.
Houkuan, H. Shudong, W. Jianxin, “Dempster-Shafer Inconsistency
Values”, In Chinese Journal of Electronics Vol. 23, No. 2, Apr. 2014.

[4] Deruelle, L.: Analyse d’impact de l’évolution des applications
distribuées multi-langages et à bases de données hétérogènes. Thèse de
doctorat. Université du Littoral Côte d’Opale (2001)

[5] Dongmei, L., Youfang, L., Houkuan, H., Shudong, H., Jianxin, W.:
Dempster-Shafer Inconsistency Values. In Chinese Journal of
Electronics Vol. 23, No. 2 (2014)

[6] Flouris, G., Plexousakis, D., Antoniou, G.: A Classification of Ontology
Change. In Proceedings of the 3rd Italian Semantic Web Workshop,
Semantic Web Applications and Perspectives (SWAP) (2006).

[7] Grant, A. Hunter, “Measuring Consistency Gain and Information Loss in
Stepwise Inconsistency Resolution”, In ECSQARU, pages 362–373,
2011

[8] Grau, B. C., B. Parsia, E. Sirin, et A. Kalyanpur (2005). Automatic
partitioning of owl ontologies using e-connections. In DL2005,
Proceedings of 18th International Workshop on Description Logics,
Edinburgh, UK.

[9] Hunter, A.: On the Measure of Conflicts: Shapley Inconsistency Values,
2010.

[10] Noy, N. F. et M. A. Musen (2000). PROMPT: Algorithm and tool for
automated ontology merging and alignment. In AAAI/IAAI, pp. 450–
455.

[11] Rajlich, V(1997), A Model for Change Propagation Based on Graph
Rewriting. In Proceedings of the international Conference on Software
Maintenance (October 01 - 03, 1997). ICSM. IEEE Computer Society,
Washington, DC, 84-91.

[12] Sall, O., Thiam, M., Lo, M., Basson, H.: A model for ripple effects
analysis of cascading problems in ontology evolution. Int. J. Metadata,
Semantics and Ontologies, Vol. 7, No. 3 (2012).

[13] O. Sall, M. Thiam, M. Bousso, M. Lo “Using Hoare’s Axiomatic
Semantics For Checking Satisfiability of Ontology Change Operations”,
In IEEE Conference - 8th International Conference on Information
Science and Digital Content Technology ICIDT'2012 (5th ICIS) - June
26 to 28, 2012 in Jeju Island, Republic of Korea, p. 61-66, Vol.
1, ISBN: 978-1-4673-1288-2.

[14] A. Schlicht and H. Stuckenschmidt. Criteria-based partitioning of large
ontologies. In Proceedings of the International Conference on
Knowledge Capture (K-CAP), 2007.Poster Contribution

[15] Stojanovic, L.: Methods and Tools for Ontology Evolutio. University of
Karlsruhe (2004).

[16] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large
concept hierarchies. In S. A. McIlraith, D. Plexousakis, and F. van
Harmelen, editors, Proceedings of the Third International Semantic Web
Conference(ISWC2004), pages 289–303, Hiroshima, Japan, nov 2004.

[17] L. Zhou, H. Huang, G. Qi, Y. Ma, Z. Huang, Y. Qu, “Measuring
Inconsistency in DL-Lite Ontologies”, IEEE/WIC/ACM International
Joint Conference on Web Intelligence and Intelligent Agent Technology
– Workshops, 2009.

[18] Food Ontology. http://www.w3.org/TR/2003/PR-owl-guide-
20031215/food

http://www.w3.org/TR/2003/PR-owl-guide-20031215/food
http://www.w3.org/TR/2003/PR-owl-guide-20031215/food

