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Abstract—In this paper, we provide a comprehensive analysis
of periocular-based sex-prediction (commonly referred to as
gender classification) using state-of-the-art machine learning
techniques. In order to reflect a more challenging scenario
where periocular images are likely to be obtained from an
unknown source, i.e. sensor, convolutional neural networks are
trained on fused sets composed of several near-infrared (NIR)
and visible wavelength (VW) image databases. In a cross-
sensor scenario within each spectrum an average classification
accuracy of approximately 85% is achieved. When sex-prediction
is performed across spectra an average classification accuracy of
about 82% is obtained. Finally, a multi-spectral sex-prediction
yields a classification accuracy of 83% on average. Compared
to proposed works, obtained results provide a more realistic
estimation of the feasibility to predict a subject’s sex from the
periocular region.

Index Terms—Biometrics, soft biometrics, periocular recogni-
tion, sex-prediction, gender classification

I. INTRODUCTION

In the recent past, periocular biometrics, which refers to the
externally visible skin region of the face that surrounds the eye
socket, has been introduced for recognition purposes [1], [2].
In many cases periocular recognition has been employed to
augment the biometric performance of (VW) iris recognition
in unconstrained environments, e.g. in mobile or surveillance
scenarios. However, with the rise of deep learning in biomet-
ric technologies periocular recognition has gained practical
biometric performance, too [3], [4]. Moreover, it has been
demonstrated that the periocular region can be used to reliably
predict soft biometric attributes [5], [6]. Such attributes, e.g.
an individual’s sex, can be employed to glean demographic
information or improve or expedite recognition capabilities
in conjunction with primary biometric characteristics [7]. In
particular, sex-prediction turns out to be a pre-processing step
in a biometric system with many applications ranging from
forensic analysis to database binning, see Fig. I.

In past years, researchers have demonstrated that diverse
soft-biometric attributes can be obtained from (peri-)ocular
images. Eye colour which can be naturally gleaned from an iris
images acquired in visible band of light has been utilized as
additional source of information in different approaches, e.g. in

Fig. 1. Different application scenarios where sex-prediction from periocular
images can be applied.

[8], [9]. The existence of further soft biometric features in the
iris pattern, such as a subject’s sex, age or ethnicity, has been
analyzed in various works [10]–[14]. However, it is generally
conceded that these attributes can be extracted more reliably
if parts of the periocular region are additionally available [12],
[15]–[17].

Focusing on sex-prediction from periocular biometrics the
vast majority of proposed approaches combines general pur-
pose texture descriptors such as local binary patterns in
conjunction with machine learning-based classifiers, e.g. [12],
[15]. Moreover, the application of deep neural networks for
the task of sex-prediction from (peri-)ocular images has been
investigated recently [16], [17]. Even for the binary classifica-
tion problem of sex-prediction deep neural networks require
a sufficient amount of labeled training images to achieve
practical classification accuracy. However, the amount of pub-
licly available (peri-)ocular image datasets which comprise sex
labels is very limited, i.e. in most cases to rather unbalanced
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TABLE I
MOST RELEVANT APPROACHES TO SEX-PREDICTION FROM PERIOCULAR IMAGES.

Authors Approach Database Spectrum Accuracy Remarks
Merkow et al. [15] LBP with SVM retrieved from Flickr (936 imgs.) VW 79.6% private DB

Bobeldyk and Ross [12] BSIF with SVM BioCOP (1,720 imgs.) NIR 85.7% private DB
Tapia and Aravena [17] CNN GFI UND [18] NIR 89.0% –
Kuehlkamp et al. [16] CNN GFI UND [18] NIR 66.0% –

Ours CNN 10 public DBs (>15,000 imgs.) VW and NIR 86.6% –

Fig. 2. Examples of female (top) and male (bottom) NIR and VW ocular images of different employed databases; from left to right: CASIA-DISTANCE,
GFI-UND, CROSS-EYED, MOBBIO, MICHE, UTIRIS.

sets of less than a hundred female and male subjects. While
promising classification accuracy has been reported for the
task of sex-prediction from the periocular region, existing
studies are primarily conducted on datasets of distinct format
acquired with a single sensor, see Table I. That is, related
works restrict to scenarios in which system is presented with
images from a single source. This means, information such as
image type, format, or sensor are assumed to be known and
according training data is used.

The increasing popularity of (peri-)ocular biometrics leads
to a continuous development and upgrade of sensors, respec-
tively. Differences among multiple types of sensors such as
optical lens and illumination wavelength yield certain cross-
sensor variations which might lead to reduced biometric per-
formance [19], [20]. A re-enrolment of subjects every time
a new sensor is deployed is expensive and time-consuming,
especially in large-scale applications. This fact motivated
the proposal of diverse approaches which aim at improving
the biometric performance of cross-sensor ocular recognition
systems, e.g. in [21], [22]. In addition, the case in which the
spectrum of the image acquisition changes, i.e. from NIR
to VW and vice versa, has been considered, e.g. in [23],
[24]. It was found that the recognition accuracy significantly
decreases in such a scenario. Regarding cross-spectral soft
biometric feature extraction based on (peri-)ocular images, it
was recently shown that eye colour might be predicted from
NIR ocular images [25].

In this work, sex-prediction from periocular images is
performed employing convolutional neural networks (CNNs)
which represent the current state-of-the-art for the extraction
of soft-biometric features [7]. In order to obtain labeled sex-
balanced training datasets of sufficient size multiple publicly

available NIR and VW image databases are fused. At the
same time, training on multiple images sources, acquired in
various formats using different NIR and VW sensors, allows
for a deeper analysis with respect to robustness in a cross-
sensor scenario within the NIR and VW spectrum. In addition,
the generalizability of the proposed sex-prediction systems is
investigated in a cross-spectral scenario, which means that
the training procedures are performed on fused datasets of
NIR and/or VW images and evaluations are performed on
VW and/or NIR images, respectively. Hence, we perform sex-
prediction based on (peri-)ocular images considering challeng-
ing classification scenarios across multiple sensors and spectra
employing state-of-the-art machine learning techniques. In
contrast to existing studies, which suffer from aforementioned
limitation, the proposed study reflects scenarios where the
image source of a (peri-)ocular images might be unknown
to system, which can be the case in a real-world scenario.
To the authors’ knowledge there exist no works on cross-
sensor, cross-spectral or multi-spectral sex-prediction from
(peri-)ocular images.

This paper is organized as follows: The databases used in
this study are summarized in detail in Sect. II. Employed
CNN-based sex-prediction methods are described in Sect.
III. Obtained results are reported and discussed in Sect. IV.
Finally, conclusions are drawn in Sect. V.

II. DATABASES

Generally speaking, publicly available (peri-)ocular biomet-
ric databases were mostly created to facilitate the development
of recognition algorithm. Hence, said VW and NIR databases
commonly comprise multiple ocular images per data subject
acquired within one or across several sessions. Unfortunately,



TABLE II
NIR DATABASES: F REPRESENTS THE NUMBER OF FEMALE IMAGES AND M THE NUMBER OF MALE IMAGES.

Dataset Resolution No. Images No. Subjects F M Sensor
CASIA-DISTANCE [26] 250×200 (cropped) 2,567 141 53 88 LMBS

CROSS-EYED [24] 400×300 1,920 120 41 79 n.a.
GFI UND [18] 640×480 3,000 1,500 750 750 LG 4000
UND VAL [18] 640×480 1,944 324 149 175 LG 4000

UTIRIS [27] 1,000×776 389 79 13 66 ISG LW

TABLE III
VW DATABASES: F REPRESENTS THE NUMBER OF FEMALE IMAGES AND M THE NUMBER OF MALE IMAGES; (*) ONLY LEFT IMAGES AVAILABLE.

Dataset Resolution No. Images No. Subjects F M Sensor(s)
CROSS-EYED [24] 400×300 1,920 120 41 79 n.a.

UTIRIS [27] 1,000×776 389 79 13 66 Canon EOS 10D

CSIP(*) [28] var. res. 2,004 50 9 41 Xperia ArcS, iPhone 4,
Th.I W200, Hua U8510

MOBBIO [29] 250×200 800 100 29 71 Asus Eee Pad Transformer TE300T
MICHE [30] 1,000×776 2,732 92 26 76 iPhone 5 (subset)

many available databases do not provide soft-biometric at-
tributes like the sex of data subjects. Due to this reason,
the creation of a labeled large-scale ocular image database
including sex information, which is necessary to properly train
machine learning-based classifiers, represents a challenging
tasks.

The databases used in this study are listed in Table II for
NIR spectrum and Table III for VW, respectively. Sample
images of NIR as well as VW ocular images are shown in Fig.
2. Note, that the amount of periocular information present in
the processed images may vary. Also the spectral band may
vary for NIR images. Since images are directly used for the
task of sex-prediction all images are referred to as periocular
images. While NIR images are mostly acquired under more
constrained conditions, VW images show higher variations in
the capture process. For some of the employed databases,
e.g. GFI UND or UND VAL, sex information is available.
For others, e.g. CROSS-EYED or UTIRIS, sex information
is available upon request. Eventually, remaining databases,
e.g. CASIA-DISTANCE or MOBBIO, were manually labeled
based on (corresponding) face images. In case only face im-
ages were available within databases, e.g. CASIA-DISTANCE
or MICHE (iPhone 5), the OpenCV 2.10 eye detector was
employed to automatically detect and crop the left and right
ocular regions. Images where the eye detector failed were
deleted from the database. Another alternative to obtain a
sufficiently large database of periocular images with sex-labels
would be to process further face databases for which these
labels are available.

In order to provide a uniform (and compact) image format
for the sex-prediction algorithm during training, all images
(NIR and VW) are cropped and re-scaled to the minimum
available image resolution, i.e. 250×200 pixels for the MOB-
BIO database (see Table III). Cropping is performed to retain
the aspect ratio of each image, such that stretching of images
is prevented. Finally, VW images are converted to grayscale.
On the one hand, a simple grayscale conversion is applied, on

the other hand, the red channel is extracted. The latter method
is motivated by the fact that the red color spectrum is nearer to
the NIR spectrum. That is, the use of red channel information
only is expected to facilitate the cross-spectral performance of
a sex-prediction algorithm.

III. CNN-BASED SEX-PREDICTION

Three different ways of how to obtain a CNN-based sex-
prediction algorithm are described in the following subsec-
tions1: (1) training a CNN from scratch, (2) using the so-
called bottleneck features of a pre-trained network and (3)
fine-tuning the top layers of a pre-trained network. The latter
two approaches represent instances of transfer learning [31].
In transfer learning, a base network is trained on a base dataset
and task, and then the learned features are reused or transferred
to a second target network to be trained on a target dataset and
task. This process is expected to work if the features learned
on the base dataset are general, meaning suitable to both, base
and target tasks.

A. Training from Scratch

Firstly, CNNs are trained with different filter sizes from
scratch using a small learning rate of 10−5, such that each
new set of fully connected layers can start learning patterns
from the previously learned convolutional layers at an early
point. The weights were randomly initialized with 100 epochs.
Optionally, the rest of the network might be unfrozen before
continuing training. The resulting small CNN network can be
seen as baseline system.

In order to obtain an optimal set of network parameters
a large amount of training data is needed for this approach.
Moreover, when training CNNs from scratch a huge of com-
puting resources might be required.

1details of CNN-based classifiers are summarized according to the guide-
lines provided by the IEEE Signal Processing Society



B. Transfer Learning

When the target dataset is significantly smaller than the base
dataset, transfer learning can be a powerful tool to enable
training a large target network without overfitting. Recent
studies have taken advantage of this fact to obtain state-
of-the-art results when transferring from higher layers [31],
collectively suggesting that these layers of neural networks do
indeed compute features that are fairly general.

Training data of another domain might be in a different
feature space or follow a different data distribution. However,
the amount of training data is sufficiently large and the
resulting network can be directly used or fine-tuned for the
task of sex-prediction from periocular images.

1) Bottleneck features: Within this approach the bottleneck
features of a pre-trained network (VGG-19) are leveraged.
This approach is motivated by the fact that such a pre-trained
network is expected to have learned features that are useful for
diverse pattern recognition problems. In particular, the VGG-
19 architecture is trained on the ImageNet dataset which con-
tains a total number of merely 1,000 different classes. Hence,
these models are not expected to have learned (peri-)ocular
features that are relevant to the sex-prediction problem. In fact,
it is not possible to merely record the soft-max predictions of
the model over the analyzed data rather than the bottleneck
features in order to solve the said classification problem.
However, a model trained on a large dataset will contain many
learned basic features like edges, spots, ridges or horizontal
lines that might be transferable to the periocular datasets.
Only the convolutional part of the model is instantiated, i.e.
everything up to the fully-connected layers. Subsequently, the
model is run on our training and test data once, recording
the output in two arrays, i.e. the ”bottleneck features” from
the VGG-19 model (the last activation maps before the fully-
connected layers). Then we trained a small fully-connected
model on top of the stored features. The reason why we
are storing the features off-line rather than adding our fully-
connected model directly on top of a frozen convolutional
base, is computational efficiency. Obviously, the usefulness
of employed bottleneck features will highly depend on their
generality. Hence, this approach will work in case the features
required for robust sex-prediction from periocular images are
fairly general.

2) Fine-tuning: Finally, fine-tuning allows to apply pre-
trained networks to recognize classes that they were not
originally trained on. This method can lead higher accuracy
compared to regular feature extraction methods. Therefore, the
last convolutional block of the VGG-19 model is “fine-tuned”
alongside the top-level classifier [32]. In the proposed study,
fine-tuning, which represents a type of transfer learning, is
performed in three steps: (a) instantiate the convolutional base
of VGG-19 and load its weights; (b) add the previously defined
fully-connected model on top, and load its weights; (c) freeze
the layers of the VGG-19 model up to the last convolutional
block. Fine-tuning is done with a very slow learning rate, too.
The SGD optimizer is used rather than an adaptive learning

rate optimizer, e.g. RMSProp. This is done to make sure that
the magnitude of the updates remains very small, so not to
suppress the previously learned features. The learning rate of
the SGD value was set-up to 10−5 and the momentum of 0.8.

In summary, fine-tuning aims at avoiding the aforemen-
tioned limitations of insufficient amount training data in case
of training a CNN from scratch and the incapacity of features
of pre-trained CNNs.

IV. EXPERIMENTS

In the following subsections, the experimental protocol, the
applied data augmentation and the proposed CNN-based sex-
prediction scheme are described in detail. Subsequently, ob-
tained results are reported and discussed. All experiments were
conducted using the Python open-source libraries Theano2 and
Keras3.

A. Evaluation Protocol

As previously mentioned, the proposed study aims at an-
alyzing the generalizability of state-of-the-art algorithms for
sex-prediction from periocular images. We investigate the
following scenarios:
• Cross-sensor: sex-prediction algorithms are trained on

fused datasets of NIR or VW ocular images acquired
by different types of sensors in various formats. Subse-
quently, testing is performed within the same spectrum.

• Cross-spectral: sex-prediction algorithms trained in the
above scenario are evaluated using test images of the
other spectrum, i.e. algorithms trained on NIR images are
tested on VW images and vice versa. The cross-spectral
scenario might be seen as a special cross-sensor case in
which the type of sensor changes.

• Multi-spectral: sex-prediction algorithms are trained on a
fused dataset of NIR and VW ocular images acquired by
different types of sensors in various formats. Accordingly,
the test set comprises images of both spectra.

Moreover, it is important to note the partitioning of training
and test sets. To achieve a fair and meaningful comparison
between the tested methodologies, each NIR and VW is
divided as follows: for each employed database the images of
50% of female subjects and the same amount of male subjects
were selected for model training. Due to the fact that all used
databases comprise more male than female subjects (M>F),
a balanced training set is pre-selected. The remaining images
are used for the test set. Members of subsets were randomly
selected.

The described procedure leads to a training set of 2,025
female and male NIR periocular images and a test set of 2,004
female and 4,035 male NIR periocular images. Similarly, a
training set of 1,092 female and male VW periocular images
and a test set of 1,017 female and 4,235 male images is
obtained. The same partitioning of datasets is applied in
experiments where only the red color channel is used during
grayscale conversion.

2http://deeplearning.net/software/theano/
3https://keras.io/backend/

http://deeplearning.net/software/theano/
https://keras.io/backend/


TABLE IV
PERFORMANCE OF THE SEX-PREDICTION ALGORITHMS IN DIVERSE SCENARIOS: ACC REPRESENT ACCURACY OF SEX-PREDICTION TRAINED FROM
SCRATCH; ACC-DA REPRESENT ACCURACY WITH DATA-AUGMENTATION TRAINED FROM SCRATCH; RED REFERS TO VW IMAGES WHERE THE RED

CHANNEL IS EXTRACTED; TWO RIGHTMOST COLUMNS SUMMARIZE TRANSFER LEARNING APPROACHES.

Scenario Dataset ACC (%) ACC-DA (%) VGG-19
Training Test Bottleneck (%) Fine-tuning (%)

Cross-sensor
NIR NIR 67.55 71.95 78.40 80.90
VW VW 68.15 72.05 77.65 85.90
RED RED 69.75 77.59 83.40 88.90

Cross-spectral

NIR VW 68.50 71.80 75.60 78.30
VW NIR 68.65 72.35 70.25 72.25
NIR RED 65.60 73.45 85.45 91.90
RED NIR 65.50 67.25 71.50 79.90
VW RED 65.70 71,25 71.45 70.85
RED VW 68.45 72.15 75.50 87.45

Multi-spectral

NIR-VW NIR-VW 68.25 71.45 73.45 77.95
NIR-RED NIR-RED 68.50 72.45 81.30 85.30
VW-RED VW-RED 70.65 75.35 79.60 81.65

VW-RED-NIR VW-RED-NIR 74.65 79.15 84.25 86.60

Fig. 3. Examples images resulting from the data augmentation process used
in the training stage of the CNN models.

B. Data Augmentation

To artificially increase the number of training images, and
thus the robustness of the developed CNN models, an image
generator function was used. With respect to the investigated
classification problem the following geometric transformations
have been identified as most relevant: image rotation within a
range of 5 degree, image shifts with range of 20% and a zoom
range within 10%. All image modification are performed using
a ’Nearest’ fill mode. Furthermore, mirroring was applied
since both, left and the right peri-ocular images to extend
the training sets. The process of data augmentation is shown
in Fig. 3 for a single NIR ocular image. By applying data
augmentation a fix-fold increase of all datasets is achieved.

C. Sex-Prediction from Periocular Images

In the proposed sex-prediction algorithm CNN-based mod-
els are trained with 100 epochs using the network architecture
shown in Fig. 4. The number of images available to train a
CNN from scratch is limited and in order not to overtrain a low
number of layers based on Lenet-5 was chosen. The number
of layers (from 2 up to 5) and a trade-off with the number
of filters and sizes of the kernels were analyzed. The results
reported in the paper represent the best parameters for the

Fig. 4. Architecture of employed CNN comprising four convolutional layers.

classification task. The four subsequent convolutional layers
are defined as follows:

1) Conv1 filters of size 1 × 10 × 10 pixels are applied to
the input in the first convolutional layer, followed by
a rectified linear operator (ReLU), a max pooling layer
taking the mean value of 2 × 2 regions with two-pixel
strides and a local response normalization layer.

2) Conv2 filters of size 1 × 15 × 15 pixels are applied to
the input in the second convolutional layer, followed by
a rectified linear operator (ReLU), a max pooling layer
taking the mean value of 2 × 2 regions with two-pixel
strides and a local response normalization layer.

3) Conv3 filters of size 1 × 20 × 20 pixels are applied to
the input in the third convolutional layer, followed by
a rectified linear operator (ReLU), a max-pooling layer
taking the mean value of 2 × 2 regions with two-pixel
strides and a local response normalization layer.

4) Conv4 filters of size 1 × 10 × 10 pixels are applied to
the input in the fourth convolutional layer, followed by
a ReLU operator, a max pooling layer taking the mean
value of 2×2 regions with two-pixel strides and a local
response normalization layer.
A final connected layer is then defined by:

5) A flatten connected layer that receives the output of the
fourth convolutional with 864 neurons and a Dense layer
that contains 300 neurons followed by ReLU.

6) Finally, the output of the last Dense layer is fed to a
sigmoid layer that assigns a probability for each class.



The prediction itself was made by taking the class with
the maximal probability for the given test image.

D. Performance Evaluation

Table IV summarizes obtained results in terms of correct
classification rate for the CNN-based sex-prediction algorithms
in various scenarios. Best obtained performance for distinct
scenarios and training techniques are marked bold. As can be
seen, classification accuracies are similar to those reported in
related works, cf. Table I. Interestingly, no significant decrease
in classification accuracy can be observed between the cross-
sensor and cross-spectral scenario (approx. 65-70%), where
the latter is generally conceded as more challenging. This
could imply that sex information is similar across spectra.
Further, competitive results are obtained in the multi-spectral
scenario, in particular for VW-RED-NIR, where all training
sets are combined. This can be explained by the increase
in training data. That is, sex information does not seem
to be more pronounced in a single spectrum. Moreover, it
can be observed that for each scenario the best results are
mostly achieved if the training is performed on NIR images.
Compared to VW images, NIR images are acquired under
more constrained conditions which can be the reason for this
performance gain.

The performance of the CNN which has been trained from
scratch is generally inferior compared to the remaining training
techniques, since the number of labeled images available was
small. Hence, even when an increased number of convolutional
layers is used classification accuracy is not improved. Data-
augmentation improved the performance in all scenarios even
though the degree of data-augmentation was kept small in
order not over-trained the CNN models. Focusing on the
use of bottleneck feature from a pre-trained network for sex
prediction, in the cross-sensor scenario result can be sig-
nificantly improved (approx. 77-84%). Similar improvements
are achieved in the multi-spectral scenario and for individ-
ual configurations of the cross-spectral scenario. Fine tuning
further enhances the classification performance achieving best
sex-prediction accuracy in all considered scenarios. Obtained
results suggest, that cross-sensor, cross-spectral and multi-
spectral sex-prediction is feasible. As expected, an increased
training set leads to improved classification accuracy, which
is observed for the multi-spectral scenario.

In order to show the activation maps of the best model
of VGG-19 with the transfer learning approach, we used the
gram-cam visualization proposed in [33]. Examples of VW
and NIR images and the resulting activation maps are shown
in Fig. 5. It is found that activation maps are very similar
for NIR and VW images, especially for VW and RED the
activation maps are almost identical. This further supports the
claim that sex-related information is similar across different
spectra. It can be observed that for the depicted examples
upper and lower eyelid parts carry most important features for
sex-prediction. Obviously, the presence of mascara, eyeshadow
or eyeliner in those parts of the periocular region is a strong
indicator for an image to stem from a female subject. Similarly,

images containing thick eyebrows are more likely to stem from
male subjects. Such soft-biometric features within the perioc-
ular region are vital for robust sex-prediction. Nevertheless, it
is important to note that subjects can take influence on said
features and classification performance is expected to drop if
these are absent [16].

V. CONCLUSION

In many biometric research areas the application of deep
neural networks has revealed significant improvements. This
work analyses the generalizability of CNN-based algorithms
for sex-prediction from periocular images. By analyzing
various realistic application scenarios (as apposed to many
published approaches) it is shown that CNN-based sex-
prediction algorithms are capable of classifying periocular
images in cross-sensor, cross-spectral and multi-spectral sce-
narios where the application of data augmentation and transfer
learning reveals competitive classification accuracy. Taking
into account that in many use-cases the left and right periocular
region of a data subjects will be available, the robustness
of CNN-based sex-prediction algorithms suggests that the
periocular region is a suitable biometric source for predicting
a subject’s sex.
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