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Abstract—Based on recent advances regarding eigenspectra of Further studies by Decelle et al.l [5] confirm that the transi-
adjacency matrices, derived from the random matrix theory,the  tion exists, in some cases however it is possible—although
paper reintroduces the global clustering coefficient as a siple exponentially hard—to find true clusters below this limit.
means of assessing if nonrandom modules can be detected in . .
undirected, unweighted networks. In a series of papers that foIIowe.d [6]:-[8] Nadakuditi,

et al.,, have demonstrated a connection between spectra of
|. INTRODUCTION adjacency matrices of graphs and detectability. Namely, th

Across disciplines one of the most relevant features of coigenvalues of the adjacency matrix either belong to a bulk
plex networks is their modular structure. It is crucial icisd (& continuous spectrum) or are isolated; in graphs without a
analysis, it defines or represents the function of bioldgicRommunity structure the only isolated eigenvalue is thgdar
networks, it affects the processes taking place on networR§€; any new community introduces a new isolated eigenvalue
The modules, also called communities, bring informatibeyt Conversely, whenever an eigenvalue associated with a given
allow to visualize and understand data, and to predict iehavcommunity hides into the bulk, it becomes undetectablenFro

Consequentlycommunity detections at the forefront of this perspective, the knowledge of a graph’s eigenspectrum
data mining techniques. Even though numerous—and at tinfould be sufficient to answer the question of significance of
surprisingly effective—algorithms of community detectio clusters, and it seems that the spectral methods of comynunit
have been appearing now for a decade, there remains a lo#gtection ought to be favored. That being said, one issue
standing question of statistical significance of the mosluléémains: calculating the spectra is computationally ezjven
discovered in networks. Several approaches were already deThus, the aim is to quantify detectability by means of a
scribed in [[1] (see Sec. 1&ignificance of clusterintherein), single parameter which can be computed fast and easily for
but new techniques and theoretical advances, notably th@sy given network. We argue that global clustering coefficie
stemming from the random matrix theory, have since beéan be applied for that purpose.
brought into play.

As described in the following section, the key problem lIl. REMINDER—CLUSTERING COEFFICIENTS
with assessing significance is caused by the detectalbitiiy | It has been long years since the clustering coefficient
Our aim is to propose a fast and efficient rule-of-thumb tRs hecome widely used to benchmark empirical networks
discriminate between networks in which there can or canngiq new—small-world[[9] and scale-free networks—against
hide significant communities. random Erdés-Rényi (ER) graphs. Unsurprisingly, onehsuc

Il. RATIONALE—LIMITS OF DETECTABILITY number cannot describe a real complex network; later studie
. . ) focused on degree distributions, path lengths, node etiwak

It_has been known thatcommunltydetectlon algorithms tend quantities describing percolation, epidemic spread] an
o find some clusters even in randqm graphs (RG), that thﬁ‘)émy others. Although the clustering coefficient(s) graigua
fail to det_ect clusters in graphs which are not fully randon&e sed to be interesting to measure, databases such asr&tanf
and that_ n R.G ensembles_ _themselves there are instance dthe Network Dataset Collection [10] still provide it, alp
graphs in Wh'.Ch communities appear solely by chance. Ae number of triangles, as a fundamental graph statistic.
order 1o alleviate t_hese_ pr_o_blems one may apply p(_mts_trﬁ"%eed, our paper advocates this measure as a simple and
procedqres [2], which significantly enhance thg partmgnl fast (especially that often it is precalculated) benchnfark
Alternatively, the p_roplem has been tackled W't.h_ the aid (g;sessing the significance of community structure.
extreme value stalistics I[3], so that graph partitions can Since there has been some confusion about what precisely

assigned a statistical significance score. . . - o .
. is the clustering coefficient, let us define it: lmgal clusterin
However, Reichardt and Leon€ [4] have shown that a Sheggeﬁicient(}l O?nodel we mean 9

phase transition exists between undetectable and deleectab
cluster structures. Such a divide means that below theitrans ki
Cr= Ny n/ 5 )

(1)

tion community structure found by an algorithm is unreleabl
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where V; A is the number of triangles formed by the edges 050}
(I,m), (I,n) and (m,n), wherem andn are nodes adjacent
to I; k; is the degree of (i.e., the number of edges incident 020 o
to 1), and the denominator is the number of all pairs of edges & i
L (&) “g H

incident to nodd. o.10p 9!'%**% i

The average amean local clustering coefficienften found TR

. . . . 0.05+
in the literature is simply

0.02

N
1 02 04 06 08 10
C=x5 ; Ci, 2) . koutl(k)

whereN is the size of the network (i.e., the number of nodesZ!g- 1. Log plot of GCC versus the mixing parameter for LFR, and

P P, - ouT/(k) for NG networks; the ensembles are described in text). hshe
As argued by Bollobas [J-l]v it “is often not very informagly horizontal lines indicate meait standard deviation of GCC for respective

therefore we do not use it further. Rather, we choose to wagkmples of random graphs. The dotted vertical line showsthkeretical

with what we will refer to asglobal clustering coefficient detectability limit for NG graphs as given by[[6]. The undgability regime
. . overlaps with the region where GCC curves saturate.
(GCC), customarily defined as

3 x number of triangles
~ humber of pairs of adjacent edges () mean degreék_) = 16, andN = 256 nodes; Langichinetti—
o Fortunato-Radicchi (LFR)_[21], witlk) = 20, maximal de-
These definitions have been further extended to the case%,(gekMAx = 50, power-law degree distribution with exponent
directed [12] and weighted [13]. [14] networks. ~ = 2, power-law community size distribution with exponent
As mentioned above, these coefficients have been used as a | gjlowed range of community size®) — 100 nodes,

way of comparison with Erdds-Reényi graphs, for which it ignq the network siz&/ = 1000 (we retain the parameters used
known to be X originally in [22] for the sake of comparison). In the case of
Cgr = L, (4) LFR graphs, the parameter quantifying community strength i

N-1 the mixing parametex, which is a fraction of links of a node
where(-) denotes averaging, arf#l) is simply the average de- pointing outside of its community. In the case of NG graphs,

gree. For uncorrelated graphs with a given degree distoibut this role is taken bykoyr/(k), wherekoyr is the number

the formula [15]-[18] of links pointing outside of a node’s community; it is simple
5 5 thanu, since the degree distribution is well peaked around its
1 (k) — (k) ixi
Cue m — (5) mean value. For each mixing parameter value, 100 networks
N (k) were sampled (clouds of points visible in the plot).
is widely used. For these ensembles, the fully random connections form for

As an example of a scale-free network, Bollobas] [1Hour/ (k) ~ 12/16 for NG andu = 1 for LFR. In both cases,
derives and proves a corrected (after|[19]) estimate on tB@mmunity detection algorithms fail much earlier [22]. The

C|ustering coefficient for Barabasi-Albert (BA) networks theoretical pOSition of detectablllty limit as Calculaﬁﬂdej is
in this casekour/ (k) ~ 9/16; unfortunately, the calculations

m — 1 (log N)? (6) for LFR benchmark are much harder to obtain.

3 N The reason why it was possible to find the detectability limit
wherem is the number of edges that a new node appears witteoretically, is the fact that we already know the struetof
in the process of network growth_We use BA graphs in F|@JG networks. In the limit of Iarge network size and, what
as an example of unclustered scale-free networks to shigwmore important, large average degree, Nadakuditi et al.

Cpa =

behavior of various estimates 6f. have shown how to calculate the eigenspectra of adjacency
matrices of stochastic block modéell [6], configuration model
IV. OBSERVATIONS [7], and a generalization of the twad][8], which allows to

find the detectability limits for networks with arbitrary -de

gree distributions and community structure. Nevertheless
The critical observation is that for ensembles of benchmapkactice we do not know the structure in the first place, hence

graphs with tunable strength of community structure thge do not know the full eigenspectrum, and so we cannot

theoretically predicted limit of detectability coincidesth the  decide whether a given network has any communities within

region where GCC saturates, as shown in Eig. 1. detectability regime or not. Now, let us try to deduce thatrir
Each of the points in the plot represents a single graphe value of GCC.

There are two benchmark ensembles used: Newman-Girvan ]

(NG) [20], whose graphs consist of 4 equally-sized commurf- GCC vs Eigenspectrum

ties (ER type with the probability of intercommunity linkjra The reason that the global clustering coefficient can be an

pair of nodes,,: and intracommunity linking probability;,), index of detectability is fairly straightforward. Let uswate

A. GCC vs Mixing Parameter
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(k%) —(k))/2 (k?) — (k) (k%) = (k) g I LKL Prr—
where 4;; is an element of the adjacency mate \; is its 7z

eigenvalue, and where we have usglf’ | (%) = N((k?) —

(k))/2 and N; o = A3 /2. The second equality if}7)comes 01 WS, p=0.9

from the fact that(A™);; encodes the number of paths of

lengthn between nodesand;j; the third equality comes from 100 200 500 1000
the fact that thanks to the cyclic property of the trace of a N

matrix, it is '”Ya”am to OrthOQOnal tranSform,at!onS' Fig. 2. Log-log plot of minus third moment of the bulk of eiggectrum

Now, the simple fact that clustering coefficients are CORor Barabasi-Albert, Erdés-Rényi, and Watts-Strogasworks with the given
nected to the third moment of the eigenspectrum was knowarameters. Error bars are standard deviations for sarapl0 graphs each.
[23]. Yet, as explained in Sdc] II, in undirected and unwiggh

networks communities appear as isolated eigenvalues to the e oC
right of the bulk of the spectrum. This means that the speattru 0201, TG = Ar¥/2k(k=1) |
becomes more skewed to the right; in other words, the third ool ’. S Cuc
moment of the spectrum—and consequently GCC—increases. -. . Cen
Such a behavior is consistent with the observation in Sec. © oos| e
IV-A] N,
002} ‘\( S

C. Estimating Baseline GCC o RN

The forthcoming issue is how to calculate the reference =

56 160 560 1060 5060
value of GCC, i.e., the value for a network without communi- N
ties. One straightforward approach is to randomize the ordtw
under study, while keeping constant other of its charastiess Fig- 3. Comparison of global clusteri_ng_ coefficients (avgrage over a
. C sample of 100 BA graphs; standard deviations are of the ditleeopoints),

that can affect GCC, mainly the degree distribution (or EV&hkoretical predictions obtained for uncorrelated nekwavith a given degree
degree sequence). Notwithstanding, this method is compudatribution C.. (B) (shaded orange region), for BRI(6) (red dashed line),
tionally costly, since a whole ensemble of randomized gsapf’d the contribution of the largest eigenvalue to GCC (restszs). When
. . . . . .. the network structure is unknown, the predictions are ctgnated by more
is needed to make the comparison with the original emmncaﬁn the sample error of GCC.
network meaningful.

Another approach is to use a theory to reproduce the
eigenspectrum of graphs with a given degree distributiotg hold. (This inequality can also be seen as a lower bound
calculate its third moment, and obtain GCC. Indeed, it cdor A; > /number of triangles which is usually stronger than
be accomplished, e.g., followin@l[8]. Under assumptions dhe known bound\; > ¢/2max; N; A.)
the community structure, e.g., as obtained from a communitylt follows that the theoretical prediction on GCC as cal-
detection algorithm, the isolated eigenvalues can als@&pa-s culated using[[B] is largely overestimated (i.e., an order o
rately calculated. For large scale-free graphs, howewbrngg magnitude larger than the standard deviation of an ensemble
numerically the resulting equation for a specified degreeth a given degree distribution). An example of such a be-
sequence can become increasingly infeasible, as the nunitharior is shown for BA networks in Fig.3. The only theoretica
of terms (and solutions) also increases with the number fediction that could be useful for our purposeslis (6); it is
distinct degrees in the network. however, a prediction specifically derived for this paricu

More importantly, and to our demise, the bulk of théype of network. When analyzing real-world graphs, we lack
spectrum thus obtained is strictly symmetric. Consegugntsuch conveniences.
the whole third spectral moment of a random graph will come
from the largest eigenvalue. Unfortunately, we observed th ) ) ) )
for ER, BA networks, and even Watts-Strogafz [9] networks At this point We_ought to recapitulate our aims, collect t.he
with sufficiently high rewiring probability the third momen Pieces of .|nformat|.on we have, and formulate the assumgtion
of the bulk is negatif see Fig[R. Consequently, for a wide/nder which we will be able to proceed. N
range of real-world networks we can expect The aim is: based on the global clustering coefficieht (3) to

construct a criterion that decides whether

(8) 1) a given network has a significant community structure,
(k?) — (k) 2) a given partition of the network is statistically signifi-

cant
it should be noted that in graphs which are bipartite, or epartly L . " . .. .
so—e.g., WS graphs with smali—negative isolated eigenvalues can appear 3) a given community of the partition is statistically sifyni

and thwart our efforts. Hence, we assume only positive tisdl@igenvalues. icant.

V. RESULTS

1 A3
C< ——71
<N



In this paper we will propose an answeifo 1) and validate it, 0.50

as well as suggest a way to develop a criteriorJor 2). [ 0'035-::l—::::;::;:;:;::;::
Let us list the (empirical) facts we have gathered up to this 0.20 ’ 0030 8. ' -----------
point: o I ’ 0,025 ' |
1) GCC is proportional to the third moment of the eigen- 010 -’ A Gl
spectrum, 005 ’
2) (empirical) for graphs with a community structure GCC ORI 0001 B
is greater than for random graphs, but it reaches the RG RN L
value before its connectivity is fully random, see Fij. 1, ‘ 02 04 06 08 10
3) (empirical) GCC is strictly lower than what can be H

predlcted by the IargeSt elgenvalue alone, 5ée (8)' Fig. 4. Log plot of GCC for LFRN = 1000, B benchmark, as in Fig.

4) GCC for the uncorrelated graphs can be approximat@Qrhe red shaded strip shows the contribution of thyeto C; the orange
by (3). shaded strip shows the region between conditibhs (9) [add The red dots

. . represent graphs fulfilling19); the black dots fulfill {1byt not [9); the green
After GCC, the degree distribution and its two moment§gts fulfill neither. The grey region indicates where all wmocommunity

(k) and (k?), have been calculated, which is the only compuetection methods gradually begin to fail. The inset magsithe region of
tational burden, we may proceed further. One has to keep(ifpdetectability transition.
mind, nevertheless, following assumptions:

1) the network is not bipartite, see Footnote 1., resulting from true value of; (red squares). This means that
2) the network is uncorrelated, so th@t (5) is legitimate, i, some cases the facto(1) is of a magnitude which can
3) A > (k%)/ (k) — 1, affect our inference. Finally, the ordering of the thearai
4) N is large, as always. predictions, as depicted in Figl 3, will be of use to us.

Let us note that for the Poisson degree distribution the

Assumption[B) is always true, sincg; > (k?) = Even though, conditio19) does not provide us with any

(k)2 + (k) > (k) = (k*)/(k) — 1, which comes from error estimates, we still believe that the approximate tjzrsi
Rayleigh’s inequalities (see e.§. [24]). For scale-fremvoeks, of )\, is given by [ID). As a result we can ude](11) as an
however, the second inequality is inverted and there mapper bound for an error estimate. Thus, the rule-of-thusnb i
appear graphs breaking Assur. 3). (We did find such instanessfollows:
for BA networks but, surprisingly, not for LFR which are , if condition (3) is true, there is no detectable community
scale-free as well.) structure,

« if condition (@) is false, but[{11) is true, either there
is no detectable community structure or there are some
detectable and some undetectable communities,

A. Procedure for an unpartitioned graph
In the case of Ainill), the way to proceed is embarrassingly

simple: if . if both are false, there is some detectable community
¢ = Cue ©) structure.

is true, then the network is outside the detectability regim To validate above criteria we again resort to LFR benchmark

i.e., there are no significant communities. graphs, since all of the state of the art community detection

A remark is necessary: let us notice that the above equatimethods have been tested on them, including Infomélp [2€], th
is a conservative criterion. The condition that we shoubdehalLouvain method[[27] or Oslom_[28]. Tests on these graphs,
checked is in fact[{8). But it can be easily checked that thth exactly the same parameters, have shownl[[2], [22] that a
approximationCy. corresponds to\; ~ (k?)/(k) — 1. known methods begin to decrease their accuragy & 0.6,

However, since the true largest eigenvalue is unknown, \@ed fail after crossing. ~ 0.7 — 0.8. As illustrated in Fig[ 4,
can utilize the well-known approximation by Chung et al.]j25this is in accord with the criteria given above.

(k2) To address the Airhl2) above, let us assume that we already
A =(1 —|—0(1))max{—, \/kMAX}, (10) have obtained a partition of the graph ingoclusters. For
(k) instance, it might be a result of any of the algorithms we have
which in most cases we are interested in yiel@$8)/(k). mentioned, or it might be the planted partition, e.g., in LFR
Consequently, the criteriofll(8) should be given by benchmarks (note that by construction these graphs have a
1 (k2)? partition planted even fon :_1). Following [&], it is possple
C< <rss (11) to calculate they discrete eigenvalues that are theoretically
N (k)>((k2) — (k) predicted to appear in such a partitioned graph. We are then
By now, it should be clear why the Assumptioh 3) was listedble to compute their contribution @ in (@), just as we did
before: as long as it is fulfilled the criterion given inl (9) idor A\, and accordingly revise the criterfa (9)-{11). Note, that
stronger than[{8). instead of using approximation (10) for; in this Section,

Though [ID) is proved to be the upper bound)af in we may usel[[B] for the largest eigenvalue only. Depending

Fig.[3 the approximation would be even higher than the om® the computational resources one has, it might be feasible



to simply calculate\; numerically—although the theoretical [5] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborova, férence and
approximations seem sufficient, an improvement on the error Phase transitions in the detection of modules in sparse ankby
estimate of roughl)20% can be expected (at least on graphs

akin to LFR), as can be seen in the inset of Eig. 4.

VI. CONCLUSION

We have proposed a simple method to deduce whether

(6]

'

is possible to detect communities in a given network. Since
the only computations needed are: calculating triangles ariél
the degree distribution, we claim this method is fast and

computationally inexpensive. The state of the art algarith

for an exact triangle enumeration runs @E'-4), where

El

E is the number of edges in the graph. Faster approximﬁg]

algorithms do exist[[29], whose accuracy of aro@id are

sufficient, although introduce an additional error. Altghu [11]

there exist algorithms of community detection linear ingjm
assessing statistical significance of the partitions obthi

usually involves bootstrapping which is not favorable.

[12]

The error bound in procedure we suggested is rather heuris-
tic; however, the approximations of; (I0) and GCCI[(b) [13]

can be improved, e.g., if we have ansatz on degree-degree
correlations, which in some cases are known [30]. Stillhd t

assumptio 3) holds, the criteria are conservative and en 4]

safe side.

The natural extension of the scheme presented here is:
directed and weighted networks, for which generalized vdus)
sions of clustering coefficients have been proposed [12]-
[14]. Initial computations on directed LFR benchmarks show
that analogous criteria are plausible. For weighted ndtsyor [16]
however, the clustering coefficients behave nonmonotdyous
as a function of the mixing parameter, which introducq§7]

additional complications.

Further systematic comparison with other methods is nee

and, more importantly, attacking real-world networks.
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