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Abstract—Consensus formation in a social network is modeled
by a dynamic game of a prescribed duration played by members
of the network. Each member independently minimizes a cost
function that represents his/her motive. An integral cost function
penalizes a member’s differences of opinion from the othersas
well as from his/her own initial opinion, weighted by influence
and stubbornness parameters. Each member uses its rate of
change of opinion as a control input. This defines a dynamic
non-cooperative game that turns out to have a unique Nash equi-
librium. Analytic explicit expressions are derived for the opinion
trajectory of each member for two representative cases obtained
by suitable assumptions on the graph topology of the network.
These trajectories are then examined under different assumptions
on the relative sizes of the influence and stubbornness parameters
that appear in the cost functions.

Index Terms—Opinion dynamics, consensus, social network,
dynamic games, Nash equilibrium, game theory.

I. I NTRODUCTION

How gossip spreads in a small community, how a political
leader reaches or fails to reach voters, and how some students
learn faster than others among those with comparable intel-
lectual capacity are three questions that fall into the study of
social opinion dynamics. It is no surprise that the research
question has attracted the attention of many disciplines ina
short span of time and a sizable penetrating literature has
been accumulated. We refer to the survey papers [1], [2]
and [13] for only a partial panorama. These publications can
roughly be divided into those that take a Bayesian perspective
such as [4] and those that put forward non-Bayesian models
such as [6]. Yet another classification is that while most
of the research focuses on formation of a consensus [14],
there are also those that study disagreement as in the case of
Hegselmann and Krause model [10], [7] or as in [5]. The study
of consensus has several engineering applications including
multi-agent coordination [17], information fusion in sensor
networks [19], consensus in small-world networks [12] and
distributed optimization algorithms [18].

We study consensus formation via Nash equilibrium in a
dynamic game of a prescribed duration played by members
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in a social network. Each member (player or agent) indepen-
dently minimizes a cost function that represents “its” (canbe
read as “his/her”) motive. An integral cost function penalizes
its differences of opinion from its neighbors as well as fromits
own initial opinion, weighted by influence and stubbornness
parameters. Each member uses its rate of change of opinion as
a control input. This defines a dynamic non-cooperative game
that turns out to have a unique Nash equilibrium. For two
representative cases obtained by suitable assumptions on the
information structure (graph topology), we are able to obtain
explicit analytic expressions for the opinion trajectories of
all members in the Nash solution. These trajectories are then
examined under different assumptions on the relative sizesof
influence and stubbornness parameters.

Nash equilibrium is only one among a wide range of
equilibrium concepts in games. One interpretation in [15]
suggests that if the same game is played several times with no
strategic dependencies between consecutive plays, then a Nash
equilibrium is most likely reached. This is for static gamesbut
one can extend the interpretation to dynamic games as well.
The point of the matter is that it is a very useful construct (and
presently the only rigorous one) if the research objective is to
examine under what conditions, from independent motives of
agents, a pattern of collective behavior emerges.

In [9], a static game of opinion dynamics is posed and the
best response function in a Nash solution is used to postulate
an update scheme. The convergence of this dynamic scheme to
a consensus is examined. One can view our game model here
as a dynamic version of [9]. The optimal control of consensus
model and control through a leader model in [2] also use
integral cost functions and has similarities to our model except
that the objective in their case is control of consensus via
external actions. The non-cooperative dynamic game model
here is inspired by the foraging biological swarm models in
[16], [20], and [21].

In the next section we pose the opinion dynamics game in
its most generality. In Section 3, we study two specialized
versions and obtain explicit Nash solutions for these two
games that represent extreme cases of information structure.
Section 4 contains a number of simulation results for the
games of Section 2 and 3. The last section is on conclusions.
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II. A G AME OF OPINION DYNAMICS

We represent a social network ofn agents by a weighted
directed graphG = (N,E,wij), whereN = {1, ..., n} is
the set of all nodes (agents),E ⊆ N × N is the set of all
ordered pairs of connected nodes, andwij is the influence of
agentj on agenti when (i, j) ∈ E. One-sided or two-sided
connection between the nodes indicate one-sided or two-sided
interaction between the agents. The neighborhood of agent
i is defined to be the set of all agents with whom agenti
interacts, i.e.,ηi := {j ∈ N : (i, j) ∈ E}. The reason for
a directed graph representation is because we can interpret
the weight on the edges to be the influence of an agent on
its neighbor or the value its neighbor gives to the opinion of
an agent. Thus, two neighbors can have different levels of
influence on each other. Letxi(t) be the opinion at timet
of agenti and let it be normalized so that for everyt in the
interval [0, T ], xi(t) ∈ [0, 1]. Each agent has an initial opinion
xi(0) = xi0 ∈ [0, 1] about a certain issue, where the values
0 and 1 indicate the extreme cases. For example,0 may be
interpreted as strong disagreement and1 as strong agreement
cases. Letx(t) = [x1(t) ... xn(t)]′ ∈ [0, 1]n denote the opinion
profile at timet in the network ofn agents, where ‘prime’
denotes transpose. The cost functional of agenti is postulated
to be

Li(x, xi0, u
i) =

∫ T

0

(

1

2

∑

j∈ηi

wij

[

xi(t)− xj(t)
]2

+
1

2
ki

[

xi(t)− xi(0)
]2

+
1

2

[

ui(t)
]2
)

dt, (1)

wherewij ∈ [0,∞) is the parameter that weighs the suscep-
tibility of agent j to influence agenti, ki ∈ [0,∞) weighs
the stubbornness of agenti or the reluctance ofi to divert
from its initial opinion. The control of agenti is assumed to
be ui(t) = ẋi(t), so that agenti controls the rate of change
of its opinion. The coefficient of the control term in the cost
is normalized to1, without loss of generality. The integral in
the time interval[0, T ] indicates that the agent penalizes the
cumulative effect in each of the three terms in the integrand.
Considering the first term, for instance, what it penalizes as
part of the cost is the sum total of the divergence from the
opinions of the neighbors, not the instantaneous differences
from their opinions. This cost functional, which should be
viewed to be a model of the motive of agenti towards a
prevailing social issue, is prompted by [9], in which a static
model for the motives of agents in a social network was used
and by [16], in which a similar cost functional modeled the
motives of members in a foraging biological swarm. If each
agent in the social network minimizes its cost, then we have
a non-cooperative dynamic (or, differential) game played by
n agents

min
ui

{Li} subject toẋi(t) = ui(t) ∀i ∈ N. (2)

A solution to such a game, if it exists, is aNash solution, or
a Nash equilibriumof the game. Note that althoughx(0) is

specified asx0 ∈ [0, 1]n, its final valuex(T ) is left free. Thus,
the optimization each agent carries out is one offree terminal
condition, [11]. The game (2) lies within the framework of
Theorem 6.11 in [3] and is in fact a quadratic game as we
show in the Appendix so that a unique Nash equilibrium exists
by Theorem 6.12 of [3]. Instead of using this result (after
transforming the problem to the set up of [3]), it is easier to
use the necessary conditions provided by Theorem 6.11 of [3].
We thus state those necessary conditions in the set up of our
game (2) first.

Let So be a trajectory or opinion space{x(t), 0 ≤ t ≤ T }
andΓi be a strategy space of agenti so that its every mapping
γi : [0, T ]×So → Γi is a permissible strategy for agenti. And
definegi(x, xi0, u

i) to be the integrand of the cost functional
(1),

Lemma 1. For ann-agent dynamic game of prescribed fixed
duration [0, T ], let

(i) ui(t) be continuously differentiable onR, ∀t ∈ [0, T ],
(ii) gi(x, xi0, u

i) be continuously differentiable onR, ∀t ∈
[0, T ], i ∈ N .

If {γi∗(t, xi0) = ui∗(t); i ∈ N} provides a unique open-
loop Nash equilibrium solution, and{x∗(t), 0 ≤ t ≤ T } is the
corresponding opinion trajectory, then there existn costate
functionspi(t) : [0, T ] → R, i ∈ N , such that the following
relations are satisfied:


















ẋi∗(t) = ui∗(t),

ṗi(t) = −∂Hi

∂xi ,

γi∗(t, xi0) ≡ ui∗(t) = argminui∈Γi Hi(pi,x, xi0, u
i),

xi∗(0) = xi0 ∈ [0, 1], pi(T ) = 0, i ∈ N,
(3)

where

Hi(pi,x, xi0, u
i) = gi(x, xi0, u

i)+ pi(t)ui(t), t ∈ [0, T ]. (4)

Here we note that the terminal condition of the costate
functions is a consequence of the fact that the game has free
terminal conditions. Defining a Hamiltonian as in (4) and using
the relations in (3), we can combine the state and costate
equations into the following equation,

[

ẋ(t)
ṗ(t)

]

= A

[

x(t)
p(t)

]

+ K̂

[

x(0)
p(0)

]

, (5)

where

A =

[

0 −I
−W 0

]

, K̂ =

[

0 0
K 0

]

,

where I is the identity matrix of sizen and p(t) =
[p1(t) ... pn(t)]′, K = diag[k1, ..., kn]. Here,

W =











q1 −w12 . . . −w1n

−w21 q2 . . . −w2n

...
...

. . .
...

−wn1 −wn2 . . . qn











,

whereqi =
∑

j∈ηi
wij + ki. Notice that the matrixW is a

Laplacian-like matrix of a weighted directed graphG. Every
ij-th element in the off-diagonal,i 6= j, shows the weight of



the edge that is directed fromi to j, and the diagonal elements
consist of the sum of all the weights associated with every
node and its stubbornness parameter. Solving the differential
equation (5) gives,

[

x(t)
p(t)

]

=

(

eAt +

∫ t

0

eA(t−τ)dτ.K̂

)[

x(0)
p(0)

]

, (6)

where Φ(t) = eAt = L−1
{

(sI −A)−1
}

and Ψ(t) =
∫ t

0
eA(t−τ)dτ . Since

(sI−A)−1 =

[

s(s2I −W )−1 −(s2I −W )−1

−W (s2I −W )−1 s(s2I −W )−1

]

, (7)

one can correspondingly get the natural partitions

Φ(t) =

[

φ11(t) φ12(t)
φ21(t) φ22(t)

]

, Ψ(t) =

[

ψ11(t) ψ12(t)
ψ21(t) ψ22(t)

]

.

The diagonalizability assumption, although not necessary, is a
simplifying assumption .

Proposition 1. SupposeW is diagonalizable so thatW =
V ΛV −1, whereΛ = diag[λ1, λ2, ..., λn] andV is the matrix
whose columns are the corresponding linearly independent
eigenvectors. Then, a Nash equilibrium of the game (2) exists
and is unique. The opinion trajectory of the Nash solution is
given by

x(t) =
[

ζ11(t)− ζ12(t)ζ
−1
22 (T )ζ21(T )

]

x(0), (8)

where

ζ11(t) = φ11(t) + ψ12(t)K, ζ12(t) = φ12(t),

ζ21(t) = φ21(t) + ψ22(t)K, ζ22(t) = φ22(t),

and

φ11(t) = V diag[π1, π2, . . . , πn]V
−1,

φ12(t) = −V diag[π̂1, π̂2, . . . , π̂n]V
−1,

φ21(t) = Wφ12(t),

φ22(t) = φ11(t),

ψ12(t) = −V diag[π̃1, π̃2, . . . , π̃n]V
−1,

ψ22(t) = −φ12(t),
with

πi = cosh
(

√

λi t
)

, π̂i =
sinh

(√
λi t

)

√
λi

,

π̃i =
cosh

(√
λi t

)

− 1

λi
, i ∈ N.

III. G AMES WITH AN EXPLICIT NASH SOLUTION

The equation (8) in Proposition 1 will yield explicit ex-
pressions for opinion trajectories only if one can compute
the eigenvalues and the eigenvectors ofW explicitly. In this
section, we present two typical situations in which analytic
expressions of the opinion trajectories are derived.

We will say that afull consensusis reached in the network
at the terminal time whenever the Nash solution of the game
(2) is such thatx1(T ) = ... = xn(T ). Of course, the equality
may hold only for a subset ofN , which will then indicate a
partial consensus.

A. Consensus in a complete information structure

In a network where all agents are connected to each other,
i.e., ηi = N \ {i}, the opinion of agenti will be influenced
by all other agents and one may expect that a consensus
will eventually be reached. But, due to the presence of some
stubborn agents, a full consensus may still not be reached. The
present special game investigates this issue.

For simplicity and in order to get explicit solutions, we
assume equal parameters for all agents, i.e.,ki = k, wij =
wji = w, ∀i ∈ N and (i, j) ∈ E.

Theorem 1. For a network of complete information struc-
ture, and where all the agents have equal parameters, the
unique Nash equilibrium is such that the opinion dynamics of
agenti is given by

xi(t) =
1

n

n
∑

j=1

xj0 + γ(t)(xi0 −
1

n

n
∑

j=1

xj0), (9)

whereγ(t) = k
λ1

+
(

nw
λ1

)

cosh(
√
λ1(T−t))

cosh(
√
λ1T )

and λ1 = k + nw.

The opinion dynamicsx(t) with the i-th entry (9) has the
following properties:

(i) A full consensus is never achieved but the opinion
dynamics will progressively converge to

lim
T→∞

lim
t→T

xi(t) =
1

n

n
∑

j=1

xj0 +
k

λ1
(xi0 −

1

n

n
∑

j=1

xj0). (10)

(ii) The Nash equilibrium will be a full consensus and the
opinions will converge to the average1

n

∑n
j=1 x

j
0 of the initial

opinions if and only if there are no stubborn agents, i.e.,k = 0.
(iii) The opinion distance between any two agents at time

t ∈ [0, T ] is given by

|∆xij(t)| = γ(t)|∆xij0 |, (11)

where∆xij(t) = xi(t)− xj(t) and∆xij0 = xi0 − xj0.
Remark 1.The opinion trajectory of every agent has two

parts. The first term on the right hand side of (9) is the
average of initial opinions of all agents in the network, and
the second term depends on the difference between the initial
opinion of agenti and that average. The weight of the latter
is a coefficient that gets progressively closer tok/λ1 as time
passes.

Remark 2.Since we are able to derive explicit expressions
for the opinion trajectories, it is a simple matter to compute
the time it takes the network to reach a consensus withinǫ-
vicinity of the average opinion. Or, to determine the individual
influence of each parameter on theǫ-closeness to a full
consensus.

Remark 3.A fast convergence to average opinion obviously
requires a largeλ1, since the opinion distance as the terminal
time T → ∞ is

lim
T→∞

|xi(t)− xj(t)|
|xi0 − xjo|

=
k

λ1
+
nw

λ1
e−

√
λ1 t.

The degree of closeness to full consensus at the steady state
is decreased ifk → 0 or if w ≫ k. A higher convergence rate



requires a largeλ1, which will be the case if any one ofk, n,
w is large. Note that in case of a larger network population,
a quick consensus gets more likely because each agent expe-
riences more social pressure in a complete information graph
topology.

B. Consensus under a leader

The leader (agent1) in this network can be considered as
some political analyst who can influence the opinions of other
agents through electronic media. Therefore, the leader can
influence the opinions of other agents, but not the other way
round, based on the value of their influence and stubbornness
parameters. Due to that influence, they tend to adjust their
opinions closer to leader’s opinion. The network is represented
by a directed graph where the edges are directed from agents
towards the leader. Thusη1 = ∅, ηi = {1}, ∀i ∈ N \ {1}. It
follows that in this special game (2),wij 6= 0 only if j = 1.

The question we investigate is whether the leader’s opinion
will prevail under all parameter values given enough time. One
of course expects that a full consensus may not be achieved in
a finite duration whenever stubborn agents exist but if some
agenti is not stubborn, i.e.,ki = 0, then that agent will make
consensus with the leader.

Theorem 2. For a network in which all agents are uni-
laterally connected to the leader (agent1), the unique Nash
equilibrium is such that the opinion dynamics of agents are
given by







x1(t) =x10,

xi(t) =
kix

i
0 + wi1x

1
0

λi
+ ξi(t)

(

xi0 − x10
)

,
(12)

whereξi(t) =
(

wi1

λi

)

cosh(
√
λi(T−t))

cosh(
√
λiT )

andλi = ki +wi1, ∀i ∈
N \ {1}. The opinion dynamicsx(t) with the i-th entry (9)
has the following properties:

(i) The leader never changes its initial opinion and the
opinions of other agentsi ∈ N \ {1}, converge to

lim
T→∞

lim
t→T

xi(t) =
kix

i
0 + wi1x

1
0

λi
. (13)

(ii) For i ∈ N \ {1}, opinion of agenti will converge to the
leader’s opinion asT → ∞ if and only if ki = 0.

(iii) The opinion distance of any agent to the leader is given
by

|∆xi1(t)| =
(

ki
λi

+ ξi(t)

)

|∆xi10 |. (14)

where∆xi1(t) = xi(t)− x1(t) and∆xi10 = xi0 − x10.
Remark 4.Note that the consensus in the long run is a

convex combination of the initial opinions of agenti and the
leader. In this convex rivalry, a stubborn agent will stand alone.

Remark 5.It is possible to determine the time in which
agent i is ǫ-close to the opinion maintained by the leader.
Similarly, it is straightforward to examine the sensitivity of an
ǫ-consensus to each parameter valuewi1, ki.

Remark 6.A fast convergence to the opinion of the leader
requires a largeλi. This will be the case if the value ofwi1

or ki is large. Although the convergence time is increased, the
property (i) shows that final value of the opinion will incline
towards either the leader’s or agent’s initial opinion depending
on whetherwi1 > ki or wi1 < ki, respectively.

IV. SOME SIMULATIONS OF THE GENERAL OPINION

DYNAMICS GAME
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Fig. 1: Complete Information Structure

We have simulated a number of network structures, fo-
cusing on those with diagonalizable W matrix, and investi-
gated the effect of some parameters on opinion dynamics.
Due to space limitations, we present three simulations that
illustrate in Figures 1, 2, and 3 the results of Theorems 1,
2 and Proposition 1. Here, we confine our investigation of
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Fig. 2: A network with one leader (agent 1)

parameter effects to only see what happens if the control
term in the cost function is dominant or not dominant. The
simulation results in Figures 1 and 2 coincide with the plots
obtained by the analytic expressions of the opinion trajec-
tories from Theorems 1 and 2. In all simulations, number
of agents isn = 10 and terminal time isT = 5 units.
Initial opinion levels of the agents are chosen asx(0) =
[0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]′.

Fig. 1(a) illustrates a complete information structure of
Theorem 1 and Fig. 2(a), the one leader network of Theorem
2, respectively. In Fig. 1(b) and Fig. 2(b),w = 2 andk = 0.2
for all agents. In Fig. 1(c) and Fig. 2(c), we setw = 0.4 and
k = 0.04. The reduction of the weights of both the influence
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Fig. 3: A network with two leaders (agent 1 and 10)

and the stubbornness parameters have the effect of bringing
forth the penalization of the control term in the cost function.
This results in slowing down the convergence rate although
the opinions converge to the same values in both cases.

To illustrate the result of Proposition 1, we present a 2-
leader network (Fig. 3(a)) in which agent 1 and agent 10
are two leaders. The opinion trajectories are obtained via
the expression (8) after computingΦ(t) and Ψ(t) through
MATLAB. It is assumed that half of the followers support each
leader. The followers of leader-1 can be named as followers-
1, and of leader-10 as followers-10. The followers also have
influence among themselves in a society, of course, but an
agent can be assumed to have more impact on his fellow



supporters. We setki = 0.2 ∀i ∈ N . The matrixW in (5)
is such thatw1i = wni = 0, ∀i ∈ N and n = 10. In Fig.
3(b), we assume that the influences of leader-1 and leader-
10 on their followers is 10; the social impact of followers-1
and followers-10 among themselves is 2; the cross impact of
followers-1 on followers-10, and vice versa, is 0.2; and the
influence that followers take from other leader is 100 times less
than their own leader’s influence. In this case, agents follow
their respective leaders. However, if we assume that followers-
1 are more loyal to their leader and they run a good campaign
in order to attract the followers-10, then they are able to steal
followers-10 from their leader. For Fig. 3(c), we increase the
influence of leader-1 to 20 and the cross impact of followers-1
on followers-10 to 10, while all other parameters are the same.
It can be seen that rather than following leader-10, followers-
10 tend to follow followers-1 due to social impact.

V. CONCLUSION

The main conclusion of this study is that a consensus, Nash
equilibrium, can spontaneously be reached from independent
motives of agents in a social network in the long run. How
unanimous this consensus is depends on the initial differences
of opinion, on the susceptibility of agents to influence, and
on the stubbornness of agents. If one member is singled out
as a leader who firmly sticks to its opinion, then a consensus
about the leader’s opinion is again formed in the long run. If
an opinion game is played in a finite interval a full consensus
is never reached in the presence of stubborn members.

The game with leader can also be viewed as a game of
learning in which the leader is the teacher and the others,
students. Here, it may be more instructive to examine the
situation when learning is poorly achieved. It is clear that
initial ignorance of the subject and reluctance to learn, all
contribute to this. But, a low willingness to update is also a
negative factor.

The game studied can be extended in several directions. The
opinion on a single issue is not essential and one can consider
each agent having opinions on several issues as e.g., in [10].
The technicality such an extension requires is thatxi(t) is
no longer a scalar but a vector with each entry representing
the level of opinion on one issue. One can also extend the
game considered here to a network in which agents can have
different “types” of motives. Then, the integrands of the cost
functions the agents use will not have a uniform structure,
e.g., non-quadratic cost functions may be employed along with
quadratic ones.

APPENDIX

A1. Proof of Proposition 1

We first note that the cost functionalLi of (1) can be
transformed to a quadratic functional by

Li(zi, ui) =
1

2

∫ T

0

(

z
i(t)′Gi

z
i(t) + [ui(t)]2

)

dt,

where

z
i =

[

∆xi1, ...,∆xi i−1,∆xi i+1, ...,∆xin, xi − xi0
]′
,

and

Gi = diag[wi1, ..., wi i−1, wi i+1, ..., win, ki] ≥ 0.

This fact allows one to employ Theorem 6.12 of [3] and the
opinion trajectories in a unique Nash solution can be derived.
However, because the transformation above is not a simple
one, it is much easier to directly obtain the Nash solutions
through the necessary conditions of Lemma 1. This is the
approach used in this Appendix. The uniqueness of a Nash
solution when one exists is, however, a direct consequence of
the above transformation and will not be separately addressed.

Let us write (6) as
[

x(t)
p(t)

]

=

[

ζ11(t) ζ12(t)
ζ21(t) ζ22(t)

] [

x(0)
p(0)

]

, (15)

and note that the expressions forΦ(t), Ψ(t), and their par-
titions are obtained by the inverse Laplace transform of (7)
via a matrix partial fraction expansion (see e.g. Lemma A.3
in [20] for a similar procedure). By Lemma 1,p(T ) = 0
so that from equation (15) evaluated att = T we get
p(T ) = ζ21(T )x(0) + ζ22(T )p(0) = 0. Since, by its expres-
sion in Proposition 1,φ22(T ) = ζ22(T ) is nonsingular, we
obtain p(0) = −ζ−1

22 (T )ζ21(T )x(0). Substituting into (15),
the solution (8) is obtained.

A2. Proof of Theorem 1

We haveK = kI andW = qI − w(I − I); whereq =
w(n− 1) + k, I is the identity matrix andI is the matrix of
all ones. For a matrixW , we can easily find the eigenvalues
and the eigenvectors, [16]. They areλ1 = q+w = k+nw with
multiplicity n− 1 andλ2 = q+w−nw = k with multiplicity
1.

Computing the corresponding eigenvectors, we obtainW =
V ΛV −1, whereΛ = diag[λ1, ..., λ1, λ2], V =

[

V̂1 V̂2
]

,

andV −1 =

[

Ṽ1
Ṽ2

]

, whereV̂2 and Ṽ2 are given by

V̂2 =







1
...
1







n×1

, Ṽ2 =
1

n

[

1 . . . 1
]

1×n
,

because they are, respectively, right and left eigenvectors ofO
associated withλ2. SinceV̂1Ṽ1 + V̂2Ṽ2 = I, we haveV̂2Ṽ2 =
1
n
I and V̂1Ṽ1 = I − 1

n
I. Also note that, in the notation of

Proposition 1,λi = λ1 for i = 1, ..., n− 1 andλn = λ2. This
significantly simplifies the expressions forφij(t) andψij(t)
of Proposition 1. For instance,

φ11(t) =
[

V̂1 V̂2
]

[

αI 0
0 β

] [

Ṽ1
Ṽ2

]

= αI+
1

n
(β−α)I,

whereα = cosh(
√
λ1t), β = cosh(

√
λ2t). Thus, φ11(t) is

a matrix with diagonal entries all equal to1
n
(β + (n − 1)α)

and off-diagonal entries all equal to1
n
(β − α). Simplifying

all partition matrices of Proposition 1 with this procedureand
substituting in (8), one arrives at

x(t) =
1

n

(

[1+(n−1)γ(t)]I+(1−γ(t))(I−I)
)

x(0), (16)



whereγ(t) = k
λ1

+
(

nw
λ1

)

cosh(
√
λ1(T−t)

cosh(
√
λ1T )

. The i-th row of the
right hand side of (16) simplifies to the right hand side of (9).

A3. Proof of Theorem 2

Given the information structure of this game, we get a lower
triangular matrix

W =















q1
−w21 q2
−w31 0 q3

...
...

. . .
. . .

−wn1 0 . . . 0 qn















,

where q1 = k1, qi = ki + wi1 ∀i ∈ N \ {1}. It turns
out that W is diagonalizable withW = V ΛV −1. Here,
Λ = diag[q1, ..., qn] and the matrixV and its inverse are lower
triangular in the form

V (vi1) :=















1
v21 1
v31 0 1
...

...
. . .

. . .
vn1 0 . . . 0 1















.

whereV = V (νi1), V −1 = V (−νi1) with νi1 = wi1

qi−q1
∀i ∈

N \ {1}. In the notation of Proposition 1,λi = qi, ∀i ∈ N .

Also exploiting the common structure

[

∗ 0
∗ Q orI

]

of the

matricesW,V, V −1, whereQ = diag[q2, ..., qn], the matrices
φij andψij of Proposition 1 can all be simplified and (8) can
be found as

x(t) =















1
ρ2(t) σ2(t)
ρ3(t) 0 σ3(t)

...
...

. . .
. . .

ρn(t) 0 . . . 0 σn(t)















x(0), (17)

where
ρi(t) =

wi1

qi
− ξi(t),

and

σi(t) =
ki
qi

+ ξi(t).

The right hand side of (12) is obtained by simplifying theith
row of (17).
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[16] A. B. Özgüler and A. Yıldız, “Foraging swarms as Nash equilibriaof
dynamic games,”IEEE Trans. Cybern., vol. 44, no. 6, pp. 979-987, 2014.

[17] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,”Proc. 2005, Am. Control Conf.,
pp. 1859-1864 vol. 3, 2005.

[18] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Consensus-based dis-
tributed optimization: Practical issues and applicationsin large-scale
machine learning,”50th Annual Allerton Conference on Communication,
Control, and Computing, pp. 1543-1550, 2012.

[19] L. Xiao, S. Boyd, and S. J. Kim, “Distributed average consensus with
least-mean-square deviation,”J. Parallel Distrib. Comput., vol. 67, no. 1,
pp. 33-46, 2007.
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