

Aalborg Universitet

A Shared Pose Regression Network for Pose Estimation of Objects from RGB Images

Bengtson, Stefan Hein; Åström, Hampus; Moeslund, Thomas B.; Topp, Elin A.; Krueger,
Volker
Published in:
2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

DOI (link to publication from Publisher):
10.1109/SITIS57111.2022.00022

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Bengtson, S. H., Åström, H., Moeslund, T. B., Topp, E. A., & Krueger, V. (2023). A Shared Pose Regression
Network for Pose Estimation of Objects from RGB Images. In K. Yetongnon, A. Dipanda, & L. Gallo (Eds.), 2022
16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) (pp. 91-97).
Article 10090077 IEEE. https://doi.org/10.1109/SITIS57111.2022.00022

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 27, 2024

https://doi.org/10.1109/SITIS57111.2022.00022
https://vbn.aau.dk/en/publications/463475e1-d4c0-48f1-b1b5-fbafc71577b4
https://doi.org/10.1109/SITIS57111.2022.00022

A Shared Pose Regression Network for
Pose Estimation of Objects from RGB Images

1st Stefan Hein Bengtson1

3rd Thomas B. Moeslund
Department of Architecture, Design, and
Media Technology, Aalborg University

Visual Analysis and Perception (VAP) Laboratory
Pioneer Centre for AI, Denmark

Aalborg, Denmark
1shbe@create.aau.dk

2nd Hampus Åström2

4th Elin A. Topp
5th Volker Krueger

Department of Computer Science, Lund University
Robotics and Semantic Systems

Lund, Sweden
2hampus.astrom@cs.lth.se

Abstract—In this paper we propose a shared regression net-
work to jointly estimate the pose of multiple objects, replac-
ing multiple object-specific solutions. We demonstrate that this
shared network can outperform other similar approaches that
rely on multiple object-specific models by evaluating it on the T-
LESS dataset using the VSD (Visible Surface Discrepancy). Our
approach offers a less complex solution, with fewer parameters,
lower memory consumption and less training required. Further-
more, it inherently handles symmetric objects by using a depth-
based loss during training and can predict in real-time. Finally,
we show how our proposed pipeline can be used for fine-tuning a
feature extractor jointly on all objects while training the shared
pose regression network. This fine-tuning process improves the
pose estimation performance.

Index Terms—pose estimation, symmetry, CAD model, differ-
entiable rendering, robotics

I. INTRODUCTION

6D pose estimation entails identifying both the orientation
and position of an object. These two pieces of information are
useful in multiple scenarios, for instance, the pose of an object
could be used for a robotic manipulator to infer possible ways
to interact with that object such as grasping.

One aspect that complicates the process of pose estimation
is the presence of symmetries in some objects, making it
hard or impossible to distinguish some poses from each other.
This is exemplified in the T-LESS dataset [1], which features
multiple highly symmetric objects, as shown in Fig. 1. The
problem of symmetries is further complicated for the type of
objects found in T-LESS, as they lack textures that could help
resolve such ambiguities.

Another important aspect of pose estimation is the context
in which it is used, as there is often a trade-off between the
accuracy of the estimates and the inference time. For instance,
an approach [2] can produce highly accurate pose estimates
but require several seconds to process a single image crop.
This will not be ideal for some robotic applications, like bin-
picking, where speed is key. Spending several seconds per
object in a scene such as the ones shown in Fig. 1, would for
many applications be unacceptable. In such a scenario it may

Fig. 1: Four scenes from the T-LESS dataset [1] containing
highly symmetric objects without any texture. The dataset
contains a total of 30 objects across 20 scenes.

be more preferable to use an approach capable of running in
real-time at the cost of a lower pose estimation accuracy [3].

This paper concerns the cases where speed is of the essence.
Currently, one of the fastest [3], [4] approaches rely on a
codebook-based approach [5] which can achieve a high frame
rate in most scenarios, making it applicable for purposes re-
quiring real-time execution. This approach has been improved
by replacing the codebooks by small object-specific pose
regression networks [6], while relying on a pre-trained feature
extractor from the previous approach. By using these small
regression networks, pose estimation performance is increased
and memory consumption is reduced, while maintaining a low
inference time. Another benefit of these approaches is that they
implicitly account for any symmetries that an object might
have by considering the visual similarity of the object when
comparing poses.

In this paper we show how a single shared pose regression
network can replace multiple object-specific networks [6].
While doing so, we not only improve pose estimation per-
formance, but also reduce complexity, memory consumption
and training time.

The main contributions of this paper are:
• We propose a single shared pose regression network,

replacing multiple separate object-specific networks. This
reduces training time and memory consumption.

• We evaluate our method against two other approaches,
multiple object-specific networks and multiple object-
specific codebooks.

• We show that fine-tuning the pre-trained feature extractor
improves the shared networks pose estimation perfor-
mance noticeably.

• We show that a shared network can reduce training data
needed by a third and memory usage by half, while
running in real time and slightly improving VSD recall.

II. RELATED WORK

Traditional methods relying on handcrafted descriptors have
been successful in the area of pose estimation in the recent
decade, with many of these methods relying on depth informa-
tion for calculating hand-crafted features based on 3D points
[7], [8]. These extracted features are used in various matching
and voting schemes in order to produce pose estimates to align
the input data with predefined models of the objects. However,
computing these features and the matching process are often
quite computationally heavy, and it can take several seconds
to process a single object.

More recent approaches for pose estimation harness the
power of deep learning to produce pose estimates directly from
RGB images of the objects of interest [9], [10]. The drawback
of these approaches is the huge amount of training required,
which prompts the need for massive amounts of training data
and expensive computing power.

Furthermore, the process of training these approaches may
also prove troublesome for objects with symmetries due to the
resulting pose ambiguities. For instance, training samples may
be labeled as having widely different poses despite looking
visually very similar due to symmetries, such as in Fig. 2a
and 2b. Some approaches try to counteract this issue by relying
on pre-defined symmetries for each object, such that the pose
with lowest error is always chosen from the set of symmetric
poses [9], [10]. However, some symmetries are not easily pre-
defined as they might occur due to occlusion as illustrated in
Fig. 2c. Furthermore, identifying pre-defined symmetries often
relies on a manually selected threshold specifying whether two
poses are similar enough to be considered symmetric [4], [9].
This approach does hence fail to encompass the strength of
the symmetries, for instance, how visually similar two poses
might be. For instance, the poses in Fig. 2a and 2b may or
may not be considered a symmetry depending on how this
threshold is set.

Yet another solution is to avoid the issues of symmetries by
confining the set of poses in the training data such that any
symmetries are avoided altogether [11], [12]. This approach is
similar to relying on pre-defined symmetries, as it also relies
on specific knowledge about the symmetries of each object
beforehand and therefore will fail to encompass symmetries
caused by occlusion.

(a) Rotation: 0o. (b) Rotation: 180o. (c) Occluded.

Fig. 2: Examples of the same object in multiple poses. The
poses depicted in a) and b) appear visually similar despite
a difference of 180o due to the semi-symmetric nature of
the object. Finally, the object in c) is occluded causing the
remaining visible part to have a high visual similarity with
the poses depicted in both a) and b).

A lot of these problems related to symmetric objects can
be avoided by focusing on the visual similarity of the object
in the different poses instead of focusing on the actual poses.
Examples of such includes using a codebook-based approach
to identify visually similar poses [5] or training a model to
predict poses which just has to be visually similar to the
ground truth pose [6]. Both of these approaches can implicitly
handle symmetric objects and do hence not require pre-defined
symmetries for each object.

Recently, pose estimation methods have started to rely on
deep learning for solely extracting local feature descriptors
across an RGB image of an object. These local descriptors
are then used to estimate the pose of the object by solving
the PnP (Perspective-n-Point) problem in a RANSAC-like
fashion [2], [3], [13]. The actual process of estimating the
pose is hence not part of the training of the DNN (deep
neural network) thereby avoiding the issue of pose ambiguities
caused by object symmetries while achieving state-of-the-art
pose estimation performance [2]. However, the process of
estimating the pose from these local descriptors is often a
slow process which could take several seconds per object,
just like some of the traditional approaches based on hand-
crafted 3D features [7], [8]. These approaches relying on local
features are hence either impractical or infeasible for real-time
applications.

Approaches with a decent pose estimation performance but
with low inference time are hence still needed [3]. This is
especially important in scenarios where real-time execution is
important, which is often the case for e.g., robotic applications.
Using a codebook-based approach [5] can easily achieve a
frame rate of over 20 FPS in most scenarios, making it
applicable for purposes requiring real-time execution. This
approach was subsequently further improved by replacing the
codebooks by small object-specific pose regression networks
[6] which preserved the low inference time while reducing
memory usage and increasing the pose estimation performance
as well.

III. METHOD

The work in this paper is based on an approach relying
on multiple object-specific pose regression networks [6] and

Shared Pose
Regression

Networkfe
a
tu

re

Encoder fc

Pose
Regression
Network n

Pose
Regression

...

Pose
Regression
Network 1

fe
a
tu

re

Encoder..
.

..
.

..
.

Image crops Predicted poses

MULTIPLE OBJECT-SPECIFIC NETWORKS

SINGLE SHARED NETWORK

Fig. 3: Top: Multiple object-specific pose regression networks are trained independently of each other [6]. These networks rely
on a shared feature extractor in the form of the pre-trained encoder [5]. Bottom: We propose to replace all these object-specific
networks with a single shared pose regression network. Furthermore, we suggest fine-tuning the last fully-connected layer of
the pre-trained encoder while training the shared network jointly on all objects.

shows how this approach can be improved and simplified by
replacing the many object-specific networks with one shared
pose regression network, as shown in Fig. 3. We show that it
is possible to train this single shared pose regression network
for all the objects while simultaneously increasing the overall
performance. Both approaches are based on the same feature
extractor, in the form of the pre-trained encoder from a
codebook-based approach [5]. This paper also includes an
exploration of the benefits of fine-tuning parts of the pre-
trained encoder for the pose regression task, while training
the shared network.

The proposed method assumes input from an object detector
in terms of a bounding box and an associated object ID. This is
similar to the codebook-based approach [5] and the approach
using multiple object-specific networks [6].

A. Network Architecture

The structure of the proposed shared pose regression net-
work is illustrated in Fig. 4. The first part of the network
resembles the object-specific networks [6], where a pre-trained
encoder from the codebook-based approach [5] is used as
a feature extractor for the network. The input for the pose
regression part of the network is thus the latent space produced
by this encoder. The size of this feature vector, or latent space,
is set at 128 as this is considered optimal in previous work
[5].

We propose to fine-tune the last fully-connected layer of the
encoder based on the hypothesis that it could provide a better
feature representation for doing pose estimation later on. This
fine-tuning of the encoder is done while training the shared
pose regression network.

During training, synthetic RGB images of various objects
in random poses are continuously rendered from CAD models

of the objects and used as training data [5]. This avoids the
issue of having to provide massive amounts of hand-labeled
data while training the network, and have proven to generalize
well to real data [5], [6].

Each of the estimated poses are represented using a 6D
vector, as previous studies have shown that it is more stable
for pose regression tasks than other representations such as
quaternions and rotation matrices [14].

Finally, similar to the approach relying on multiple object-
specific pose regression networks [6], only the orientation
of the object is estimated by the network. Estimating the
translation of the object is not included in the proposed
pipeline but can be done similarly to how it was solved in
connection to the codebook approach [5], or included as a
task for the shared network in future work.

The proposed shared network is able to predict poses for
multiple objects by expanding the size of the final output layer,
as illustrated in Fig. 4. The network therefore always outputs
a multi-pose [6] estimate for each of the k different objects,
where k is the number of objects the network is trained to
estimate poses for. Some of the weights in the final fully-
connected layer are therefor tied to a certain object and are
class specific, while the rest of the model is shared between
all the objects.

The size of the output layer in the proposed shared network
is scaled in a linear fashion with k. One drawback of this
approach is that the number of parameters in the model
will increase as the number of object categories increases.
However, this increase is negligible compared to the rest of the
pipeline. This can be seen in Section IV-B, where the overall
memory usage of the proposed approach is compared against
having multiple object-specific networks instead.

Training the proposed shared network relies on a masking

fc fc

Pose Obj
k

Pose Obj
2

Pose Obj
1

1
2

8

1
2

8

fcfc

fe
a
tu

re

Obj
1

Obj
2

Obj
k

..
.

Object ID
mask

L
o
s
s
 f
u
n
c
ti
o
n

8x8x512

16x16x256

32x32x256

64x64x128

Image crop

128

1
2

8

6
4fc fc

SHARED POSE
REGRESSION NETWORK

ENCODER
(pre-trained)

..
.

Estimated
poses

Fig. 4: The architecture of the shared posed regression network, including the pre-trained encoder used as feature extractor
[5]. The network is nearly identical to the original pipeline [6] and includes several skip connections as these were found to
increase performance. The exception is the final layer of the network which has been modified to output multi-pose estimates
for all the k different object categories, regardless of the class ID of the input. Additionally, a masking scheme is introduced
to ensure that only the estimated poses for the correct object ID is propagated further in the pipeline. It is assumed that the
object ID is available from a prior detection step.

scheme to ensure that only the predicted poses for the correct
objects are propagated to the loss function. This is illustrated
in Fig. 4, where only one of the pose estimates propagates
further to the loss function after applying the object ID mask.
This approach assumes that an object ID is provided from a
prior object detection step, both during training and inference,
in order to apply the mask correctly.

The actual loss is calculated by comparing depth maps of the
object in different poses in the same way as the individual pose
regression approach [6], as illustrated in Fig. 5. This depth-
based loss is heavily inspired by the VSD (Visible Surface
Discrepancy) metric [15], [16], that is commonly used in pose
estimation benchmarks. The idea is to render depth maps of the
different objects in the estimated poses and in the groundtruth
poses, respectively. These depth maps are then compared in
a pixel-wise approach to identify the visual similarity of the
estimated versus ground truth poses. The main motivation of
this approach is that it implicitly accounts for any symmetries
that the objects might have as the depth maps will look similar
in that case and hence incur a small error. These depth maps
are produced using differential rendering [17] in order to allow
back-propagation when training the shared pose regression
network.

Furthermore, each estimation consists of multiple hypothe-
ses in order to avoid getting stuck in local minima, which
can easily occur in this depth-based loss [6]. Each estimate
includes n hypotheses for each of the estimated poses along
with a predicted confidence for each hypothesis w1, ..., wn.
This is illustrated in Fig. 5, where n = 3. The final loss is
essentially then a weighted average amongst the different pose
hypotheses using the predicted confidences as the weights.
The parameter, γ, ensures that each pose hypothesis always
contributes a little to the loss, so that back-propagation updates

all hypotheses during training, and the regularization term,
Lpose, ensures that the multiple pose hypotheses do not
become too similar, which would defeat the purpose of the
multiple hypotheses [6]. Finally, this depth-based loss is only
used during training of the shared network. No depth maps
are rendered during inference.

IV. EVALUATION

Our approach is evaluated on the T-LESS dataset [1],
containing 30 objects that are characterized by a lack of texture
and by being highly symmetric. This combination, no texture
and many symmetries, is what makes this dataset challenging.

The network is trained on synthetic data using the same
scheme as in the original pipeline using multiple object-
specific networks [6] but with a fixed learning rate of = 0.001
instead of an adaptive one [18]. A fixed learning rate is used
as it allows training the network for an unknown amount
of epochs until it converges, since the adaptive learning
rate scheme originally used for training the object-specific
networks requires a fixed number of epochs that has to
be specified prior to training. The network is trained until
convergence, with 100,000 newly generated synthetic samples
each epoch. These samples are generated randomly from the
30 objects in the T-LESS dataset using the CAD models
supplied in the dataset.

The vertices of the CAD models are normalized so that
all objects have the same length along their respective largest
dimension. This normalization was found necessary in order
to avoid some objects dominating the training phase by being
bigger than other objects and therefore more likely to incur a
bigger loss. Such considerations, regarding some objects being
more dominant than others, is not a concern when training a
separate network for each object. All the other parameters used

O
b

j 2

O
b
j k

O
b
j 1

Shared Pose
Regression

Network

 Ground truth poses
(depth maps)

Pixel-wise
differences |d|

Input

Multi-Pose Depth-based Loss

Estimated poses
(depth maps)

CAD model

n poses

n
 c

o
n

fi
d

e
n

c
e

s
 w

Encoder

− =

...

Fig. 5: The depth-based loss [6] used when training the shared
pose regression network. It avoids any symmetry-related issues
by using rendered depth maps to measure the similarity of
poses. Multiple possible hypotheses are predicted for each
pose estimate to avoid getting stuck in local minima and the
final loss is a weighted average of these hypotheses using their
confidences as weights. The parameter, γ, ensure that each
hypothesis contributes to the loss so that it gets updated by
back-propagation. The regularization term, Lpose, is included
to incur a high loss if the pose hypotheses becomes to similar.

during training are identical to the ones used for training the
many object-specific pose regression networks [6].

The shared pose regression network described above is
evaluated in two variations; with and without fine-tuning of
the last layer in the encoder that provides the input to the
shared network. We hypothesize that fine-tuning the last layer
of the encoder used for feature extraction can increase the
performance of the shared pose regression network. Jointly
fine-tuning the encoder on all objects is easily done as only
one single shared network is trained.

As a comparison, we note that when training multiple
object-specific networks [6] it is complicated to jointly fine-
tune the encoder in a similar way. It may be possible to train
all the object-specific networks concurrently, in order to jointly
fine-tune the same encoder in the process. However, such an
approach is complex and requires hardware capable of training
the many networks concurrently; 30 networks in case of the T-

(a) 30PN [6]. (b) Ours +FT.

(c) 30PN [6]. (d) Ours +FT.

Fig. 6: Examples of pose estimates from the proposed shared
network and an approach using object-specific networks [6].
Using the different pose estimates, CAD models are plotted
on top of the images from the T-LESS test dataset. The
colorization is solely for illustration purposes.

LESS dataset. Alternately, a separate encoder can be fine-tune
for each specific object, but this increases the complexity of the
system, both in terms of parameters to be trained and in terms
of increased memory consumption. However, fine-tuning the
encoder in the context of the shared pose regression network
proposed in this paper does not incur any of the drawbacks
mentioned above and we can therefore evaluate this network
both with and without fine-tuning.

A. Results - Pose Estimation

We evaluate our approach on the T-LESS dataset using the
VSD metric [15], [16], both with (+FT) and without (÷FT)
fine-tuning of the encoder. Both are trained until convergence,
which is achieved at 200 epochs. Our approach is compared
against an approach using multiple object-specific pose re-
gression networks [6] and an approach using multiple object-
specific codebooks [5], as shown in Table I. Both ground truth
translations and object IDs are used during the evaluation, as
both the proposed approach and the multiple object-specific
networks approach [6] do not include translation estimation
nor object classification. This is done for all the evaluated
approaches to ensure a fair comparison.

From these results, it is clear that fine-tuning parts of the
encoder improves the performance noticeably as our approach
outperforms both the codebook-based approach [5] and the
object-specific model approach [6] on average, when fine-
tuning is included. Furthermore, the proposed approach also
results in the best performance for 15 out of the 30 objects
found in the T-LESS dataset. Without fine-tuning of the

TABLE I: VSD recall on the T-LESS dataset for our proposed
shared pose regression network. The results with (+FT) and
without (÷FT) fine-tuning of the encoder are reported along
with previously published results [6] for the object-specific
approaches using either 30 codebooks (30CB) [5] or 30 pose
regression networks (30PN) [6].

Object 30CB [5] 30PN [6] Ours +FT Ours ÷FT
01 37.82 51.84 54.00 41.2
02 51.88 63.74 62.12 54.88
03 62.87 71.53 73.03 60.25
04 56.00 62.66 67.14 56.9
05 77.18 80.82 76.26 68.47
06 68.04 66.71 72.27 55.99
07 65.18 65.68 57.16 50.5
08 63.11 61.21 55.21 49.1
09 68.96 55.66 53.24 51.87
10 58.55 54.14 55.79 31.7
11 52.15 51.48 48.09 42.23
12 62.19 56.58 54.45 47.79
13 63.56 64.21 69.19 59.36
14 57.29 63.01 67.89 59.57
15 64.91 66.37 71.98 56.3
16 75.82 73.16 78.25 71.91
17 76.62 77.72 76.77 73.79
18 71.26 62.71 61.97 53.26
19 51.19 54.15 57.50 44.89
20 40.71 35.96 43.71 33.4
21 43.25 43.31 47.63 35.1
22 38.15 32.03 37.62 22.08
23 39.18 56.68 55.50 45.58
24 58.97 61.93 63.64 56.93
25 69.86 63.08 63.71 52.62
26 57.94 58.87 60.24 55.22
27 68.09 77.62 69.28 74.67
28 68.06 73.33 69.23 69.52
29 76.43 80.67 83.48 77.68
30 77.81 83.41 87.42 82.42

mean 60.77 62.34 63.13 54.51

encoder, the shared pose regression network performs worse
than the other two approaches.

Examples of pose estimates produced using both the pro-
posed shared network and multiple object-specific networks
are shown in Fig. 6. In the first scene (Fig. 6a and 6b) the
predicted poses appear similar for most objects. Exceptions
are object 20 (red) and object 21 (orange) where the object-
specific models fail to produce feasible pose estimates. The
shared network, on the other hand, produces reasonable pose
estimates in both cases. Examples like these contribute to
the discrepancy in performance in Table I, where the shared
network performs the best on both these objects.

In the second scene (Fig. 6c and 6d) both approaches appear
to perform similarly on the objects in the front region of the
scene. Both approaches also struggle with object 10 (magenta,
top left) but this particular object is in general difficult, as seen
in the results reported in Table I. However, the pose prediction
from the two approaches differs for the group of objects in the
upper right corner, consisting of object 13 (orange), 14 (red),
15 (yellow) and 16 (green). In this case, the shared network

TABLE II: Summary of the main characteristics of our ap-
proach with fine-tuning (+FT) compared to using codebooks
[5] and multiple pose regression networks [6]. *The number
of training samples is not reported for the codebook-based
approach as only the encoder requires training and is assumed
to come pre-trained for all approaches.

Avg. VSD
recall

Inference
time

Memory
usage

Training
samples

30CB [5] 60.77 7.0ms 1365MB NA*

30PN [6] 62.61 6.2ms 33MB 60M

Ours +FT 63.13 6.4ms 16.6MB 20M

produces pose estimates which are better aligned with the input
images, particularly for the occluded objects where the multi-
network approach fails.

B. Results - Other Metrics

Besides the pose estimation recall improvement, the pro-
posed approach also reduces the complexity of the system by
using a single shared model instead of multiple different ones.
The number of parameters, the main contributor to memory
usage during inference, is reduced. In the case of the 30 objects
in the T-LESS dataset, the reduction in memory consumption
is ≈ 51% compared to multiple object-specific networks [6]
and ≈ 98% compared to using codebooks [5].

Additionally, using a single shared model reduces training
time. The proposed approach was trained for 200 epochs
with 100k samples each, amounting to 20 million samples
in total. For comparison, each object-specific pose regression
network was trained for 200 epochs with 10k samples each [6],
resulting in 2 million samples per object. Training 30 separate
pose regression networks thus requires three times as many
samples as the shared pose regression network.

Finally, it takes ≈ 6.4ms to estimate the pose of an object
during inference, for the proposed shared pose regression
network. This is comparable to the inference time for the ap-
proach using multiple object-specific networks (≈ 6.2ms) and
slightly better than the codebook-based approach (≈ 7.0ms).
Note that all the timings in terms of the inference time exclude
object detection, which is a necessary prior step for all three
approaches. Finally, all timings are measured using the same
hardware (i7-7700k and GTX1060). Thus, it is possible to
achieve a frame rate of 20 FPS in terms of the pose estimation
for scenes with 7 objects or less, even if all estimations are
done in sequence.

Finally, the different characteristics for the evaluated ap-
proaches are summarized in Table II. This includes both
pose estimation performance in terms of average VSD recall,
inference time, memory usage and number of samples required
during training, as discussed in detail in previous sections.

V. CONCLUSION

This paper proposes a shared regression network for pose
estimation of different objects, and shows that it can replace
approaches with several object-specific solutions. This shared
network is evaluated on the T-LESS dataset and a comparison
is made to estimators with multiple object-specific models,
either in the form of codebooks or pose regression networks.
Our approach achieved the highest overall pose estimation
recall by fine-tuning the pre-trainer encoder used for feature
extraction while training the shared network. This shared
network also offers a less complex solution, with fewer pa-
rameters and less memory usage, and it requires less training
than the method with multiple object-specific networks. We
do this while maintaining the main properties of the two other
approaches, as our method handles symmetric objects similarly
and has a low inference time, making it suitable for real-time
applications. These results indicate that our shared model is
preferable over approaches relying on multiple object-specific
solutions for pose estimation.

VI. FUTURE WORK

A way to improve the presented work could be to consider
temporal information, based on the main assumption that the
pose of an object does not change in a fraction of a second.
Either using various filters [19] or by integrating multiple
estimates, in the form of multiple view-points [9]. The benefits
of these approaches are promising given the low inference time
of the proposed approach, making it possible to produce many
pose estimates fast.

Another idea for future work is to include translation esti-
mation, which the approach presented in this work currently
lacks, just like the approach using multiple networks [6]. One
way could be to infer translation for objects from the size
of their bounding boxes in relation to the known size of the
objects, from, e.g., the CAD models. However, this approach
is very sensitive to noise in the bounding boxes and hence the
object detector used [5], [20]. This issue could be counteracted
by training a model to estimate adjustments to the bounding
box of each object [10].

Yet another avenue for further research could be to expand
the presented approach to also predict object IDs as it currently
relies on a prior object detection step for this information.
Estimating object IDs as part of the shared pose regression
network could be based on the idea of visual similarity from
depth renderings, just like the pose estimation. Doing so may
prove beneficial as wrong predictions in terms of the object
ID would be punished less harshly if the objects are visually
similar and vice versa.

Finally, it would be interesting to further explore the impact
of fine-tuning the pre-trainer encoder, as is essential for the
performance of the shared pose regression network in this
work. Exploring how similar fine-tuning would impact other
approaches is thus another obvious path for future work.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP).

REFERENCES

[1] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas, M. Lourakis, and X. Zabu-
lis, “T-LESS: An RGB-D dataset for 6D pose estimation of texture-less
objects,” WACV, 2017.

[2] R. L. Haugaard and A. G. Buch, “Surfemb: Dense and continuous
correspondence distributions for object pose estimation with learnt
surface embeddings,” 2021.

[3] T. Hodan, D. Barath, and J. Matas, “EPOS: Estimating 6d pose of objects
with symmetries,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, Jun. 2020.

[4] T. Hodaň, M. Sundermeyer, B. Drost, Y. Labbé, E. Brachmann,
F. Michel, C. Rother, and J. Matas, “BOP challenge 2020 on 6d object
localization,” in ECCV Workshops, 2020.

[5] M. Sundermeyer, M. Durner, E. Y. Puang, Z.-C. Marton, N. Vaskevicius,
K. O. Arras, and R. Triebel, “Multi-path learning for object pose
estimation across domains,” in CVPR, June 2020.

[6] S. H. Bengtson, H. Astrom, T. B. Moeslund, E. A. Topp, and V. Krueger,
“Pose estimation from RGB images of highly symmetric objects using
a novel multi-pose loss and differential rendering,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, Sep. 2021.

[7] B. Drost, M. Ulrich, P. Bergmann, P. Härtinger, and C. Steger, “Introduc-
ing mvtec ITODD - A dataset for 3d object recognition in industry,” in
2017 IEEE International Conference on Computer Vision Workshops,
ICCV Workshops 2017, Venice, Italy, October 22-29, 2017. IEEE
Computer Society, 2017, pp. 2200–2208.

[8] J. Vidal, C.-Y. Lin, X. Lladó, and R. Martı́, “A method for 6d pose
estimation of free-form rigid objects using point pair features on range
data,” Sensors, vol. 18, no. 8, p. 2678, Aug. 2018.

[9] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, CosyPose: Consistent
Multi-view Multi-object 6D Pose Estimation, 11 2020, pp. 574–591.

[10] Z. Li, G. Wang, and X. Ji, “CDPN: Coordinates-based disentangled
pose network for real-time RGB-based 6-DoF object pose estimation,” in
2019 IEEE/CVF International Conference on Computer Vision (ICCV).
IEEE, Oct. 2019.

[11] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab, “SSD-6d:
Making RGB-based 3d detection and 6d pose estimation great again,”
in 2017 IEEE International Conference on Computer Vision (ICCV).
IEEE, Oct. 2017.

[12] M. Oberweger, M. Rad, and V. Lepetit, “Making deep heatmaps robust
to partial occlusions for 3d object pose estimation,” in Computer Vision
– ECCV 2018. Springer International Publishing, 2018, pp. 125–141.

[13] K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation,” in 2019 IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE, Oct. 2019.

[14] Y. Zhou, C. Barnes, L. Jingwan, Y. Jimei, and L. Hao, “On the continuity
of rotation representations in neural networks,” in CVPR, June 2019.

[15] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft,
B. Drost, J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt,
F. Tombari, T.-K. Kim, J. Matas, and C. Rother, “BOP: Benchmark
for 6D object pose estimation,” ECCV, 2018.

[16] T. Hodaň, J. Matas, and Š. Obdržálek, “On evaluation of 6d object pose
estimation,” in ECCV Workshops, G. Hua and H. Jégou, Eds., 2016, pp.
606–619.

[17] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-
Y. Lo, J. Johnson, and G. Gkioxari, “Pytorch3d,”
https://github.com/facebookresearch/pytorch3d, 2020.

[18] L. N. Smith and N. Topin, “Super-convergence: very fast training of
neural networks using large learning rates,” in Artificial Intelligence and
Machine Learning for Multi-Domain Operations Applications, 2019.

[19] X. Deng, A. Mousavian, Y. Xiang, F. Xia, T. Bretl, and D. Fox,
“PoseRBPF: A rao–blackwellized particle filter for 6-d object pose
tracking,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1328–
1342, Oct. 2021.

[20] M. Sundermeyer, Z.-C. Marton, M. Durner, M. Brucker, and R. Triebel,
“Implicit 3d orientation learning for 6d object detection from rgb
images,” in ECCV, September 2018.

