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ABSTRACT
The sensitivity of networks regarding the removal of vertices
has been studied extensively within the last 15 years. A
common approach to measure this sensitivity is (i) removing
successively vertices by following a specific removal strategy
and (ii) comparing the original and the modified network
using a specific comparison method.

In this paper we apply a wide range of removal strategies
and comparison methods in order to study the sensitivity of
medium-sized networks from real world and randomly gen-
erated networks.

In the first part of our study we observe that social net-
works and web graphs differ in sensitivity. When removing
vertices, social networks are robust, web graphs are not.
This effect is conclusive with the work of Boldi et al. who
analyzed very large networks.

For similarly generated random graphs we find that the sen-
sitivity highly depends on the comparison method. The
choice of the removal strategy has surprisingly marginal im-
pact on the sensitivity as long as we consider removal strate-
gies implied by common centrality measures. However, it
has a strong effect when removing the vertices in random
order.

Categories and Subject Descriptors
[]

General Terms
Keywords
robustness analysis, network vulnerability, centrality mea-
sures, random graphs, stochastic quantifiers

1. INTRODUCTION
Networks are part of our everyday life – we are in contact
with social networks and unconsciously interact with web
graphs every day. Although these types of networks rep-
resent completely different constructs, they share various
structural properties (e.g. heavy-tailed degree distributions,
short average distances). Recently, Boldi et al. [4] observed
for very large networks that social networks and web graphs
behave inherently different under controlled vertex removal.
While social networks appear to be robust, web graphs are
very sensitive to certain modifications.

To measure the sensitivity of a graph, we (i) successively re-
move vertices following a specific removal strategy and (ii)
compare the original and the modified networks using a spe-
cific comparison method based on either the shortest path
distribution or a centrality measure.

Measuring the sensitivity by comparing modified graphs to
their respective source graph is a common concept: In the
field of social network analysis, sampling errors are simu-
lated to judge the robustness of centrality measures [5, 11,
7, 24]. In web science, networks are modified in a controlled
way to evaluate their vulnerability against attacks [1, 15, 4,
16].

In this study, we analyze the sensitivity of graphs with re-
spect to vertex removal induced by removal strategies. The
removal strategy defines the order by that vertices are re-
moved from the network. In this paper, we discuss removal
strategies induced by centrality measures (i.e.: first remove
vertices with high centrality values, e.g. degree centrality),
as well as a removal strategy based on a community detec-
tion algorithm (label propagation). The comparison method
defines how to compare modified and unmodified networks.
In addition to comparison methods based on the neighbor-
hood function (as applied in [4, 9]), we consider comparison
methods based on centrality measures (here we measure the
rank correlation between centrality measures of the modified
and the unmodified network).

The main contribution of this paper is twofold: First, we
analyze the sensitivity of medium-sized real-world networks
(in contrast to previous studies on small and very large net-
works) and confirm previous results. Second, we observe
that randomly generated networks (Erdős-Rényi model, Bara-
basi-Albert model, Watts-Strogatz model, and configuration
model) behave differently depending on whether the vertices
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are removed in random order or by a removal strategy im-
plied by centrality measures.

2. RELATED WORK
Modifying graphs and comparing the outcome with the re-
spective source graph is a common approach to tackle a va-
riety of questions. In the field of social network analysis,
networks are modified in order to simulate measurement er-
rors and to examine the robustness of centrality measures.
An empirical network was altered by Bolland [5] and Pear-
son correlation was used to measure the robustness. Ran-
dom samples have been taken from empirical networks by
Costenbader and Valente [11] to investigate the stability of
various centrality measures. Four error types have been ap-
plied to Erdős-Rényi graphs by Borgatti et al. [7] to measure
centrality robustness regarding different types of accuracy
measures. Six types of measurement errors have been ap-
plied to real-world and generated networks by Wang et al.
[24] in order to examine the robustness of node-level network
measures by means of Spearman’s rho.

Albert and Barabási [1] examined the error and attack toler-
ance of random graphs with respect to node removal. Based
on centrality measures, Holme et al. [15] removed nodes and
edges from real-world networks and random graphs to inves-
tigate the attack vulnerability regarding the average inverse
of the geodesic length and the size of the largest connected
subgraph. The behavior of very large social networks and
web graphs with respect to vertex removal based on var-
ious removal strategies and comparison methods based on
the neighborhood function has been studied by Boldi et al.
[4]. Cabral et al. [9] measured the impact of random errors
to real-world networks and generated graphs by means of
stochastic quantifiers.

In our study, we combine several techniques: based on var-
ious removal strategies, we modify medium-sized real-world
networks and random graphs and evaluate the sensitivity of
those networks on the basis of the shortest path distribution,
stochastic quantifiers, and centrality measures.

3. CONCEPTS
A graph G(V,E) is represented by a set of nodes V with
|V | = n and a set of edges E with |E| = m. All used
graphs in this work are unweighted and either directed or
undirected. In this work, the terms graph and network are
used interchangeably. The neighborhood function N of a
graphG at t is the number of pairs of nodes within distance t:

NG(t) = |{(u, v) : u ∈ V, v ∈ V, dist(u, v) ≤ t}|, (1)

with dist(u, v) as the geodesic distance between u and v
[22].1

The neighborhood function can be approximated. Hence,
we are capable of calculating N for graphs where the ex-
act calculation of N has infeasible running time. Multiple
approximation algorithms exist [22, 3], we use HyperANF
[3].

A multitude of measures such as the number of reachable

1In the case of an undirected graph: NG(t) = |{{u, v} : u ∈
V, v ∈ V, dist(u, v) ≤ t}|.

pairs [4] and the average path length is derived from N . Be-
sides, we are specifically interested in the harmonic diameter
[19] which is defined as follows:

Dharm(G) =
n(n− 1)∑

u6=v(dist(u, v))−1
(2)

=
n(n− 1)∑

t>0
1
t
(NG(t)−NG(t− 1))

(3)

Moreover, we derive the number of shortest paths at distance
t from N :

SPG(t) =

{
NG(t) if t = 0

NG(t)−NG(t− 1) if t > 0
(4)

Thus, we respresent the probability mass function of the
shortest path distribution:

HSPG(t) =
SPG(t)∑
t SPG(t)

(5)

3.1 Graph modification and removal strate-
gies

Our basic approach is illustrated in Figure 1. To obtain the
modified graph GR,θ, we apply a removal strategy R at a
certain modification level θ to a source graph G.

Figure 1: Procedure to measure the sensitivity

Modification of G results in GR,θ

Comparison by means
of centrality measures

Comparison by means
of the neighborhood function

Comparison between G and GR,θ

to obtain the sensitivity

Following Boldi et al. [4], a removal strategy R specifies
the order in which the nodes are removed. We use removal
strategies based on centrality measures and label propaga-
tion. In the first case, the nodes are ordered (descending) by
their corresponding centrality value, whereby the centrality
measure either is betweenness centrality (bc), closeness cen-
trality (cc) [14], degree centrality (dc), eigenvector centrality
(ec) [6], or PageRank (pr) [8]. For directed graphs, we also
use the in and out versions of cc and dc as removal strategy.

The modification level θ indicates the fraction of edges we
remove from the source graph. More precisely, nodes are
removed from the source graph G based on the chosen re-
moval strategy R until θm edges are removed. The outcome
of this procedure is the modified graph GR,θ.

The label propagation (lp) removal strategy is based on the
label propagation community detection algorithm [23, 4].
For each cluster, in decreasing size of order the node with
the highest number of neighbors in other clusters is removed.
If the first node has been removed in every cluster and θm
edges have not been removed yet, the second, third etc. node
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with the highest number of neighbors in other clusters is
removed. When centrality measures function as comparison
methods, we also use a random removal strategy where every
vertex is removed with equal probability.

3.2 Comparing G and GR,θ
After creating the modified graph, we compare G and GR,θ.
Pursuing two different approaches, based on the neighbor-
hood function and on centrality measures, we measure the
structural change and thus the sensitivity.

Comparison based on the neighborhood function
When comparing NG and NGR,θ , we make use of the relative
harmonic diameter change δ:

δ(G,GR,θ) =
Dharm(GR,θ)

Dharm(G)
− 1 (6)

This measure combines information about the path length
and the connectivity. It has shown the best performance as
comparison method for neighborhood functions in [4].

The use of stochastic quantifiers is another way of compar-
ing neighborhood functions. In this work, we use the same
quantifiers as Cabral et al. [9], specifically the Kullback-
Leibler divergence (kl), the Jensen-Shannon distance (jsd)
as well as the Hellinger distance (hd):

kl(G,GR,θ) = kl(HSPG , HSPGR,θ ) (7)

Analogously to Equation 7 we define jsd(G,GR,θ) and
hd(G,GR,θ).

Comparison based on centrality measures
The second approach to compare the network structure of G
and GR,θ uses a centrality measure cm ∈ (bc, cc, dc, ec, pr).
Since GR,θ is an induced subgraph of G, the centrality values
for every node u in GR,θ are calculated for both graphs. The
results are stored in the vector M for G and MR,θ for GR,θ.
We measure the sensitivity by computing Spearman’s rank
correlation coefficient ρ:

ρ(G,GR,θ) = ρ(M,MR,θ) (8)

This approach is common in the field of robustness of net-
work measures (cf. Wang et al. [24]).

3.3 Random graph models
In section 5, we apply our procedure to graphs generated by
the following random graph models:

According to the Erdős-Rényi model (ER(n, p)), a graph
consists of n nodes. The existence of an edge between two
nodes is specified by the probability p. Subsequently, the
degree distribution follows a binomial distribution [13].

As introduced in [1], the Barabasi-Albert model (BA(n, l))
is based on the assumption that a network grows over time.
The initial network consists of a single node. In each time
step a new node is added and connected to l other nodes
chosen from the existing nodes with a probability propor-
tional to their degree. New nodes are added until the graph

consists of n nodes. The networks generated by the BA
model follow a power-law degree distribution.

Following the Watts-Strogatz small-world model (WS(n, k, prew))
[25], the initial graph is a ring with n nodes that are con-
nected to k predecessors and successors. Afterwards, each
edge is randomly rewired with probability prew, self-loops
and multiple edges that may arise are deleted. Graphs gen-
erated by the WS model exhibit small-world properties, i.e.
high transitivity and relatively small average path length.

To generate graphs based on a given degree sequence of a
graph G, the configuration model (CF (G)) is used [20, p.
434 ff.]. Initially, every node vi has ki stubs (ki is the degree
of the ith node). Each step, two random stubs are chosen
and connected with each other until all stubs are connected.
Self-loops and multiple edges that may arise are deleted.

For graph generation and modification we use the igraph
library [12].

4. STUDY OF REAL-WORLD NETWORKS
In this section, we apply our previously described approach
to real-world networks. After characterizing the experimen-
tal design and the specific networks we use, we discuss our
results.

4.1 Experimental design
Applying our procedure (Figure 1) to the networks described
in chapter 4.2 we use θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. The
neighborhood function is calculated exactly for the Hamster-
ster and Google network. HyperANF is used to approximate
the neighborhood function in the remaining cases. In case
of approximation, we make at least ten runs with 1024 reg-
isters per counter to ensure relative standard deviations at
a maximum of 1.45% [4].

For the comparison based on centrality measures, we use dc,
ec and pr. Due to their time complexity, cc and bc are not
considered as comparison methods. The in and out versions
of cc and dc are not considered as comparison methods as
well since by definition these measures are only available for
directed graphs.

4.2 Data
In this section, we use six real-world networks of various sizes
represented by three social networks and three web graphs:2

Hamsterster (2.426 nodes, 16.631 edges, undirected): Ham-
sterster.com was a virtual hamster and gerbil commu-
nity. The users are connected by edges if they share
a friendship or family relationship. (available through
[17])

Brightkite (58.228 nodes, 214.078 edges, undirected): Bright-
kite.com was a location-based social network. The
users are connected when a friendship exists in both
directions. This network was created by [10].

Slashdot (82.168 nodes, 948.464 edges, directed) Slashdot.com
is a technology related news website where users can

2 Multiple edges and self-loops are removed from all graphs.
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tag each other as friends or foes. This snapshot (febru-
ary 2009) of the network contains friend/foe links be-
tween the users. This network was created by [18].

Google (15.763 nodes, 171.206 edges, directed) A web graph
based on google.com also used by [21].

Stanford (281.903 nodes, 2.312.497 edges, directed) A web
graph based on the website of the Stanford University
(stanford.edu). This network is also used in [18].

NotreDame (325.729 nodes, 1.497.134 edges, directed) A
web graph based on the website of the University of
Notre Dame (nd.edu). This network was created by
[2].

4.3 Results
Especially interested in the behavior of web graphs com-
pared to social networks, we analyze if web graphs and so-
cial networks behave differently under controlled modifica-
tion. Our results regarding δ and hd are illustrated in Ta-
ble 1. Considering the comparison based on the neighbor-
hood function, our experiments show that the observed so-
cial networks are slightly affected by the modification whereas
all web graphs are substantially disturbed. In contrast, the
comparison by means of centrality measures does not pro-
vide a clear-cut distinction between web graphs and social
networks. Following, we describe the results in a more de-
tailed manner.

Since the majority of the δ-values are monotonically increas-
ing, we restrict the description of the results to θ = 0.3 in
most cases.

Considering social networks, we observe relatively small changes
across all networks. Except for lp, almost all removal strate-
gies lead to similar behavior. Since the underlying com-
munity detection algorithm may returns different commu-
nities in successive runs, the results referring to lp should
be treated with caution. As a result, the removal order of
the nodes changes. Especially in the cases of Google and
Stanford, the ranking provided by lp is unstable.

Excluding lp, which decreases in case of Hamsterster and
is significantly lower than all other values in the remaining
cases, we observe the following mean (standard deviation)
for δ: Hamsterster 0.26 (0.060), Brightkite 0.45 (0.053), and
Slashdot 0.27 (0.043).

Regarding web graphs, we note that some removal strategies
substantially change the structure of the network. Specifi-
cally named, dcout (8.51), bc (6.02), and ccout (3.83) in case
of Google, bc (241.81), lp (36.89), cc (35.60), ccout (22.23),
and pr (14.88) in case of NotreDame and bc (14.18), lp
(8.49), and ec (4.65) in case of Stanford. It should be noted
that in instance of NotreDame the largest values of cc (ccout)
already appear at θ = 0.25 (θ = 0.15). Moreover, the re-
maining removal strategies show higher δ-values compared
to social networks. However, we find that this behavior is
diminished by symmetrization.3

3The δ-values for the symmetrized web graphs are still at a
higher level when compared to social networks but the effect
is less noticeable. Taking Google (NotreDame) as an exam-

These findings are consistent with a previous study by Boldi
et al. [4] who observed a difference in the behavior between
social networks and web graphs. They find that bc and lp
are the most effective removal strategies with regard to web
graphs. Consistent with our observations, the mentioned
study did not observe any significant changes with respect
to the structure of social networks.

Additional to the harmonic diameter change, we also com-
pare the neighborhood function by means of the relative
average distance change (δavgdist ) and the percentage of
reachable pairs (δreachable). We notice the same behavior as
in case of δ. The values for the social networks increase mod-
erately whereas all web graphs are significantly disturbed by
some removal strategies. However, in some cases the δavgdist
(e.g. bc for NotreDame and Stanford) increases first and de-
creases again with increasing θ. Furthermore, the δreachable
for undirected graphs only indicates how disconnected the
graph is. These effects have also been observed in [4] and
therefore we only consider δ in the remainder of this study.

Using stochastic quantifiers is another way to compare G
and GR,θ. The results for hd are listed in Table 1. Com-
paring social networks and web graphs, fewer disturbances
are shown for social networks whereas web graphs are con-
siderably disturbed by some removal strategies. But these
strategies are not necessarily the same as in instance of δ:
bc, being the most efficient strategy to disturb NotreDame
with respect to δ, is only placed third in connection with hd
and dcout (Google) shows a hd of 0.28 despite being ranked
first regarding δ.

All three stochastic quantifiers show similar results among
each other. Although hd and jsd are normalized and kl
is not, all measures behave similarly. Like Cabral et al.
[9], we note that hd is more sensitive to changes regarding
the network structure compared to jsd, thus we focus our
discussion on hd.

The results for pr as comparison method are shown in Fig-
ure 2. Among all centrality measures as removal strategy,
we observe minor differences as far as the social networks
and the google graph are concerned (ρ ≈ 0.95 at θ = 0.30).
Although NotreDame and Stanford show increased sensitiv-
ity. The results of dc as comparison method look similar but
show less variation with a minimum ρ of 0.80. With regard
to ev as comparison method, Google shows lower values than
the social networks with bc, lp and ev as removal strategy.
Also in those cases there is no unambiguous discrimination
between the two types of networks. Overall, we find that
no combination of removal strategy and centrality method
is able to provide a clear-cut distinction between social net-
works and web graphs.

5. STUDY OF SIMULATED NETWORKS
In this section, we analyze the behavior of random graphs
with respect to controlled modifications. We are especially
interested in the following questions:

Question 1: Do similarly generated random graphs show

ple, δ for bc is lowered to 1.25 (5.17). Additional sensitivity
values for symmetrized versions of the directed real-world
networks can be found in Appendix A.
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Table 1: Sensitivity of real-world networks with regard to systematic vertex removal (comparison based on
the neighborhood function)

R
θ 0.05 0.10 0.15 0.20 0.25 0.30

G hd δ hd δ hd δ hd δ hd δ hd δ

Brightkite bc 0.09 0.10 0.14 0.16 0.19 0.23 0.24 0.32 0.30 0.39 0.36 0.52
cc 0.08 0.07 0.12 0.14 0.19 0.20 0.24 0.30 0.29 0.38 0.35 0.49
dc 0.07 0.08 0.12 0.12 0.16 0.17 0.19 0.23 0.23 0.30 0.29 0.39
ec 0.00 0.00 0.04 0.07 0.07 0.11 0.12 0.19 0.18 0.31 0.22 0.41
lp 0.02 0.10 0.02 0.13 0.03 0.09 0.06 0.12 0.08 0.13 0.11 0.17
pr 0.08 0.07 0.13 0.16 0.18 0.23 0.22 0.29 0.27 0.38 0.32 0.47

Hamsterster bc 0.05 0.04 0.08 0.08 0.10 0.15 0.12 0.20 0.16 0.28 0.19 0.35
cc 0.03 0.03 0.05 0.06 0.09 0.09 0.12 0.12 0.14 0.17 0.17 0.22
dc 0.04 0.04 0.06 0.06 0.08 0.10 0.10 0.13 0.13 0.18 0.17 0.25
ec 0.03 0.03 0.04 0.04 0.06 0.07 0.08 0.09 0.10 0.14 0.13 0.19
lp 0.02 -0.01 0.04 -0.17 0.04 -0.25 0.04 -0.31 0.08 -0.32 0.06 -0.32
pr 0.04 0.04 0.06 0.06 0.08 0.11 0.11 0.15 0.15 0.21 0.18 0.27

Slashdot bc 0.05 0.06 0.08 0.11 0.10 0.16 0.13 0.22 0.15 0.27 0.19 0.32
cc 0.04 0.04 0.07 0.10 0.10 0.13 0.11 0.21 0.14 0.22 0.17 0.26
ccin 0.03 0.05 0.06 0.08 0.08 0.08 0.11 0.10 0.12 0.16 0.16 0.17
ccout 0.05 0.06 0.07 0.10 0.09 0.14 0.12 0.17 0.13 0.22 0.17 0.27
dc 0.04 0.08 0.07 0.13 0.10 0.15 0.12 0.20 0.15 0.22 0.18 0.28
dcin 0.04 0.09 0.07 0.12 0.09 0.16 0.12 0.20 0.15 0.23 0.18 0.28
dcout 0.05 0.09 0.07 0.13 0.10 0.15 0.12 0.20 0.15 0.25 0.17 0.29
ec 0.03 0.04 0.05 0.07 0.08 0.12 0.10 0.17 0.13 0.20 0.16 0.26
lp 0.02 0.04 0.03 0.10 0.05 0.13 0.10 0.05 0.16 -0.01 0.20 -0.06
pr 0.05 0.09 0.07 0.12 0.10 0.16 0.12 0.20 0.14 0.27 0.18 0.30

Google bc 0.11 0.18 0.34 0.68 0.35 0.77 0.35 0.90 0.32 2.25 0.29 6.02
cc 0.09 0.07 0.10 0.07 0.13 0.11 0.15 0.19 0.19 0.33 0.22 0.37
ccin 0.09 0.07 0.10 0.07 0.10 0.08 0.15 0.23 0.29 0.35 0.50 0.66
ccout 0.01 0.01 0.32 2.82 0.31 2.91 0.35 3.28 0.21 3.83 0.21 3.83
dc 0.09 0.07 0.10 0.07 0.10 0.08 0.14 0.13 0.15 0.37 0.22 0.70
dcin 0.09 0.07 0.10 0.07 0.10 0.08 0.14 0.13 0.13 0.19 0.25 0.42
dcout 0.16 0.49 0.32 6.45 0.31 6.61 0.29 7.71 0.29 7.77 0.28 8.51
ec 0.00 0.01 0.01 0.01 0.10 0.08 0.09 0.09 0.10 0.10 0.13 0.18
lp 0.09 0.07 0.14 0.41 0.14 0.41 0.18 0.71 0.49 1.20 0.50 1.24
pr 0.09 0.07 0.10 0.07 0.10 0.08 0.16 0.14 0.22 0.39 0.40 0.93

NotreDame bc 0.39 4.31 0.50 11.46 0.62 34.48 0.53 138.50 0.50 211.12 0.49 241.81
cc 0.57 4.74 0.53 16.47 0.70 36.00 0.75 37.75 0.75 41.74 0.76 35.60
ccin 0.02 -0.01 0.02 -0.01 0.02 -0.03 0.02 -0.02 0.02 -0.05 0.02 -0.03
ccout 0.50 3.16 0.56 15.69 0.69 23.88 0.77 23.51 0.78 22.76 0.80 22.33
dc 0.20 0.61 0.23 1.23 0.26 1.51 0.27 2.09 0.27 2.12 0.27 2.06
dcin 0.19 0.47 0.19 0.90 0.21 1.56 0.21 1.53 0.21 1.54 0.23 1.90
dcout 0.03 0.25 0.07 0.68 0.07 0.66 0.06 0.70 0.09 0.82 0.08 1.42
ec 0.01 0.01 0.01 -0.01 0.02 0.00 0.02 0.00 0.03 -0.01 0.02 -0.01
lp 0.22 0.88 0.26 1.76 0.30 4.00 0.31 11.84 0.33 24.09 0.36 36.89
pr 0.19 0.60 0.17 0.91 0.20 1.87 0.35 3.76 0.39 6.73 0.40 14.88

Stanford bc 0.13 0.76 0.27 1.78 0.31 3.34 0.37 4.93 0.36 9.05 0.47 14.18
cc 0.14 0.14 0.20 0.34 0.20 0.34 0.29 0.65 0.32 1.27 0.32 1.54
ccin 0.03 -0.06 0.05 -0.12 0.06 -0.17 0.10 -0.10 0.22 0.06 0.34 0.56
ccout 0.03 -0.03 0.08 0.05 0.28 0.48 0.32 0.52 0.33 0.54 0.38 0.65
dc 0.08 0.18 0.10 0.32 0.20 0.59 0.22 0.85 0.24 0.99 0.27 1.14
dcin 0.08 0.18 0.10 0.33 0.20 0.62 0.21 0.83 0.24 0.99 0.27 1.10
dcout 0.06 0.13 0.13 0.50 0.16 0.75 0.19 1.03 0.22 1.33 0.24 1.82
ec 0.07 0.10 0.20 0.36 0.27 0.58 0.39 1.12 0.41 3.33 0.39 4.65
lp 0.15 0.36 0.20 1.20 0.24 2.97 0.22 4.86 0.26 6.54 0.14 8.49
pr 0.14 0.36 0.18 0.52 0.21 0.61 0.24 0.87 0.29 1.21 0.33 1.66

The sensitivity (δ and hd) of the real-world networks with respect to systematic vertex removal is listed in the table above. We observe relatively

small changes across all social networks (the first three graphs listed above). In contrast, all web graphs are very sensitive to vertex removal

induced by certain removal strategies. For every web graph, the sensitivity values regarding δ and hd (at θ = 0.30) for the most effective

removal strategy are shown in bold. Note, that with respect to bc as removal strategy and hd as comparison method, the sensitivity of the web

graphs is larger than 6 while the sensitivity of the social networks does not exceed 0.52.
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Figure 2: Sensitivity of real-world networks with regard to centrality measures as comparison
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The sensitivity (pr as comparison method) of the real-world networks is illustrated in the figure above. Each removal strategy is represented by

one panel. We observe no clear-cut distinction between social networks (A, B, C) and web graphs (D, E, F) in any case.

similar sensitivity to vertex removal? Is the variance of the
results of the simulations low enough to compare the values
derived for different levels of θ?

Question 2: To what extend depends the sensitivity of ran-
dom graphs on the parameterization? How do parameters
i.e. the network size and other model-specific parameters
influence the sensitivity?

Question 3: What impact have the choice of removal strat-
egy and comparison method on the sensitivity of random
graphs? Is there a difference between the different removal
strategies or measures of comparison with respect to the
sensitivity?

5.1 Experimental design and Data
In contrast to the previous section, we compute the sensitiv-
ity values for a selection of simulated networks and calculate
the neighborhood function exactly in all cases. We choose
θ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and n ∈ {2426, 15763}
which is the size of the Hamsterster, respectively Google,
network.

To obtain comparable results, we choose overlapping param-
eters for ER and BA and consider two different rewiring
probabilities for both sizes of the WS networks.

The graphs generated by CF are based on the degree se-
quence of the Hamsterster, respectively Google, network.
Therefore, we compare the generated graphs to their respec-
tive source graphs. The specific parameters are shown in
Table 2. Since the label propagation community detection
algorithm returns a single community for networks gener-
ated by ER and BA (as already mentioned in [23]), lp is
not considered in this section. Instead, we consider a ran-

dom removal order as baseline model to make our results
comparable to previous studies regarding the robustness of
centrality measures.

5.2 Results
With respect to Question 1, we observe low standard devi-
ations across all scenarios. Simulations based on ER and
CF show continuously the lowest relative standard devia-
tions. WS and BA show a higher variance but are still at
an acceptable level. The variance for ER(2426, 0.0014) and
WS(15763, 9, 0.01) are displayed as examples in Figure 3 in
form of box-and-whisker plots. Other cases show similar be-
havior. Due to the low variance, we rarely see the range of
comparison methods overlap for two different θ-values. Since
all measures are monotonically increasing, except some val-
ues concerning the centrality measures as comparison which
we do mention separately, we focus our discussion on θ = 0.3
in this section.

Our results regarding Question 2 and 3 are summarized in
Table 3 and described in detail in the next sections.

5.2.1 Erdős-Rényi model
First, we take a look at the graphs generated by ER. Based
on the neighborhood function, the smaller graphs show higher
values for δ and hd than the larger graph at the respective
level of p. For example, the ER(2426, 0.0014) shows a δ of
0.36 whereas ER(15763, 0.0012) shows a δ of 0.055. How-
ever, both sizes show the same behavior: the higher the p,
the lower the δ or hd. Comparing hd with δ, we notice that
both measures behave in the same way (see Figure 4). Since
this is the case for BA and WS as well, we subsequently
focus on the behavior of δ.

Regarding the removal strategies, we observe two different
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Table 2: Parameters and properties of networks generated by random graph models

model n density parameter runs

ER 2.426 0.0014, 0.0028, 0.0057, 0.0113, 0.0226 p = 0.0014, 0.0028, 0.0057, 0.0113, 0.0226 100
15.763 0.0003, 0.0006, 0.0012, 0.0024, 0.0048 p = 0.0003, 0.0006, 0.0012, 0.0024, 0.0048 10

BA 2.426 0.0049, 0.0058, 0.0066, 0.0074, 0.0082 l = 6, 7, 8, 9, 10 100
15.763 0.0008, 0.0009, 0.0010, 0.0011, 0.0013 l = 6, 7, 8, 9, 10 10

WS 2.426 0.0058, 0.0058 k = 7, prew = 0.01, 0.16 100
15.763 0.0011, 0.0011 k = 9, prew = 0.01, 0.16 10

CF 2.426 0.0055 degree sequence of Hamsterster 100
15.763 0.0011 degree sequence of Google 10

situations. Either we choose a random removal strategy and
obtain a δ of 0.18 for ER(2426, 0.0014), respectively 0.12 for
ER(15763, 0.0012), or we choose a removal strategy based
on a centrality measure and obtain δ = 0.38 ±0.046 (0.23
±0.020).4 In other words, there is a noticeable difference if
the removal strategy is random or not but it barley makes a
difference which non-random removal strategy is used. This
effect appears for all combinations of p and θ (Figure 4).

Using the correlation of centrality measures as indicator for
the structural change, we observe two of the already men-
tioned effects: with increasing p the sensitivity decreases
and all removal strategies based on centrality measures be-
have similarly whereas random removal has less impact on
the structure. In contrast to hd and δ, the centrality mea-
sures differ among themselves. Unaffected by the network
size and the removal strategy, dc (ρ = 0.89± 0.0135) and pr
(ρ = 0.91± 0.0128) show the strongest correlation.

The remaining measures behave differently regarding the
network size. Excluding the random removal, we observe
ρ = (0.85 ±0.0030, 0.77 ±0.0135, 0.76 ±0.0148) for bc, cc,
ec for ER(15763, 0.0012), respectively ρ = (0.78 ±0.0206,
0.60 ±0.0437, 0.51 ±0.0573) for ER(2426, 0.0014).

5.2.2 Barabasi-Albert model
Considering our results regarding graphs generated by BA,
we observe similar findings. For a fixed l, graphs with n =
2426 show larger values for δ and hd than graphs with n =
15763. The sensitivity decreases with increasing l; δ and
hd show the same behavior with increasing θ. With re-
gard to the sensitivity, there is little difference among all
non-random removal strategies. The random vertex removal
consistently shows the lowest sensitivity and does not differ
regarding the size of the graph.

Using pr and dc as comparison method, we observe similar
behavior for all combinations of l and n in instance of all
removal strategies. This behavior also is observed for bc, cc,
and ec in case of random vertex removal. For non-random
removal strategies, these comparison methods differ. They
show lower correlation for the larger graph and the correla-
tion increases with increasing l.

Compared to BA-graphs, ER-graphs are less sensitive when
centrality measures are used as comparison method. This is
also true for δ and hd with one exception: If vertices are

4These values represent the mean ±standard deviation of δ
for all non-random removal strategies.

removed randomly, BA-graphs are less sensitive.

5.2.3 Watts-Strogatz model
When analyzing WS-graphs, we observe that graphs with
prew = 0.01 are more sensitive than graphs with prew = 0.16.
In both cases, there is little difference in sensitivity with re-
spect to the network size. For graphs with prew = 0.16,
we note the same level of sensitivity for all removal strate-
gies, including random vertex removal. Graphs with the
lower rewiring probability behave differently. These obser-
vations are similar when considering both comparison meth-
ods, based on the neighborhood function and on centrality
measures. Considering δ for graphs with prew = 0.01 (hd
behaves similar, again), vertex removal based on a random
order and ec has little impact (δ ≈ 0.11). bc and cc have
medium impact (δ ≈ 0.50) and dc and pr have the largest
impact (δ ≈ 1.20).

As far as centrality measures are used as comparison method,
we notice two different situations. For prew = 0.16, the WS-
graphs behave like ER-graphs in terms of sensitivity. The
sensitivity is similar for all non-random removal strategies,
except for ec as comparison method. For prew = 0.01, we
hardly observe any patterns except for dc and pr, which show
similar behavior. The network size has negligible influence
on the sensitivity.

5.2.4 Configuration model
Since the different sized graphs generated by CF are based
on different degree sequences, we do not compare them to
each other. Rather we investigate the similarity between the
generate graph and the respective source graph.

When the neighborhood function is used as comparison meth-
od, we find that generated graphs show similar sensitivity
for all non-random removal strategies (CF (Hamsterster):
δ ≈ 0.16, CF (Google): δ ≈ 0.38). Random vertex removal
leads to lower sensitivity (CF (Hamsterster): δ ≈ 0.07,
CF (Google): δ ≈ 0.08). The hd-values for all removal
strategies and the δ-values for ec and random removal for
CF (Hamsterster) are essentially equivalent to those of the
respective source graph. Except for random vertex removal,
CF (Google) and its respective source graph do not show
any similarities.

The sensitivity with regard to comparison by means of cen-
trality measures only differs between random and non-random
vertex removal. Considering both generated graphs, the be-
havior is similar compared to their respective source graph
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Table 3: Summary of the results for generated graphs

Graph Q2: To what extend depends the sensitivity of
random graphs on the parameterization?

Q3: What impact have the choice of removal
strategy and comparison method on the sensitiv-
ity of random graphs?

ER N The higher the p, the lower the sensitivity. Small
graphs are more sensitive than large graphs.

There is only a difference between random and
non-random removal. Both comparison methods
behave similar.

cm Higher p leads to lower sensitivity. Size has no
influence for dc and pr. For bc, cc and ec the
larger graph is less sensitive.

Non-random removal strategies show similar be-
havior. The sensitivity differs between the com-
parison methods. pr, dc, bc, cc, and dc become
(in this sequence) more sensitive.

BA N Similar to ER regarding network size. A higher l
leads to lower sensitivity but size makes no differ-
ence for random vertex removal.

Similar to ER.

cm No difference regarding network size and l for pr
and dc as comparison methods and for random as
removal strategy. In the remaining cases: sensi-
tivity decreases with increasing network size and
l.

Similar to ER.

WS N Graphs with prew = 0.01 are more sensitive than
graphs with prew = 0.16. Network size has a small
influence on the sensitivity.

Graphs with prew = 0.16 show the same sensitiv-
ity for all removal strategies. For networks with
prew = 0.01, random and ec show low, bc and cc
show medium, pr and dc show large sensitivity.
Both sensitivity measures behave similarly.

cm Similar as for the neighborhood case. Graphs with prew = 0.16 are similar to ER. For
prew = 0.01, we hardly observe any patterns ex-
cept for dc and pr as comparison method. They
show similar behavior.

The table above shows a summary of the results for this section. As the variance is small in all cases, Question 1 is omitted for reasons of

brevity. The results for graphs generated by CF are not shown in the table above because we compare them to their respective source graph.

N (cm) denotes the comparison methods based on the neighborhood function (centrality measures).

if dc (and cc, bc in case of CF (Hamsterster)) is used as
comparison method.

6. CONCLUSIONS
In this paper, we analyze the sensitivity of real-world net-
works and random graphs with respect to systematic vertex
removal. We consider a variety of removal strategies and
comparison methods.

When using the neighborhood function based comparison
methods, web graphs show high sensitivity. In contrast, so-
cial networks show low sensitivity. This finding is consistent
with previous observations made by Boldi et al. [4]. How-
ever, no comparison method based on a centrality measure
provides a clear-cut distinction between social networks and
web graphs.

We examine graphs generated by four different random graph
models. We observe that the smaller graphs exhibit higher
sensitivity than the larger graphs. Furthermore, the com-
parison methods based on the neighborhood function show
similar behavior regarding the sensitivity. However, cen-
trality based methods do not. Our experiments show, that
there is a difference between a random removal order and
removal strategies based on centrality measures. However,
in the majority of the cases, it does make little difference
which non-random removal strategy we choose.

In this paper, we focused on the systematic removal of ver-
tices. Future research may investigate the sensitivity with
respect to systematic insertion of vertices and nodes as well
as the behavior of directed graphs. Another step towards a
better understanding of the sensitivity of web graphs might
be the usage of exponential random graph models, in order
to simulate networks that share various structural properties
with the respective source graph.
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Figure 4: Sensitivity of ER(2426, p) regarding the neighborhood function
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APPENDIX
A. ADDITIONAL DATA
Table 4: Sensitivity (δ) for symmetrized versions of
the directed real-world networks

G
R

θ
0.05 0.10 0.15 0.20 0.25 0.30

Slashdot bc 0.07 0.10 0.13 0.18 0.22 0.28
cc 0.05 0.10 0.13 0.16 0.18 0.24
dc 0.08 0.11 0.14 0.16 0.20 0.26
ec 0.04 0.09 0.09 0.15 0.19 0.23
lp 0.04 0.08 0.12 0.06 0.02 0.01
pr 0.06 0.12 0.16 0.18 0.22 0.29

Google bc 0.25 0.37 0.81 0.90 1.09 1.25
cc 0.25 0.37 0.40 0.49 0.70 0.97
dc 0.25 0.37 0.40 0.49 0.60 1.03
ec 0.25 0.37 0.38 0.49 0.55 0.65
lp 0.25 0.46 0.69 0.86 0.94 1.09
pr 0.25 0.48 0.62 0.90 1.09 1.30

NotreDame bc 0.43 0.86 1.36 2.11 3.27 5.17
cc 0.34 0.70 1.63 4.21 8.78 17.43
dc 0.05 0.32 0.48 0.80 1.18 1.64
ec 0.03 0.04 0.03 0.01 0.00 0.25
lp 0.24 0.58 1.11 2.41 4.70 7.84
pr 0.29 0.54 0.73 1.09 1.71 2.70

Stanford bc 0.29 0.69 1.16 1.50 1.83 2.55
cc 0.25 0.29 0.31 0.38 0.56 0.69
dc 0.24 0.22 0.53 0.53 0.80 0.93
ec 0.24 0.33 0.43 0.30 0.42 0.52
lp 0.28 0.65 1.48 2.35 2.98 3.81
pr 0.26 0.48 0.65 0.75 0.85 1.01
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