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Abstract—The demand for automatically gathered data is a
societal trend quickly extending to all aspects of human life.
Knowledge on the utilization of public facilities is of interest for
optimising use and cutting expenses for the owners. Manual
observations are both cumbersome and expensive, and they
have a risk of incorrect results due to subjective opinions or
lack of interest in the given task. In this paper we present the
main results of a 5-year long research project revolving around
the real-world application of automatic analysis of activities
in sports arenas. Three topics are explored: Counting people,
recognising activities, and estimating energy expenditure. The
project is based on thermal image data, to preserve privacy
while capturing video in public sports arenas. This paper aim
to provide an overview of our published methods and results
within these three topics and add a discussion of the results
and perspectives of this research.

Keywords-Thermal imaging, Sport, Human behaviour,
Counting, Activity recognition, Energy expenditure.

I. INTRODUCTION

Analysis of humans is one of the biggest areas within
computer vision, and is still very challenging as human
behaviour is highly complex. One of the interesting human
activities is sports. Participation in sport is encouraged and
supported by most governments, due to very positive health
effects. Many sports activities require available facilities,
either indoor and outdoor. Especially indoor facilities are
expensive to build and maintain, and constitute a significant
expense for governments and municipalities in their attempt
to support sports activities for their citizens. However, the
actual utilization and use of these facilities is often unknown.
This is the starting point for this project; How can we
automatically analyse the activities in an indoor sports
arena?

For the application in public indoor sports arenas, with all
types of users ranging from children, to professionals and
seniors, the methods must be both non-intrusive and privacy
preserving. For that reason, we are capturing data only with
thermal cameras. Thermal sensors capture infrared radiation
in the long-wavelength infrared spectrum (8−14µm), which
is emitted by all objects with a temperature above absolute
zero [1]. A thermal image represents the temperature of the

scene, often using white colour for the hottest pixels, and
black for the coldest pixels. An example from one of the
datasets captured during this project is presented in figure
1. To cover the entire court area, three cameras with a
resolution of 640×480 pixel is applied simultaneously. The
three images are stitched horizontally to obtain the image
shown in figure 1.

Figure 1: Example of thermal input image from a sports
arena.

The purpose of this paper is to provide an overview of an
ongoing research project, revolving around one real-world
application. We here summarize a number of published
methods developed for analysing the behaviour in sports
arenas. The research is divided into three topics: Counting
people (section III), Recognising activities (section IV), and
Estimating energy expenditure (section V). Lastly, in section
VI we compare methods and discuss the perspectives and
future work in this project.

II. RELATED WORK

With the increasing demand for data and analyses of
sports games, e.g., for visualizations during broadcasts and
for post-game analysis of statistics, computer vision methods
has become one of the popular tools applied [2], [3]. Auto-
matic detection and tracking of sports players is a research
topic important as a basis for most areas of sports analysis.
Most systems are based on visual cameras. In [4] a tracking
system is proposed specifically for indoor football players,
while [5] proposes a tracking system for outdoor football
using multiple cameras. The tracking system proposed in
[6] focuses on more general sports video and it is tested
on both football, basketball and hockey. Recent methods



developed for team sports suggest to include context in-
formation like Game Context Features [7] and contextual
trajectory information [8], or improve tracking by modelling
latent behaviour from team-level context dynamics [9]. The
research presented in this paper is focused on the activities
on a global level, rather than individual behaviour and
performance.

The large research area regarding automatic identification
of human subjects and their behaviour include both visual
and thermal cameras. There exist a number of surveys and
books on the subject, including [10], [11], [12], [13]. Ther-
mal imaging has recently become popular for surveillance
applications and robust detection of pedestrians, as it is
independent of lighting conditions [1], [14]. In this paper
we will show how thermal imaging can be used as a privacy
preserving data collection method, as the basis for further
behaviour analysis.

III. COUNTING PEOPLE

The first step for analysing the activities in sports arenas
is to detect the individuals and estimate the number of
participants.

A. Detection

The thermal modality simplifies the task of detecting hu-
mans. The images can be segmented based on temperature,
as humans have a relatively constant temperature, which
is normally different from the environment. Specifically, in
temperature controlled indoor arenas, humans are hotter than
the background. However, a strict temperature threshold can
not be applied for our recordings, as the camera automat-
ically adjusts the gain, meaning that the correspondence
between temperature value and pixel value change over
time. Instead two simple segmentation approaches have been
tested; automatic thresholding and background subtraction.

1) Automatic thresholding: With input being thermal
images, we operate with 8-bit greyscale images. Assuming
that, within the region of interest, humans are hotter than the
background, it is possible to find a threshold which separates
humans from the background. However, the threshold value
must adapt, as the gain in the camera is automatically
adjusted. For this purpose we use an automatic threshold
method based on Maximum Entropy [15]. This method
maximises the sum of the entropy above and below the
threshold value, by iterating through every possible value. A
threshold value is calculated for each image individually and
applied to obtain a binary image. By evaluating the entropy
value, it can be determined if the arena is empty; if the
entropy is below a specified threshold the resulting image is
set to black.

This method is efficient if no non-human hot objects
are present within the region of interest. In other cases
background subtraction may be applied.

2) Background subtraction: With static hot objects in the
scene, a background image can be captured and maintained,
and a binary image is obtained by subtracting the back-
ground image from each new input image. The system must
be initialised with a background image, but updating the
image is important to adapt to slowly changing tempera-
tures, or adjusted gain of the image. We update the image
every minute by combining a new image and the existing
background, but only letting pixels classified as background
contribute to the new background.

3) Post-processing methods: After binarisation each hu-
man should ideally be represented by one white blob, and
everything else represented by black. However, three main
challenges exist at this point:

• Occlusions, which can make several people part of the
same white blob.

• Reflections, which may create ghost objects.
• Over-segmentation, which make one person consist of

several smaller blobs.
These challenges are illustrated with examples in figure 2.

To handle occlusions, we define two types of groupings;
tall blobs, with people standing behind each other, seen
from the camera’s perspective, and wide blobs, with
people standing next to each other, seen from the camera’s
perspective. We implement two simple but effective routines
aiming at splitting blobs into single persons. These routines
are summarized in the following sections, details can be
found in [16].

Split Tall Blobs
People standing behind each other, seen from the camera,
might be detected as one blob containing more than one
person. In order to split these blobs into single detections,
the first step is to detect when the blob is too tall to
contain only one person. If the blob has a pixel height
that corresponds to more than a maximum height at the
given position, found by an initial calibration, the algorithm
should try to split the blob horizontally. The point to split
from is found by analysing the convex hull and finding the
convexity defects of the blob. Of all the defect points, the
point with the largest depth and a given maximum absolute
gradient should be selected, meaning that only defects
from the side will be considered, discarding, e.g., a point
between the legs. Figure 3 shows an example of how a tall
blob containing two people will be split.

Split Wide Blobs
Groups of people standing next to each other might be
found as one large blob. To identify which blobs contain
more than one person, the height/width ratio and the
perimeter are considered. If the criteria are satisfied, the
algorithm should try to split the blob. For this type of
occlusion, the head of each person is often visible, and the
blob can be split based on the head positions. Since the



Figure 2: Examples of challenges in the segmentation of images.

Figure 3: Example of how a tall blob, containing two people,
can be split.

head is narrower than the body, people can be separated by
splitting vertically from the minimum points of the upper
edge of a blob. These points can be found by analysing the
convex hull and finding the convexity defects of the blob.
Figure 4 shows an example of how a wide blob containing
two people will be split.

Figure 4: Example of how a wide blob, containing two
people, can be split.

Sort Blobs
The last two challenges, reflections and over-segmentation,
can be handled by sorting the blobs. The goal is to find only
those blobs containing the feet of a person, as these define
the position of the person on the ground.

We consider each binary blob a candidate, and generate a
rectangle of standard height at the given position (calculated
during calibration) and the width being one third of the
height. For each rectangle we evaluate the ratio of fore-
ground (white) pixels. If the ratio of white pixels is below
15%, the blob is discarded, otherwise the candidate is added
for further processing. The second step is to check if the
candidate rectangles overlap significantly, hence probably

belonging to the same person. If two rectangles overlap
by more than 45%, only the candidate with highest ratio
of white pixels is kept as a true detection. These threshold
values are chosen experimentally by evaluating 340 positive
samples and 250 negative samples. Figure 5 illustrates this
situation, where one person has been split into three blobs.
The ultimate goal for the detection algorithm is to detect
each person, and nothing else, in each frame. However, with
a side-view camera angle and possibilities of a high number
of people interacting, people can be fully occluded. These
situations can not be solved on frame level, but rather by
including temporal information.

Figure 5: Example of how several candidates are generated
and tested.

B. Counting

The goal of this first part of the research in analysis of
activities in sports arenas is to count the number of partic-
ipants. An initial estimate can be found by simply count-
ing the number of blobs existing after the post-processing
methods described in section III-A3. However, noise must be
expected with both false detections and missed detections.
Considering the application in sports arenas, people are
mostly moving within the monitored court area, meaning
that the number of people will be constant for periods of
time. The idea of this counting algorithm is therefore to
model the sequences with stable periods, when no people
are close to the border, and unstable periods when people
are close to the border; likely to leave or enter the monitored
area [17]. During stable periods a number of people is



estimated per frame by counting the number of blobs. During
unstable periods the number of people leaving or entering
the court should be estimated by applying local tracking.
Figure 6 illustrates a person crossing the border.

Figure 6: Illustration of the notification of a person crossing
the border to the court area.

Following this first iteration, a graph optimisation will run
over the entire sequence, combining the estimated numbers
from stable periods with changes during unstable periods.
The graph consists of nodes, representing the weighted
number of people observed during stable periods, and edges,
representing the change in number between two stable
periods. The weight for each node is calculated based on
the probability of each detection being true, and the general
uncertainty of a frame caused by occlusions and clutter. For
each stable period a weighted histogram is calculated and
scaled to an accumulated sum of 1. Details on the weighting
algorithm can be found in [17]. Edges are weighted based
on the number of crossings, which increases the uncertainty,
and the weighting of each individual crossing the border. A
simple example of a graph is illustrated in figure 7. Edges
exist between all nodes in two consecutive periods, but to
simplify the illustration they are not drawn.

Stable period 1 Stable period 2 Stable period 3

Border activity 1 Border activity 2

1
2
3
4
5
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7
8
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10

1
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8
9

10

1
2
3
4
5
6
7
8
9

10

Figure 7: Example of a simple graph [17]. Nodes represents
the weighted number of people observed during stable
periods, and edges represents the change in number between
two stable periods. Dark nodes and edges have the highest
weights.

This graph optimised counting algorithm is tested on a 30
minute video sequence containing between 3 and 13 people
in each frame at the monitored court area. The mean error
in estimated number is 4.44 %. For comparison, using only
frame based counts, without graph optimisation, results in a
mean error of 8.87 % [17].

IV. RECOGNISING ACTIVITIES

The second step of the analysis of activities in a sports
arena is to recognise the activity type. The goal here is to
be able to detect the most common sports types observed in
a public indoor arena, to provide an overview of activities
performed in the arena during each day. The definition
of a common sports type depends on the tradition in the
relevant geographical area. For this project data has been
captured in sports arenas in Aalborg, Denmark. The common
sports types observed here were: Team handball, volleyball,
badminton, soccer, and basketball. In this section three
methods for recognition of sports types will be presented
and compared.

A. Heatmaps

The first method developed is based on heatmaps, rep-
resenting detected positions over time [18]. A heatmap is
constructed by using the position of each detected person.
The position must be converted from image coordinates to
world coordinates, using a homography found during initial-
isation of the system. When summing up the positions, the
area each person spans is modelled as a Gaussian distribution
with a standard height of 1 and a radius corresponding to
1 metre for 95 % of the volume. Each heatmap represents
a time span of 10 minutes. Examples of these heatmaps are
shown in figure 8.

The classification system aims at classifying each heatmap
as one of the five well defined sports types, or as mis-
cellaneous. The heatmaps being 200 × 400 pixels can be
represented as a sample in an 80,000-dimensional space,
considering each pixel as a feature. In cases of such high
dimensionality, it is beneficial to start with dimensional-
ity reduction. It is, however, important for classification
purposes to seek the dimensions which best separates the
classes. For this purpose we choose to apply a method
appropriate for pixel data, originally proposed for face
recognition, called Fisherfaces [19]. This method starts by
reducing the number of dimensions using PCA, after which
a new projection of data is found using Fisher’s Linear
Discriminant, which seeks the directions that are efficient
for discrimination between classes.

Tested on a total of 386 manually annotated heatmaps,
captured over 12 days, the classification result is a true
positive rate of 89.64 % [18].

B. Tracklets

The method based on heatmaps has a few limitations,
which include the dependency on scale, direction, and loca-
tion on the field. To overcome these limitations, the second
method presented is based on local features from motion,
which are invariant to the position and direction of play [20].
Based on trajectories (tracklets) from each player, motion
features are extracted and used for classification.



(a) Badminton (b) Basketball (c) Team handball

(d) Soccer (e) Volleyball (1 court) (f) Volleyball (3 courts)

Figure 8: Examples of heatmaps representing each sports type.

Tracklets are produced using a multi-target tracking
scheme based on the Kalman filter [21]. In the thermal
modality, re-identifying targets after occlusions is very dif-
ficult, due to a lack of distinct features. For this reason,
instead of trying to construct long trajectories, with a high
risk of switching between targets, we aim to construct short,
but reliable tracklets, from which we can estimate motion
features. Examples of tracklets from five sports types is
presented in figure 9.

The motion features chosen should be invariant to the
size and direction of the court, the position of the players
on the court, and to the direction of play. The features
must be robust to noisy detections and tracking errors as
well. Based on these criteria, four features are selected:
Lifespan [frames], total distance [m], distance span [m], and
mean speed [m/s] [20]. These features are extracted for each
tracklet in each 2 minute video sequence and combined by
the mean value, such that each sequence is represented by
a 4-dimensional feature vector. For classification both linear
and quadratic discriminant functions (LDA and QDA) are
tested, of which QDA shows best performance [22].

For evaluating this method five hours of video was cap-
tured and annotated; one hour, corresponding to 30 2-minute
sequences, per sports type. A correct classification rate of
94.5 % was obtained [20].

C. Audio-visual features

In order to further improve the classification performance,
the last method presented in this section combines motion
features, as described in section IV-B, with audio features
[23]. For audio-features a perceptual time-frequency rep-
resentation, Mel Frequency Cepstral Coefficients (MFCC)
[24], is used. MFCC features are considered one of the main
features used for audio signal processing applications such
as speech and speaker recognition, and emotion recognition

in music and speech. 25 MFCC features plus the log of the
energy is extracted, from which also the first and second
derivatives are computed. The analysis window is set to 25
ms, with overlaps of 10 ms. As a result, a 78× 600 feature
matrix is extracted per one minute sequence. These are then
summarised by estimating the mean and variance. The result
is a 78×2 feature matrix which is then converted to a vector
of 156 features. Finally, PCA is performed to reduce the
feature space from 156 to 10 features.

This method is evaluated on an audio-visual dataset con-
taining footage from three different sports types, one hour
from each sports type; Basketball, soccer, and volleyball.
The videos are then divided into 1-minute sequences, which
results in a total of 180 sequences to classify. The result
from a 10-fold cross validation using a kNN classifier
(k=9) is a correct classification rate of 96.11 % [23]. The
kNN classifier is chosen for best performance among six
applicable standard classifiers tested in WEKA [25].

The results presented in this section on activity recogni-
tion are directly comparable in terms of image types and
arena. However, different datasets were used for each work
as new data requirements were added for each method;
higher framerate to enable tracking, and audio data, for
extraction of audio features.

V. ESTIMATING ENERGY EXPENDITURE

The last part of this work concerns the estimation of
energy expenditure during sports activities. Current meth-
ods applied within health and sports science require direct
measurements of oxygen uptake by metabolic carts (wearing
respiratory masks) [26] or indirect measurements using heart
rate monitors, accelerometers [27], or GPS data [28]. In this
work we introduce a non-intrusive method based on thermal
video, which is evaluated against traditional measurements
of oxygen uptake [29]. The ultimate goal is to be able to



(a) Badminton (b) Basketball (c) Team handball

(d) Soccer (e) Volleyball

Figure 9: Examples of tracklets from a 2-minute period of each sports type. Each tracklet is assigned a random colour.

estimate energy expenditure of all individuals participating
in a sports activity, but the first research in this direction will
start with a controlled environment using a treadmill experi-
ment. Fourteen endurance-trained test participants performed
4-minute intervals walking and running at the treadmill at
velocities of 3, 5, 7, 8, 10, 12, 14, 16, and 18 km/h. Heart
rate, oxygen exchange, and mean accelerations of ankle,
thigh, wrist and hip were measured for each participant
throughout the test. Thermal video was captured with a
frame rate of 30 fps from a side view. An example of an
input image and the results of histogram normalization and
the following threshold segmentation is shown in figure 10.

Figure 10: Input frame, histogram normalization, and seg-
mentation.

Energy values are extracted from optical flow estimations,
representing the local movement. First, to stabilize the scene,
horizontal global movement is removed, by tracking the
upper body with a KLT tracker [30]. Local movement is then
estimated by calculating the Large Displacement Optical
Flow [31] of the body limbs, quantized into an N×M grid.
A linear correlation between oxygen uptake and optical flow
is proved, illustrated in figure 11 with colours representing
individual test subjects, and black regression line for pooled
data from all subjects.

Figure 11: Individual oxygen uptake measurements in re-
lation to optical flow during walking and running. Colours
represent individual test subjects, and the black regression
line uses pooled data from all subjects.

This work concludes that energy expenditure of a person
walking or running at a treadmill can be estimated from a
video sequence of 3-4 seconds. Future work in this field will
investigate the possibilities of extending the method to free
movement in a sports arena.

VI. DISCUSSION

The demand for automatically gathered data is a societal
trend quickly extending to all aspects of human life. Knowl-
edge on the utilization of public facilities is of interest for
optimising use and cutting expenses for the owners. Manual
observations are both cumbersome and expensive, and they
have a risk of containing incorrect results due to subjective
opinions or lack of interest in the given task.



In this paper we have presented the main results of
a 5-year long research project revolving around the real-
world application of automatic analysis of activities in sports
arenas. The choice of thermal cameras has been essential
throughout the project, primarily due to privacy issues. The
amount of previous work on analysis of humans in thermal
images has been limited, and we believe that we with this
project have contributed to this field. We do also support the
progress within this field, by making multiple thermal and
multi-modal datasets publicly available1.

The first topic of this project, concerning the task of count-
ing people, has today reached a stage where it is applied
commercially. The methods and setup have been tested in a
large number of different arenas, and a compromise between
precision, hardware costs, and installation time has been
found, using a single thermal camera mounted near one of
the corners of the court.

Recognising activities is an interesting task, not only
used for sports types, but generally for automatic labelling
of video data. Within this topic we have proposed three
different methods with different potentials and limitations.
Classification of heatmaps is the simplest solution, requiring
only single frame position data. The limitation that follows
is that it is tied to the location and direction of play on
the court. These limitiations are eliminated using tracklets
instead. This method shows a higher classification rate,
however, it has higher requirements for temporal coherence
between frames. The last method presented on activity
recognition is based on both audio and visual features. The
addition of audio features again increased the classification
rate. However, capturing audio data might cause privacy
concerns in some locations, which is also the reason that
the dataset captured for this purpose is smaller than datasets
of only thermal video data.

The last part of this paper presents an initial study for
a non-intrusive method of estimating energy expenditure
during sports. Using a treadmill experiment we show a linear
correlation between optical flow measurements and oxygen
uptake, which is the traditional way of measuring energy
expenditure. This work will be continued for investigating
the possibilities of extending the method for analysis of
free movement in a sports arena. For this purpose, the
influence of several challenges will have to be further
researched; Going from treadmill running to free movement
will result in changing pose and different viewing angles of
the body, which has not been considered in the method yet.
Furthermore, when observing several people participating in
an activity, occlusions between people need to be considered.
To limit the amount of occlusions, the camera can be
mounted at a higher location. However, this will result in
a non-perpendicular angle to the bodies. Possible solutions
for both setup and methods will be the next research topic

1http://www.vap.aau.dk/dataset/

related to this project.
The work presented in this paper has mainly considered

the global behaviour observed in a sports arena. With our
latest research in energy expenditure we move towards
analysis of the individual people participating in sports
activities. From here, we start to reach an area which might
be interesting to both athletes, coaches, and broadcasters of
professional sports, as well as professionals working with
exercise intensity during physical education.
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