arxXiv:1701.01223v1 [cs.SY] 5 Jan 2017

Consensus as a Nash

Equilibrium of a Dynamic

Game

Muhammad Umar B. Niazi
Department of Electrical and
Electronics Engineering,

Bilkent University,
Ankara, Turkey.
Email: niazi@ee.bilkent.edu.tr

Department of

Abstract—Consensus formation in a social network is modeled
by a dynamic game of a prescribed duration played by members
of the network. Each member independently minimizes a cost
function that represents his/her motive. An integral cost finction
penalizes a member’s differences of opinion from the otherss

Arif Biilent Ozguler

Electronics Engineering,
Bilkent University,
Ankara, Turkey.
Email: ozguler@ee.bilkent.edu.tr

Aykut Yildiz
Department of Electrical and
Electronics Engineering,

Bilkent University,
Ankara, Turkey.
Email: ayildiz@ee.bilkent.edu.tr

Electrical and

in a social network. Each member (player or agent) indepen-
dently minimizes a cost function that represents “its” (&en
read as “his/her”) motive. An integral cost function pene$
its differences of opinion from its neighbors as well as fritgn

well as from his/her own initial opinion, weighted by influence OWN initial opinion, weighted by influence and stubbornness
and stubbornness parameters. Each member uses its rate of parameters. Each member uses its rate of change of opinion as
change of opinion as a control input. This defines a dynamic a control input. This defines a dynamic non-cooperative game

non-cooperative game that turns out to have a unique Nash edu
librium. Analytic explicit expressions are derived for the opinion

trajectory of each member for two representative cases obtaed

by suitable assumptions on the graph topology of the network
These trajectories are then examined under different assuptions

on the relative sizes of the influence and stubbornness paraters
that appear in the cost functions.

Index Terms—Opinion dynamics, consensus, social network,
dynamic games, Nash equilibrium, game theory.

I. INTRODUCTION

How gossip spreads in a small community, how a politic
leader reaches or fails to reach voters, and how some stid
learn faster than others among those with comparable inL%E

lectual capacity are three questions that fall into the ysioid

social opinion dynamics. It is no surprise that the researf
qguestion has attracted the attention of many disciplinea in
short span of time and a sizable penetrating literature h

been accumulated. We refer to the survey papers [1],

and [13] for only a partial panorama. These publications c
roughly be divided into those that take a Bayesian persgecti
such asl[4] and those that put forward non-Bayesian modé&)
such as [[6]. Yet another classification is that while mo&P
of the research focuses on formation of a consensus [1:
there are also those that study disagreement as in the cas
Hegselmann and Krause modell[10], [7] or ad in [5]. The stu
of consensus has several engineering applications irmgudh

multi-agent coordination[ [17], information fusion in sens

networks [[19], consensus in small-world networks|[12] an

distributed optimization algorithms [18].

We study consensus formation via Nash equilibrium in
dynamic game of a prescribed duration played by memb

This work is supported by the Science and Research Counciludéey
(TUBITAK) under the project EEEAG-114E270.

that turns out to have a unique Nash equilibrium. For two
representative cases obtained by suitable assumptioniseon t
information structure (graph topology), we are able to bta
explicit analytic expressions for the opinion trajecterief

all members in the Nash solution. These trajectories ane the
examined under different assumptions on the relative sifes
influence and stubbornness parameters.

Nash equilibrium is only one among a wide range of
equilibrium concepts in games. One interpretation [in] [15]
suggests that if the same game is played several times with no
gltrategic dependencies between consecutive plays, thesta N

eer%uilibrium is most likely reached. This is for static ganbes

e can extend the interpretation to dynamic games as well.
e point of the matter is that it is a very useful construot(a
ﬁesently the only rigorous one) if the research objectvi®i
examine under what conditions, from independent motives of
ents, a pattern of collective behavior emerges.

n [9], a static game of opinion dynamics is posed and the
ﬁ%st response function in a Nash solution is used to postulat
an update scheme. The convergence of this dynamic scheme to
gonsensus is examined. One can view our game model here
a dynamic version of [9]. The optimal control of consensus
odel and control through a leader model in [2] also use
| 8pral cost functions and has similarities to our modekgxt

é at the objective in their case is control of consensus via

&ternal actions. The non-cooperative dynamic game model
ere is inspired by the foraging biological swarm models in
[1}6]’ [20], and [21].

In the next section we pose the opinion dynamics game in
iés most generality. In Section 3, we study two specialized
é/resrsions and obtain explicit Nash solutions for these two
games that represent extreme cases of information steuctur
Section 4 contains a number of simulation results for the

games of Section 2 and 3. The last section is on conclusions.
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[I. A GAME OF OPINION DYNAMICS specified as € [0, 1], its final valuex(T') is left free. Thus,
the optimization each agent carries out is onéreé terminal
condition [11]. The game[{2) lies within the framework of
Theorem 6.11 in[[3] and is in fact a quadratic game as we
show in the Appendix so that a unique Nash equilibrium exists
agentj on agenti when (i, j) € E. One-sided or two-sided by Theor_em 6.12 of[[3]. Instead of using this. r_esult (after
connection between the nodes indicate one-sided or tmdsiaransformlng the P“’b'ef*? o the sgt up 0f [3]), it is easier to
interaction between the agents. The neighborhood of agé'ﬁ? the necessary conditions prowdeq.by Theorem 6.11 of [3]
i is defined to be the set of all agents with whom ag{entwe thus state those necessary conditions in the set up of our
interacts, i.e.;; :== {j € N : (i,j) € E}. The reason for gamfg)glrst.t act . 0<t<T
a directed graph representation is because we can interpr (;i b" e? ;ajec ory or c;p'n'(,):; S?ﬁcﬁ(t)’ Sts }
the weight on the edges to be the influence of an agent oy 0 Te a; ra elgy_Space 0 _ag_ebl Ot "’}[ s ?very mag\)p(ljng
its neighbor or the value its neighbor gives to the opinion '_[ ’ l.] x ‘;—: IS a permissible strategy for aganian
an agent. Thus, two neighbors can have different levels $N€9 (x, 25, u*) to be the integrand of the cost functional
influence on each other. Let'(¢) be the opinion at time ' . . .
of agenti and let it be normalized so that for everyin the dul;:t'iT:)nr;]Tol.TI:]Oﬁ;n n-agent dynamic game of prescribed fixed
interval [0, T, z*(t) € [0,1]. Each agent has an initial opinion™" =~ /1> . . .
z%(0) = x{ € [0,1] about a certain issue, where the values (!.) ui () bie cic>nt|nuous!y dlfferentllable aR, Vi€ [0, 7],
0 and1 indicate the extreme cases. For examplenay be (i) g ,(X’ w5, u*) be continuously differentiable dR, V¢ &
interpreted as strong disagreement anas strong agreement[O’T]’ i€ N. , ) . .

1 MR n o If {y**(t,z) = u™(t); i € N} provides a unique open-
cases. Lek(t) = [z'(t) ... z™(t)]" € [0, 1]™ denote the opinion loob Nash eauilibrium solution. anfk*(£). 0 < ¢ < T is the
profile at timet in the network ofn agents, where ‘prime’ P quitioriu ution, anfk*(¢),0 <t < T} |

: - corresponding opinion trajectory, then there existcostate
denotes transpose. The cost functional of agéstpostulated ; : .
P gesip functionsp®(t) : [0,7] — R, i € N, such that the following

We represent a social network afagents by a weighted
directed graphG = (N, E,w;;), where N = {1,...,n} is
the set of all nodes (agents); C N x N is the set of all
ordered pairs of connected nodes, ang is the influence of

to be relations are satisfied:
T
L'(x, x4, u') = / (5 Z wg; [x'(t) — 2’ (t)]2 & (t) = u™ (1),
0 N jem p(t) = — 5%,
1 ) ) 1. . i* B) — o 0% () — s gi(i i i
T =k I:xl(t) _ iCl(O)]Q 41 [uz(t)f) dt. (1) t (t,xb) =u (t) = argmlnuy,epy, H (p*, x, xh, u'),
2 2 2*(0) = i € [0,1], p(T)=0, i€ N,
wherew;; € [0,00) is the parameter that weighs the suscep- ®)

tibility of agent j to influence agent, k; € [0,00) weighs Where

the stubbornness of agentor the reluctance of to divert 7/ (p x, zh,u') = g'(x, b, u') + p'(t)u'(t), t € [0,T). (4)

from its initial opinion. The control of agentis assumed to ) -
be ui(t) = i(t), so that agent controls the rate of change Here we note that the terminal condition of the costate

of its opinion. The coefficient of the control term in the cosiUnctions is a consequence of the fact that the game has free
is normalized tol, without loss of generality. The integral int€Minal conditions. Defining a Hamiltonian asfi (4) anchgsi

the time interval0, 7] indicates that the agent penalizes thi'e refations in[(8), we can combine the state and costate
cumulative effect in each of the three terms in the integrarfgAuations into the following equation,
Considering the first term, for instance, what it penalizes a [ x(t) } 4 { x(t) } i { x(0) }
part of the cost is the sum total of the divergence from the p(t) | p(t) + p(0) |’
opinions of the neighbors, not the instantaneous diffexenc

(5)

from their opinions. This cost functional, which should bgvhere
viewed to be a model of the motive of agentowards a A= [ 0 I ] . K= [ 0 0 ] 7
prevailing social issue, is prompted by [9], in which a stati -w 0 K 0

model for the motives of agents in a social network was us@ghere I is the identity matrix of sizen and p(t) =
and by [16], in which a similar cost functional modeled thﬁpl(t) . p"(t)]), K =diag[ki, ..., k,]. Here,
motives of members in a foraging biological swarm. If each

agent in the social network minimizes its cost, then we have e

a non-cooperative dynamic (or, differential) game playgd b wo | e e T

n agents : : ' : ’
min{L'} subject toi’(¢) = u’(t) Vie N. (2) TWnl T2 e
o

wheregq; = Zj@” wi; + k;. Notice that the matriXV is a
A solution to such a game, if it exists, isNash solutionor Laplacian-like matrix of a weighted directed gragh Every
a Nash equilibriumof the game. Note that although(0) is ij-th element in the off-diagonal,# j, shows the weight of



the edge that is directed frofro j, and the diagonal elementsA. Consensus in a complete information structure

consist of the sum of all the weights associated with every |, 5 network where all agents are connected to each other,
node and its stubbornness parameter. Solving the diffietent o n = N\ {i}, the opinion of agent will be influenced

equation[(b) gives, by all other agents and one may expect that a consensus

x(t) | _ it t A x(0) ©) will eventually be reached. But, due to the presence of some
p(t) 0 : p(0) |’ stubborn agents, a full consensus may still not be reachesl. T
where £(t) — ¢ = £7H{(sT - )~} and Wiy = P et to get exlit solutons, we
b eA(t=T) dr. Since phicity g p )
fO ¢ : assume equal parameters for all agents, ke~ k, w;; =

(sT—A)~! = s(s2I — W)=t —(s?2I—-w)~! (7) Wi=w Vi e N and(i,j) € E.
T W(SPHT-W)TE s(s2T W)t | Theorem 1. For a network of complete information struc-
one can correspondingly get the natural partitions ture, and where all the agents have equal parameters, the

agent: is given by

o11(t)  ¢12(t) ] { Y1a(t)  ra(t)
®) { $21(t)  P22(t) |’ ®) Yo1(t)  haa(t) . .
The diagonalizability assumption, although not necesssuy i) — 1 I 1) (2 — 1 j 9
simplifying assumption . (1) n ;IO glOICH " ZIO)’ ©)
Proposition 1. SupposéV is diagonalizable so thatV =

VAV~L, whereA = diag[\1, A2, ..., A,] and V' is the matrix where~(t) = T’i + (%) % and Ay = k + nw.

whose columns are the corresponding linearly independefye opinion dynamicsi(t) with the i-th entry [9) has the
eigenvectors. Then, a Nash equilibrium of the galmhe (2)$Xi$éllowing properties:

and is unique. The opinion trajectory of the Nash solution is (i) A full consensus is never achieved but the opinion

} unigue Nash equilibrium is such that the opinion dynamics of

j=1

given by dynamics will progressively converge to
x(t) = [G1(t) — Cr2(t) o3 (T) a1 (T)] x(0), (8) . 13 k1
. . 1 . j 7 j
where Jim lim 2*(t) = — >+ /\—1(% - Z%)' (10)

J=1 J=1

i) = ou () + Y2 K,  C2(t) = ¢12(2),

(i) The Nash equilibrium will be a full consensus and the

Ga1(t) = d21(t) + ¥ (K, Ca2(t) = ¢22(1), opinions will converge to the averagey_""_, z) of the initial
and opinions if and only if there are no stubborn agents, ke= 0.
buu(t) = V diaglm,ms, ..., 1]V (iii) TheT op_inion distance between any two agents at time
_ t €10,T] is given by
gf)lg(t) = -V dlag[ﬁ'l,ﬁ'g,...,ﬁn]vil, B o
() = Wonlt), A2 (1) = y(B)l A, (12)
boa(t) = 11(2), where Az (t) = x(t) — 27 (t) and Azl =z — ).
io(t) = -V diag[fy, 7o, ..., 7] V7, Remark 1.The opinion trajectory of every agent has two
parts. The first term on the right hand side Bf (9) is the
Yalt) = —én() average of initial opinions of all agents in the network, and
with the second term depends on the difference between thd initia
) sinh (\/)\_1 t) opinion of agent and that average. The weight of the latter
i = cosh (\//\_Z t) v M= N is a coefficient that gets progressively closerkio\; as time
-\ passes.
T = cosh (\/)\—Z t) 1, 1€ N. Remark 2.Since we are able to derive explicit expressions
Ai for the opinion trajectories, it is a simple matter to congput
the time it takes the network to reach a consensus within
I1l. GAMES WITH AN EXPLICIT NASH SOLUTION vicinity of the average opinion. Or, to determine the indival

The equation[{8) in Proposition 1 will yield explicit ex-influence of each parameter on thecloseness to a full
pressions for opinion trajectories only if one can computdnsensus.
the eigenvalues and the eigenvectordifexplicitly. In this Remark 3A fast convergence to average opinion obviously
section, we present two typical situations in which analytrequires a large\;, since the opinion distance as the terminal

expressions of the opinion trajectories are derived. timeT — oo is

We will say that afull consensuss reached in the network |28 (t) — 29 (1) E nw
at the terminal time whenever the Nash solution of the game Tlim i /\—efm L
@) is such that:! (T) = ... = 2™(T'). Of course, the equality mee fa — o ! !

may hold only for a subset oW, which will then indicate a The degree of closeness to full consensus at the steady state
partial consensus. is decreased ik — 0 or if w > k. A higher convergence rate



requires a large\;, which will be the case if any one @f, n, ork; is large. Although the convergence time is increased, the
w is large. Note that in case of a larger network populatioproperty (i) shows that final value of the opinion will inaéin

a quick consensus gets more likely because each agent expeards either the leader’s or agent’s initial opinion degiag
riences more social pressure in a complete informationhgrapn whetherw;; > k; or w;; < k;, respectively.

topology.
IV. SOME SIMULATIONS OF THE GENERAL OPINION

B. Consensus under a leader DYNAMICS GAME

The leader (agent) in this network can be considered as
some political analyst who can influence the opinions of oth
agents through electronic media. Therefore, the leader ¢ = o
influence the opinions of other agents, but not the other w
round, based on the value of their influence and stubbornn 9 y
parameters. Due to that influence, they tend to adjust th
opinions closer to leader’s opinion. The network is repmésse
by a directed graph where the edges are directed from age 6 3 X 1
towards the leader. Thug = 0,7; = {1},Vi € N\ {1}. It
follows that in this special gamél(2);; # 0 only if j = 1.

The question we investigate is whether the leader’s opini A ,
will prevail under all parameter values given enough timeeO
of course expects that a full consensus may not be achiever S .
a finite duration whenever stubborn agents exist but if sor _
agent; is not stubborn, i.ek; = 0, then that agent will make (a)
consensus with the leader. ! I
Theorem 2. For a network in which all agents are uni- oon
laterally connected to the leader (agehy, the unique Nash 08
equilibrium is such that the opinion dynamics of agents are 07
given by o6
! (t) =ag,
i kﬂ?. + wﬂxl i (12) N
2 (t) =—= T O+ &(t) (zh — ),
w; cosh(\/)\ii(Tft)) o . 01
Wheregi(t) = >\; ) W anq Aq, = ki + w;1, Vi € . ‘ ‘ ‘ ‘ ‘ ‘
N\ {1}. The opinion dynamick(t) with thei-th entry [9) 2 25 3 a8 4 a5 s
has the following properties: (b)
(i) The leader never changes its initial opinion and the ' T
opinions of other agents€ N \ {1}, converge to ol
. . . kixh + wirxh 0>7f
T A
(i) For i € N\ {1}, opinion of agent will converge to the osf
leader’s opinion asl’ — oo if and only if k; = 0. 0ar
(iif) The opinion distance of any agent to the leader is given osl,
by
7 kl 7 0.1
|AZC 1(t)| — <)\— —+ fl(t)> |A1701 . (14) . | | | | | | | | |
where Az (t) = 2%(t) — 2 (t) and Azl = z}) — z}. (©)

Remark 4.Note that the consensus in the long run is a
convex combination of the initial opinions of agenand the
leader. In this convex rivalry, a stubborn agent will stataha.

Remark 5.1t is possible to determine the time in which We have simulated a number of network structures, fo-
agent: is e-close to the opinion maintained by the leadecusing on those with diagonalizable W matrix, and investi-
Similarly, it is straightforward to examine the sensitvidf an gated the effect of some parameters on opinion dynamics.
e-consensus to each parameter valye, k;. Due to space limitations, we present three simulations that

Remark 6A fast convergence to the opinion of the leadeitlustrate in Figures 1, 2, and 3 the results of Theorems 1,
requires a large\;. This will be the case if the value af;; 2 and Proposition 1. Here, we confine our investigation of

Fig. 1: Complete Information Structure
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Fig. 2: A network with one leader (agent 1) Fig. 3: A network with two leaders (agent 1 and 10)

parameter effects to only see what happens if the conteold the stubbornness parameters have the effect of bringing
term in the cost function is dominant or not dominant. Thiorth the penalization of the control term in the cost fuaoti
simulation results in Figures 1 and 2 coincide with the plofBhis results in slowing down the convergence rate although
obtained by the analytic expressions of the opinion trajethie opinions converge to the same values in both cases.
tories from Theorems 1 and 2. In all simulations, number To jllustrate the result of Proposition 1, we present a 2-
of agents isn = 10 and terminal time isI" = 5 units. |eader network (Fig. 3(a)) in which agent 1 and agent 10
Initial opinion levels of the agents are chosen®) = are two leaders. The opinion trajectories are obtained via
[005, 0.15,0.25,0.35, 045, 0.55,0.65, 075, 0.85, 095]’ the expression[[8) after Compuung(t) and \Ij(t) through

Fig. 1(a) illustrates a complete information structure d¥IATLAB. Itis assumed that half of the followers support each
Theorem 1 and Fig. 2(a), the one leader network of Theordeader. The followers of leader-1 can be named as followers-
2, respectively. In Fig. 1(b) and Fig. 2(h),= 2 andk = 0.2 1, and of leader-10 as followers-10. The followers also have
for all agents. In Fig. 1(c) and Fig. 2(c), we set= 0.4 and influence among themselves in a society, of course, but an
k = 0.04. The reduction of the weights of both the influencagent can be assumed to have more impact on his fellow



supporters. We set; = 0.2 Vi € N. The matrixW in (8 and
is such thatw,; = w,; = 0, Vi € N andn = 10. In Fig.

3(b), we assume that the influences of leader-1 and leader-
10 on their followers is 10; the social impact of followers-irhis fact allows one to employ Theorem 6.12 of [3] and the
and followers-10 among themselves is 2; the cross impactaginion trajectories in a unique Nash solution can be ddrive
followers-1 on followers-10, and vice versa, is 0.2; and thidowever, because the transformation above is not a simple
influence that followers take from other leader is 100 tiness| one, it is much easier to directly obtain the Nash solutions
than their own leader’s influence. In this case, agentsvolldhrough the necessary conditions of Lemma 1. This is the
their respective leaders. However, if we assume that faltsw approach used in this Appendix. The uniqueness of a Nash
1 are more loyal to their leader and they run a good campaig@lution when one exists is, however, a direct consequehce o
in order to attract the followers-10, then they are able ¢alst the above transformation and will not be separately adddess
followers-10 from their leader. For Fig. 3(c), we increake t  Let us write [6) as

influence of leader-1 to 20 and the cross impact of followlers- x(t) Gu(t) Cia(t) x(0)

on followers-10 to 10, while all other parameters are theesam [ p(t) ] = [ Cor(t)  Caa(t) } { p(0) } ’ (15)

It b that rather than following leader-10, foll : :
can e seen tat 1amer han folowing ‘eacer OOWE and note that the expressions fdft), ¥(¢), and their par-

10 tend to follow followers-1 due to social impact. i . .
P titions are obtained by the inverse Laplace transform[of (7)
V. CONCLUSION via a matrix partial fraction expansion (see e.g. Lemma A.3

The main conclusion of this study is that a consensus, Na8h[20] for a similar procedure). By Lemma (7)) = 0
equilibrium, can spontaneously be reached from independéf that from equation[(15) evaluated at= T we get
motives of agents in a social network in the long run. How(T") = C1(T)x(0) + C22(T)p(0) = 0. Since, by its expres-
unanimous this consensus is depends on the initial difeeension in Proposition 12 (T) = (22(T) is _no_nsm_gular, we
of opinion, on the susceptibility of agents to influence, an@Ptain p(0) = —(5' (T)¢21(T)x(0). Substituting into [(T5),
on the stubbornness of agents. If one member is singled dg solution[(8) is obtained.
as a leader who firmly _sticks to it_s opinion,.then a consensps proof of Theorem 1
about_the Ieaders_, opinion is again fqrmed in the long run. If We haveK — kI andW = qf — w(Z — I); whereq —
an opinion game is played in a finite interval a full consensus . ; . . : .
) ; w(n — 1) + k, I is the identity matrix and is the matrix of
is never reached in the presence of stubborn members.

The game with leader can also be viewed as a game aIIf ones. For a matriXy, we can easily find the eigenvalues

learning in which the leader is the teacher and the othe;nudltlthﬁ C:?inj?c;?lr(;’/\[m] -T Zy @;i q;{i—z\f\”;‘ ];Lﬁfﬂl:/z::h
students. Here, it may be more instructive to examine the P 2= n phcity

situation when learning is poorly achieved. It is clear that Computing the corresponding eigenvectors, we obitir:
initial ignorance of the subject and reluctance to learh, aKI/AV—l where A — diag|A Mol V = [ v ]
contribute to this. But, a low willingness to update is also a ' N Lo Al A2h ¥ vl

negative factor. andV—1! = [ “;1 ] whereV;, and V; are given by
2
1

G' = diag[wﬂ, vy Wi G115, Wi G415 ey Win, kl] > 0.

The game studied can be extended in several directions. The
opinion on a single issue is not essential and one can canside
each agent having opinions on several issues as e.d..lin [10] V= | : V, = 1 [ 11 }
The technicality such an extension requires is thdt) is : ’ n Ixn?
no longer a scalar but a vector with each entry representing L
the level of opinion on one issue. One can also extend thecause they are, respectively, right and left eigenveaf®
game considered here to a network in which agents can hagociated ‘With\,. SinceVi Vi + VoV = I, we haveV, Vs, =
different “types” of motives. Then, the integrands of thestco 7111 and ViV = I — —I Also note that, in the notation of
functions the agents use will not have a uniform structurProposition 1,\; = \; “for i = 1,....,n—1and\, = \y. This
e.g., hon-quadratic cost functions may be employed alotiy wiignificantly simplifies the expressions for; (t) and vy (1)
quadratic ones. of Proposition 1. For instance,

APPENDIX A al 0 Vi

w15 w1[% 3]

Al. Proof of Proposition 1 n)=[vi V] 0 8 Vs
We first note that the cost functiondl’ of (@) can be wherea = cosh(v/Ait), 8 = cosh(yv/Azt). Thus, ¢11(t) is

1
:| = OZI+E([3—O[)I,

transformed to a quadratic functional by a matrix with diagonal entries all equal t(3 + (n — 1)a)
T o _ and off-diagonal entries all equal t6(5 — «). Simplifying
L'(z',u') = 5/ (z'(t)'G'2'(t) + [u'(t)]?) dt, all partition matrices of Proposition 1 with this procedarel

0

substituting in[(B), one arrives at

= [, At L At Agt g - xé]l, x(t) = %([1+(n—1)7@)][4‘(1—7(t))(I—I))X(O)7 (16)
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2005, Am. Control Confpp. 2371-2378, 2005.
whereq: = ki, ¢ = ki + win Vi € N\ {1}. It turns [13] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensusl cooper-

out that W is diagonalizable withiW = VAV~ Here, ation in networked multi-agent system®toc. |IEEE vol. 95, no. 1, pp.
. - s 215-233, 2007.

A_ = dIaQiq.l, e q"] and the matriX/ and its inverse are lower [14] A. Olshevsky and J. N. Tsitsiklis, “Convergence speeddistributed

triangular in the form consensus and averagingsIAM Journal on Control and Optimizatipn
vol. 48, no. 1, pp. 33-55, 2009.
1 [15] M. J. Osborne, and A. Rubinstein, “A Course in Game ThHgofhe
v 1 MIT Press, Cambridge, Massachusgtt994.

0 1 [16] A. B. Ozguler and A. Yildiz, “Foraging swarms as Nash equilitofa

V(vi) = | V31 dynamic games JEEE Trans. Cybernvol. 44, no. 6, pp. 979-987, 2014.

[17] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consasis
: : : : problems in multi-agent coordinationProc. 2005, Am. Control Conf.
Up1 O ... 0 1 pp. 1859-1864 vol. 3, 2005.

[18] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensasdu dis-
whereV = V(;/il), V-1l = V(_Vil) with v;; = L Vi € tributed optimization: Practical issues and applicatidnslarge-scale
N \ {1} In the notation of Proposition D, = qfh 9121 e N machine learning,50th Annual Allerton Conference on Communication,

. v — Yoy .

Control, and Computingpp. 1543-1550, 2012.
0 of the [19] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average sensus with
Qorl least-mean-square deviatiord,” Parallel Distrib. Comput.vol. 67, no. 1,

matricesW, V, V=1, whereQ = diagqs, ..., ¢,], the matrices pp. 33-46, 2007.

" . ope 20] A. Yildiz and A. B. Ozgiler, “Partially informed agents can form a
¢ij and 7/}1']' of Proposition 1 can all be SImpIIfled ard (8) Calji swarm in a Nash equilibriumJEEE Trans. Automat. Conrvol. 60, no.

be found as 11, pp. 3089-3094, Nov. 2015.
[21] A. Yildiz and A. B. Ozguler, “Foraging motion of swarms wih leaders
as Nash equilibria,Automatica to appear.

Also exploiting the common structur% :

x(t)= | pslt) 0 os(t) x(0), (17)
pn(t) O e 0 on(t)
where w.
pi(t) = l_l = &i(t),
q;
and .
Ui(t) = q—z +§i(t).
The right hand side of (12) is obtained by simplifying thle
row of (17).
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