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Abstract—Based on recent advances regarding eigenspectra of
adjacency matrices, derived from the random matrix theory, the
paper reintroduces the global clustering coefficient as a simple
means of assessing if nonrandom modules can be detected in
undirected, unweighted networks.

I. I NTRODUCTION

Across disciplines one of the most relevant features of com-
plex networks is their modular structure. It is crucial in social
analysis, it defines or represents the function of biological
networks, it affects the processes taking place on networks.
The modules, also called communities, bring information: they
allow to visualize and understand data, and to predict behavior.

Consequently,community detectionis at the forefront of
data mining techniques. Even though numerous—and at times
surprisingly effective—algorithms of community detection
have been appearing now for a decade, there remains a long-
standing question of statistical significance of the modules
discovered in networks. Several approaches were already de-
scribed in [1] (see Sec. 14,Significance of clusteringtherein),
but new techniques and theoretical advances, notably those
stemming from the random matrix theory, have since been
brought into play.

As described in the following section, the key problem
with assessing significance is caused by the detectability limit.
Our aim is to propose a fast and efficient rule-of-thumb to
discriminate between networks in which there can or cannot
hide significant communities.

II. RATIONALE –LIMITS OF DETECTABILITY

It has been known that community detection algorithms tend
to find some clusters even in random graphs (RG), that they
fail to detect clusters in graphs which are not fully random,
and that in RG ensembles themselves there are instances of
graphs in which communities appear solely by chance. In
order to alleviate these problems one may apply bootstrap
procedures [2], which significantly enhance the partitioning.
Alternatively, the problem has been tackled with the aid of
extreme value statistics [3], so that graph partitions can be
assigned a statistical significance score.

However, Reichardt and Leone [4] have shown that a sharp
phase transition exists between undetectable and detectable
cluster structures. Such a divide means that below the transi-
tion community structure found by an algorithm is unreliable.

Further studies by Decelle et al. [5] confirm that the transi-
tion exists, in some cases however it is possible—although
exponentially hard—to find true clusters below this limit.

In a series of papers that followed [6]–[8] Nadakuditi,
et al., have demonstrated a connection between spectra of
adjacency matrices of graphs and detectability. Namely, the
eigenvalues of the adjacency matrix either belong to a bulk
(a continuous spectrum) or are isolated; in graphs without a
community structure the only isolated eigenvalue is the largest
one; any new community introduces a new isolated eigenvalue.
Conversely, whenever an eigenvalue associated with a given
community hides into the bulk, it becomes undetectable. From
this perspective, the knowledge of a graph’s eigenspectrum
should be sufficient to answer the question of significance of
clusters, and it seems that the spectral methods of community
detection ought to be favored. That being said, one issue
remains: calculating the spectra is computationally expensive.

Thus, the aim is to quantify detectability by means of a
single parameter which can be computed fast and easily for
any given network. We argue that global clustering coefficient
can be applied for that purpose.

III. R EMINDER–CLUSTERING COEFFICIENTS

It has been long years since the clustering coefficient
has become widely used to benchmark empirical networks
and new—small-world [9] and scale-free networks—against
random Erdős-Rényi (ER) graphs. Unsurprisingly, one such
number cannot describe a real complex network; later studies
focused on degree distributions, path lengths, node correlations
or quantities describing percolation, epidemic spread, and
many others. Although the clustering coefficient(s) gradually
ceased to be interesting to measure, databases such as Stanford
Large Network Dataset Collection [10] still provide it, along
the number of triangles, as a fundamental graph statistic.
Indeed, our paper advocates this measure as a simple and
fast (especially that often it is precalculated) benchmarkfor
assessing the significance of community structure.

Since there has been some confusion about what precisely
is the clustering coefficient, let us define it: bylocal clustering
coefficientCl of nodel we mean

Cl = Nl,△/

(

kl
2

)

, (1)
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whereNl,△ is the number of triangles formed by the edges
(l,m), (l, n) and (m,n), wherem andn are nodes adjacent
to l; kl is the degree ofl (i.e., the number of edges incident
to l), and the denominator is the number of all pairs of edges
incident to nodel.

The average ormean local clustering coefficientoften found
in the literature is simply

C =
1

N

N
∑

l=1

Cl, (2)

whereN is the size of the network (i.e., the number of nodes).
As argued by Bollobás [11], it “is often not very informative”,
therefore we do not use it further. Rather, we choose to work
with what we will refer to asglobal clustering coefficient
(GCC), customarily defined as

C =
3× number of triangles

number of pairs of adjacent edges
. (3)

These definitions have been further extended to the cases of
directed [12] and weighted [13], [14] networks.

As mentioned above, these coefficients have been used as a
way of comparison with Erdős-Rényi graphs, for which it is
known to be

CER =
〈k〉

N − 1
, (4)

where〈·〉 denotes averaging, and〈k〉 is simply the average de-
gree. For uncorrelated graphs with a given degree distribution
the formula [15]–[18]

Cuc ≈
1

N

(〈k2〉 − 〈k〉)2
〈k〉3 (5)

is widely used.
As an example of a scale-free network, Bollobás [11]

derives and proves a corrected (after [19]) estimate on the
clustering coefficient for Barabási-Albert (BA) networks

CBA =
m− 1

8

(logN)2

N
, (6)

wherem is the number of edges that a new node appears with
in the process of network growth.We use BA graphs in Fig.
3 as an example of unclustered scale-free networks to show
behavior of various estimates ofC.

IV. OBSERVATIONS

A. GCC vs Mixing Parameter

The critical observation is that for ensembles of benchmark
graphs with tunable strength of community structure the
theoretically predicted limit of detectability coincideswith the
region where GCC saturates, as shown in Fig. 1.

Each of the points in the plot represents a single graph.
There are two benchmark ensembles used: Newman-Girvan
(NG) [20], whose graphs consist of 4 equally-sized communi-
ties (ER type with the probability of intercommunity linking a
pair of nodespout and intracommunity linking probabilitypin),

Fig. 1. Log plot of GCC versus the mixing parameter (µ for LFR, and
kOUT /〈k〉 for NG networks; the ensembles are described in text). Dashed
horizontal lines indicate mean± standard deviation of GCC for respective
samples of random graphs. The dotted vertical line shows thetheoretical
detectability limit for NG graphs as given by [6]. The undetectability regime
overlaps with the region where GCC curves saturate.

mean degree〈k〉 = 16, andN = 256 nodes; Lancichinetti-
Fortunato-Radicchi (LFR) [21], with〈k〉 = 20, maximal de-
greekMAX = 50, power-law degree distribution with exponent
γ = 2, power-law community size distribution with exponent
γc = 1, allowed range of community sizes20 − 100 nodes,
and the network sizeN = 1000 (we retain the parameters used
originally in [22] for the sake of comparison). In the case of
LFR graphs, the parameter quantifying community strength is
the mixing parameterµ, which is a fraction of links of a node
pointing outside of its community. In the case of NG graphs,
this role is taken bykOUT /〈k〉, wherekOUT is the number
of links pointing outside of a node’s community; it is simpler
thanµ, since the degree distribution is well peaked around its
mean value. For each mixing parameter value, 100 networks
were sampled (clouds of points visible in the plot).

For these ensembles, the fully random connections form for
kOUT /〈k〉 ≈ 12/16 for NG andµ = 1 for LFR. In both cases,
community detection algorithms fail much earlier [22]. The
theoretical position of detectability limit as calculatedin [6] is
in this casekOUT /〈k〉 ≈ 9/16; unfortunately, the calculations
for LFR benchmark are much harder to obtain.

The reason why it was possible to find the detectability limit
theoretically, is the fact that we already know the structure of
NG networks. In the limit of large network size and, what
is more important, large average degree, Nadakuditi et al.
have shown how to calculate the eigenspectra of adjacency
matrices of stochastic block model [6], configuration model
[7], and a generalization of the two [8], which allows to
find the detectability limits for networks with arbitrary de-
gree distributions and community structure. Nevertheless, in
practice we do not know the structure in the first place, hence
we do not know the full eigenspectrum, and so we cannot
decide whether a given network has any communities within
detectability regime or not. Now, let us try to deduce that from
the value of GCC.

B. GCC vs Eigenspectrum

The reason that the global clustering coefficient can be an
index of detectability is fairly straightforward. Let us rewrite



(3) as follows

C =

∑N

l=1
Nl,△/N

(〈k2〉 − 〈k〉)/2 =

∑N

l=1
A3

ll/N

〈k2〉 − 〈k〉 =

∑N

l=1
λ3

l /N

〈k2〉 − 〈k〉 , (7)

whereAij is an element of the adjacency matrixA, λi is its
eigenvalue, and where we have used

∑N
l=1

(

kl

2

)

= N(〈k2〉 −
〈k〉)/2 andNl,△ = A3

ll/2. The second equality in (7)comes
from the fact that(An)ij encodes the number of paths of
lengthn between nodesi andj; the third equality comes from
the fact that thanks to the cyclic property of the trace of a
matrix, it is invariant to orthogonal transformations.

Now, the simple fact that clustering coefficients are con-
nected to the third moment of the eigenspectrum was known
[23]. Yet, as explained in Sec. II, in undirected and unweighted
networks communities appear as isolated eigenvalues to the
right of the bulk of the spectrum. This means that the spectrum
becomes more skewed to the right; in other words, the third
moment of the spectrum—and consequently GCC—increases.
Such a behavior is consistent with the observation in Sec.
IV-A.

C. Estimating Baseline GCC

The forthcoming issue is how to calculate the reference
value of GCC, i.e., the value for a network without communi-
ties. One straightforward approach is to randomize the network
under study, while keeping constant other of its characteristics
that can affect GCC, mainly the degree distribution (or even
degree sequence). Notwithstanding, this method is computa-
tionally costly, since a whole ensemble of randomized graphs
is needed to make the comparison with the original empirical
network meaningful.

Another approach is to use a theory to reproduce the
eigenspectrum of graphs with a given degree distribution,
calculate its third moment, and obtain GCC. Indeed, it can
be accomplished, e.g., following [8]. Under assumptions on
the community structure, e.g., as obtained from a community
detection algorithm, the isolated eigenvalues can also be sepa-
rately calculated. For large scale-free graphs, however, solving
numerically the resulting equation for a specified degree
sequence can become increasingly infeasible, as the number
of terms (and solutions) also increases with the number of
distinct degrees in the network.

More importantly, and to our demise, the bulk of the
spectrum thus obtained is strictly symmetric. Consequently,
the whole third spectral moment of a random graph will come
from the largest eigenvalue. Unfortunately, we observed that
for ER, BA networks, and even Watts-Strogatz [9] networks
with sufficiently high rewiring probability the third moment
of the bulk is negative1, see Fig. 2. Consequently, for a wide
range of real-world networks we can expect

C <
1

N

λ3
1

〈k2〉 − 〈k〉 (8)

1It should be noted that in graphs which are bipartite, or evenpartly
so—e.g., WS graphs with smallp—negative isolated eigenvalues can appear
and thwart our efforts. Hence, we assume only positive isolated eigenvalues.

Fig. 2. Log-log plot of minus third moment of the bulk of eigenspectrum
for Barabási-Albert, Erdős-Rényi, and Watts-Strogatznetworks with the given
parameters. Error bars are standard deviations for samplesof 100 graphs each.

Fig. 3. Comparison of global clustering coefficientsC (average over a
sample of 100 BA graphs; standard deviations are of the size of the points),
theoretical predictions obtained for uncorrelated networks with a given degree
distribution Cuc (5) (shaded orange region), for BA (6) (red dashed line),
and the contribution of the largest eigenvalue to GCC (red squares). When
the network structure is unknown, the predictions are overestimated by more
than the sample error of GCC.

to hold. (This inequality can also be seen as a lower bound
for λ1 > 3

√
number of triangles which is usually stronger than

the known boundλ1 > 3

√

2maxl Nl,△.)
It follows that the theoretical prediction on GCC as cal-

culated using [8] is largely overestimated (i.e., an order of
magnitude larger than the standard deviation of an ensemble
with a given degree distribution). An example of such a be-
havior is shown for BA networks in Fig.3. The only theoretical
prediction that could be useful for our purposes is (6); it is,
however, a prediction specifically derived for this particular
type of network. When analyzing real-world graphs, we lack
such conveniences.

V. RESULTS

At this point we ought to recapitulate our aims, collect the
pieces of information we have, and formulate the assumptions
under which we will be able to proceed.

The aim is: based on the global clustering coefficient (3) to
construct a criterion that decides whether

1) a given network has a significant community structure,
2) a given partition of the network is statistically signifi-

cant,
3) a given community of the partition is statistically signif-

icant.



In this paper we will propose an answer to 1) and validate it,
as well as suggest a way to develop a criterion for 2).

Let us list the (empirical) facts we have gathered up to this
point:

1) GCC is proportional to the third moment of the eigen-
spectrum,

2) (empirical) for graphs with a community structure GCC
is greater than for random graphs, but it reaches the RG
value before its connectivity is fully random, see Fig. 1,

3) (empirical) GCC is strictly lower than what can be
predicted by the largest eigenvalue alone, see (8),

4) GCC for the uncorrelated graphs can be approximated
by (5).

After GCC, the degree distribution and its two moments,
〈k〉 and〈k2〉, have been calculated, which is the only compu-
tational burden, we may proceed further. One has to keep in
mind, nevertheless, following assumptions:

1) the network is not bipartite, see Footnote 1.,
2) the network is uncorrelated, so that (5) is legitimate,
3) λ1 ≥ 〈k2〉/〈k〉 − 1,
4) N is large, as always.

Let us note that for the Poisson degree distribution the
Assumption 3) is always true, sinceλ1 ≥

√

〈k2〉 =
√

〈k〉2 + 〈k〉 > 〈k〉 = 〈k2〉/〈k〉 − 1, which comes from
Rayleigh’s inequalities (see e.g. [24]). For scale-free networks,
however, the second inequality is inverted and there may
appear graphs breaking Assum. 3). (We did find such instances
for BA networks but, surprisingly, not for LFR which are
scale-free as well.)

A. Procedure for an unpartitioned graph

In the case of Aim 1), the way to proceed is embarrassingly
simple: if

C ≤ Cuc (9)

is true, then the network is outside the detectability regime,
i.e., there are no significant communities.

A remark is necessary: let us notice that the above equation
is a conservative criterion. The condition that we should have
checked is in fact (8). But it can be easily checked that the
approximationCuc corresponds toλ1 ≈ 〈k2〉/〈k〉 − 1.

However, since the true largest eigenvalue is unknown, we
can utilize the well-known approximation by Chung et al. [25],

λ1 = (1 + o(1))max

{ 〈k2〉
〈k〉 ,

√

kMAX

}

, (10)

which in most cases we are interested in yields〈k2〉/〈k〉.
Consequently, the criterion (8) should be given by

C <
1

N

〈k2〉3
〈k〉3(〈k2〉 − 〈k〉) . (11)

By now, it should be clear why the Assumption 3) was listed
before: as long as it is fulfilled the criterion given in (9) is
stronger than (8).

Though (10) is proved to be the upper bound ofλ1, in
Fig. 3 the approximation would be even higher than the one

Fig. 4. Log plot of GCC for LFRN = 1000, B benchmark, as in Fig.
1. The red shaded strip shows the contribution of trueλ1 to C; the orange
shaded strip shows the region between conditions (9) and (11). The red dots
represent graphs fulfilling (9); the black dots fulfill (11),but not (9); the green
dots fulfill neither. The grey region indicates where all known community
detection methods gradually begin to fail. The inset magnifies the region of
(un)detectability transition.

resulting from true value ofλ1 (red squares). This means that
in some cases the factoro(1) is of a magnitude which can
affect our inference. Finally, the ordering of the theoretical
predictions, as depicted in Fig. 3, will be of use to us.

Even though, condition (9) does not provide us with any
error estimates, we still believe that the approximate position
of λ1 is given by (10). As a result we can use (11) as an
upper bound for an error estimate. Thus, the rule-of-thumb is
as follows:

• if condition (9) is true, there is no detectable community
structure,

• if condition (9) is false, but (11) is true, either there
is no detectable community structure or there are some
detectable and some undetectable communities,

• if both are false, there is some detectable community
structure.

To validate above criteria we again resort to LFR benchmark
graphs, since all of the state of the art community detection
methods have been tested on them, including Infomap [26], the
Louvain method [27] or Oslom [28]. Tests on these graphs,
with exactly the same parameters, have shown [2], [22] that all
known methods begin to decrease their accuracy atµ ≈ 0.6,
and fail after crossingµ ≈ 0.7− 0.8. As illustrated in Fig. 4,
this is in accord with the criteria given above.

To address the Aim 2) above, let us assume that we already
have obtained a partition of the graph intoq clusters. For
instance, it might be a result of any of the algorithms we have
mentioned, or it might be the planted partition, e.g., in LFR
benchmarks (note that by construction these graphs have a
partition planted even forµ = 1). Following [8], it is possible
to calculate theq discrete eigenvalues that are theoretically
predicted to appear in such a partitioned graph. We are then
able to compute their contribution toC in (3), just as we did
for λ1, and accordingly revise the criteria (9)-(11). Note, that
instead of using approximation (10) forλ1 in this Section,
we may use [8] for the largest eigenvalue only. Depending
on the computational resources one has, it might be feasible



to simply calculateλ1 numerically—although the theoretical
approximations seem sufficient, an improvement on the error
estimate of roughly20% can be expected (at least on graphs
akin to LFR), as can be seen in the inset of Fig. 4.

VI. CONCLUSION

We have proposed a simple method to deduce whether it
is possible to detect communities in a given network. Since
the only computations needed are: calculating triangles and
the degree distribution, we claim this method is fast and
computationally inexpensive. The state of the art algorithm
for an exact triangle enumeration runs inO(E1.41), where
E is the number of edges in the graph. Faster approximate
algorithms do exist [29], whose accuracy of around95% are
sufficient, although introduce an additional error. Although
there exist algorithms of community detection linear in time,
assessing statistical significance of the partitions obtained
usually involves bootstrapping which is not favorable.

The error bound in procedure we suggested is rather heuris-
tic; however, the approximations ofλ1 (10) and GCC (5)
can be improved, e.g., if we have ansatz on degree-degree
correlations, which in some cases are known [30]. Still, if the
assumption 3) holds, the criteria are conservative and on the
safe side.

The natural extension of the scheme presented here is:
directed and weighted networks, for which generalized ver-
sions of clustering coefficients have been proposed [12]–
[14]. Initial computations on directed LFR benchmarks show
that analogous criteria are plausible. For weighted networks,
however, the clustering coefficients behave nonmonotonously
as a function of the mixing parameter, which introduces
additional complications.

Further systematic comparison with other methods is needed
and, more importantly, attacking real-world networks.
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